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We present a density matrix-based transport model applicable to quantum cascade lasers which
computes both linear and nonlinear optical properties coherently and nonperturbatively. The model
is applied to a dual active-region mid-infrared quantum cascade laser which generates terahertz radi-
ation at the difference frequency between two mid-infrared pumps. A new mechanism for terahertz
generation is identified as self-detection, ascribed to the beating of current flow following the inten-
sity, associated with stimulated emission. This mechanism peaks at optical rectification but exhibits
a bandwidth reaching significantly into the terahertz range, which is primarily limited by the sub-
picosecond intersubband lifetimes. A metric is derived to assess the strength of self-detection in
candidate active regions through experiment alone, and suggestions are made for improvement of
the performance at frequencies below 2 THz.

I. INTRODUCTION

The quantum cascade laser (QCL) has emerged as a
leading candidate for a coherent light source in both
the terahertz (THz) and mid-infrared (mid-IR) spectral
ranges. Mid-IR QCLs were demonstrated first, and have
since advanced to watt-level powers in continuous-wave
operation at room temperature, enabling widespread
commercialization and applications [1, 2]. THz QCLs,
on the other hand, have been the greater challenge and
despite tremendous effort have reached a limit in operat-
ing temperature around 200 K, attributed to thermally-
activated LO-phonon scattering and other sources [3–
8]. The temperature limitation has been one major hin-
drance to the commercialization of these devices which
could surely find applications in a diverse range of scien-
tific and engineering fields [9, 10].
The only successful approach so far to room-

temperature THz output in QCLs has been to harness the
power of mid-IR QCLs for nonlinear, rather than direct,
generation. Devices have been developed in which two
mid-IR QCL active regions share the same cavity, and
the THz difference frequency between two mid-IR pumps
is generated through a second-order nonlinear suscepti-
bility (χ(2)) that originates within the active region itself.
In this way, various groups have demonstrated milliwatt-
level peak power, microwatt-level average power, and
tunability from 1.7-5.25 THz, all at room temperature
[11–15].
Given these successes, it is now worthwhile to take a

close look at the origin of the difference-frequency suscep-
tibility. The mechanism is typically described as a res-
onant interaction between the upper radiative subband
and two lower subbands of the active region/injector sys-
tem (see, for example, the highlighted subbands in Fig.
1). Association with the lasing transition boasts the
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inherent advantage that population inversion prevents
the pump absorption that typically accompanies reso-
nant nonlinearities. However, it is somewhat of an over-
simplification to attribute the nonlinearity to only a few
subbands, given the large number of subbands in the in-
jector region. A more complete theoretical analysis was
undertaken using an Ensemble Monte Carlo method to
calculate the steady-state populations under lasing con-
ditions; a perturbative “sum-over-states” (SOS) expres-
sion was then applied to calculate χ(2) considering all
possible subband combinations [16–18]. Inclusion of all
terms in the SOS expression lent agreement to the notion
that χ(2) is dominated by the resonant processes around
the lasing transition, at least for biases near the injection
resonance.

However, use of the SOS expression for χ(2) is still not
a complete description for a number of reasons. First, it
does not properly treat the effects of permanent dipoles
(diagonals of the position operator): these effects are im-
portant in QCLs where the state separations are compa-
rable to the dipole elements, and inclusion of these terms
in the SOS expression results in an unphysical transla-
tional variance. Second, since the SOS expressions are
perturbative, they cannot naturally account for high-field
effects such as electromagnetically-induced transparency
and others that require higher order. Third, as the SOS
expression is intended for a finite-sized entity such as an
atom or a molecule, it cannot capture the full dynamics
in an extended system such as a QCL with a large num-
ber of repeated modules that have conduction currents
flowing between them. A visualization of the various pro-
cesses which might contribute to THz generation is given
in Fig. 1.

In this paper, we employ a density matrix-based trans-
port model to provide a new look at the origin of the THz
difference-frequency susceptibility, taking as an example
system a dual active region mid-IR QCL reported in the
literature [14]. The model is translationally invariant,
nonperturbative, and takes into account the periodic na-
ture of the active region. No a priori distinction is made
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FIG. 1. (Color online) Top: Conduction band energy dia-
gram for the two active regions which are combined in series.
The states participating in lasing are highlighted. Bottom:
Three possible mechanisms of difference frequency generation.
Atom-like processes involve an intersubband polarization due
to off-diagonal dipole matrix elements, enhanced by resonance
with the energy structure. Permanent dipole effects are de-
picted as the modulation of an intersubband transition en-
ergy ∆E by an optical field at ω3, which would modulate the
susceptibility of another pump at ω2 close to resonance, pro-
ducing a χ(2). The energy modulation is a first-order Stark
effect made possible by spatial separation of the subbands,
and does not require resonance of ω3. Self-detection can be
described as an increase in current responding to the inten-
sity beatnote. Mechanisms outlined in red have yet to see
thorough theoretical description.

between the displacement current associated with inter-
subband transitions and the conduction current associ-
ated with current flow through the device, and in doing so
it is found that both can contribute significantly to THz
generation. In particular, we show that an important
and previously underappreciated mechanism is the beat-
ing of conduction current by stimulated emission across
the lasing transition, which becomes dominant over the
displacement current contribution for frequencies in the
lower THz range (< 2 THz).
The paper is organized as follows. Sec. II describes the

method by which the transport and optical properties are
calculated using a steady-state density matrix solver and
extraction of the velocities. Sec. III gives results and
analysis on the active region used in Ref. [14], where
it is demonstrated that beating of conduction current is
largely responsible for THz generation. Sec. IV summa-
rizes the findings, and details on the steady-state density

matrix solver, velocity extraction, and subband electron
distributions are given in Appendices.

II. METHOD

Our density matrix solver is adapted from Ref. [19] to
compute difference frequency susceptibility. Density ma-
trix transport models have been applied to specific QCL
systems since their conception [20–24], but analytic for-
mulations become prohibitively cumbersome for designs
consisting of more than 3-4 levels. To address this lim-
itation, generalized density matrix models have recently
been presented for modeling of arbitrarily complex de-
signs [19, 25, 26], with the further extensions of coherent
optical response and spatial periodicity first made in Ref.
[26]. To the best of our knowledge, this work is the first
density matrix model for QCLs to coherently include op-
tical fields at more than one frequency.

Each element in the density matrix is an average over
the subbands: diagonal elements are therefore the sub-
band population fractions and off-diagonal elements are
the coherences between subbands, averaged over the in-
plane wavevector. The goal is to solve for the steady-
state density matrix of the electronic system (ρ), whose
evolution follows a quantum dissipative form:

ρ̇ = − i

~
[H, ρ] +

∑

X

C†
XρCX − 1

2

(

C†
XCXρ+ ρC†

XCX

)

+ pure dephasing... (1)

The first term of the right side is the coherent Liouville-
von-Neumann evolution, driven by the Hamiltonian H ,
which in our case will include subband energy structure,
tunneling, and the optical fields. The

∑

X terms are
the Lindblad contribution for transitions, where X is a
label for each transition process and CX is the associ-
ated “jump” operator. The pure dephasing terms are for
processes which reduce coherences but do not alter the
subband populations.

A. Hamiltonian and density matrix structure

Following Refs. [19, 26], we assume that the Hamil-
tonian and density matrix have block periodic form to
follow the repetitive structure of a QCL:

H =
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. (3)

Each term in parentheses is a submatrix of size N×N ,
where N is the number of states per module. Subscript 0
signifies an intramodule submatrix, and ±1 refers to the
intermodule elements. The module energy difference is
accounted for in the matrix ∆ = Emod1N .
Each submatrix, including the module energy differ-

ence, is further decomposed into components at arbitrary
frequencies labelled by α:

Hp =
∑

α

H(ωα)
p eiωαt (4)

ρp =
∑

α

ρ(ωα)
p eiωαt (5)

∆ =
∑

α

∆(ωα)eiωαt. (6)

The optical field enters into the calculation in an elec-
tric dipole sense (H(ωα) = qE(ωα)z, where E(ωα) is the
optical field and z the position operator). Although this
destroys translational invariance in H , application of the
Liouville-von Neumann equation will only access differ-

ences in the diagonals of z, ensuring translational in-
variance in the complete model. An important conse-
quence of the electric dipole treatment, however, is that
the module energy difference fluctuation in Eq. 6 is cru-
cial in treatment of optical nonlinearities. Note that both
of ±ωα are included: allowing this in ρ amounts to not

making any “rotating-wave approximation” as explained
in Ref. [26]. A method for solving the entire steady-state
is given in Appendix A.

B. Scattering calculations and subband filling

Transitions are added into the steady-state solver
through the Lindblad terms in Eq. (1), where the
“jump” operator for the transition from state i to f is

CX =
√

1
τi→f

|f〉〈i|. The transition time τi→f is aver-

aged over the initial subband electron distribution. In
this work, we include transition processes due to inter-
face roughness, LO-phonons, alloy disorder, and ionized
impurities. The same processes are calculated for pure
dephasing, although their inclusion in the solver is triv-
ial (shown in Appendix A). The scattering calculations
were made following Ref. [27].
Some assumptions must be made, which make the

model inexact. The usual fitting parameters in QCL sim-
ulations are the interface roughness correlation length Λ

and average height ∆, for which we found good agree-
ment with experiment using the choices Λ = 25 nm,∆ =
0.8 Å. In addition, screening must be included in the
impurity and LO-phonon calculations, for which we use
an isotropic Debye model. Previous studies have found
this to be reasonably accurate when the Debye screen-
ing length LD is of the order of or longer than the
module length (in our case LD ≈ 26 nm with Lmod =
65.5, 69.2 nm for the two layer sequences studied) [28, 29].
The subband filling statistics in QCLs under operat-

ing conditions have been an area of intense study, and
are known to have a large impact on the overall trans-
port characteristic. A laser is inherently a nonequilib-
rium device, and in a QCL equilibrium is broken in more
aspects than only the subband populations. Two addi-
tional effects are important: the subband electron tem-
peratures Te tend to be significantly higher than the lat-
tice (phonon) temperature TL, and subband distributions
can often be noticeably nonequilibrium, with hot elec-
trons residing high in the subband, particularly in the
lower lasing states [30–32]. In our model, we capture
an approximation of both effects by assuming all sub-
bands to be Boltzmann-distributed with Te = 500 K,
but with a certain amount of hot electrons superimposed
as a Gaussian distribution at higher energy (centered at
140 meV above the subband minimum in light of elas-
tic scattering across the radiative transition). The frac-
tion of hot electrons is made highest in the lower las-
ing subbands (30%), decreases steadily to zero moving
downstream through the injector, and remains at zero
for the upper lasing states. More detail is given in Ap-
pendix C. This phenomenological scheme is designed
to reflect the carrier distributions observed in detailed
Monte Carlo simulations which resolve the in-plane k-
states [30]. Including these nonequilibium distributions
are particularly important to obtain approximate quan-
titative agreement with experimentally observed current
densities within the mid-IR lasers, which is central to
the new mechanism of difference susceptibility that we
identify.
The results of the scattering calculations give upper

state lifetimes near 500 fs and pure dephasing times at
the sub-100 fs level.

C. Extraction of transport and optical properties

The steady-state density matrix solution encodes all
the known information of the electronic system, and so
from it we can extract all the transport and optical prop-
erties including current, gain, and nonlinear susceptibil-
ity. Because we have an infinitely long chained system
with periodic boundary conditions, the polarization is
not a uniquely defined quantity as it can in general de-
pend on the boundary positions; therefore, all quantities
must be derived from the velocity which is uniquely de-
fined. Supposing we have in general a time-evolution
superoperator for the density matrix X (ρ̇ = Xρ), the
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FIG. 2. (Color online) The scheme used to evaluate Eq. (7)
to find the total system velocities. Starting/ending points
of the arrows correspond to cd/ab elements in Equation 7,
respectively. Blue arrows depict terms which move entirely
within the intramodule submatrix, and red those which move
into the intramodule submatrix from outside. Under the
assumption that there is no intermodule dipole operator or
transitions, the illustrated combinations constitute the fully-
representative and nonredundant set.

velocity expectation value is then:

〈v〉 = Tr(zρ̇) = Tr(zXρ) =
∑

ab,cd

zabXab,cdρcd. (7)

In other words, we must evaluate the full sum with all
possibilities of (density matrix element at cd) × (evolu-
tion from cd to ab) × (position element at ab). We need
a scheme adapted to our periodic system, and so we in-
voke a requirement for convenience that the module be
drawn in such a way that the intermodule dipole matrix
elements and transition rates are nonexistent, amounting
to a mandate that the module boundary is drawn at the
thick tunneling barrier. This location may not identifi-
able in any QCL system, but is in our case and serves to
simplify the mathematics. A visualization of one possible
way to evaluate the sum under this assumption is in Fig.
2.

Mathematical details are given in Appendix B, where
it is shown how to retrieve the velocities at all frequen-
cies included in the model (Eqs. (4-6)). In simulating a
system of two mid-IR pumps at frequencies ω2 and ω3

with THz difference frequency ω1, the parameters of in-
terest (current density J , first-order susceptibility χ(1),
and second-order susceptibility χ(2)) can be extracted as
follows:

J = Ndq〈v(0)〉 (8)

χ(1)(ωn) =
Ndq

iωnǫ0Eωn

〈v(ωn)〉 (9)

χ(2)(ω1 = ω3 − ω2) =
Ndq

iω1ǫ0Eω3
Eω2

〈v(ω1)〉. (10)

Nd is the average doping density, Eωn
is the input elec-

tric field magnitude at frequency ωn, and v(... ) are the
responding velocities at the different frequencies.
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FIG. 3. (Color online) (a) Transport characteristic of both ac-
tive regions independently and in series combination. Choos-
ing a bias point such that J = 10 kA/cm2 (green line), we
find a bias combination of 31.3 and 40.5 kV/cm for the long
and short wavelength active regions, respectively (subband
energy structures plotted in Fig. 1) (b) Gain computed with
increasing intensity for the two active regions separately at
the fixed bias fields described above.

III. RESULTS

We choose to model the active region from Vijayragha-
van, et. al. of dual In0.53Ga0.47As/In0.52Al0.48As het-
erostructures [14]. Although the two regions were de-
signed for gain around 8.2 µm (37 THz) and 9.2 µm (33
THz), the transition linewidths were sufficiently broad
that it was possible to achieve a large tuning range in
the generated THz output from 1.7-5.25 THz by tuning
the short wavelength pump in an external cavity setup.
The device produced 120 µW of peak power at 4 THz us-
ing a dual-period DFG grating cavity, and approximately
15, 45, 15, and 5 µW for 5, 4, 3, and 2 THz, respectively,
in the external cavity setup.

A. Transport, bandstructure, and gain

The two active regions are biased in series, and so must
draw the same current, which in turn determines the
possible bias combinations. Therefore, to choose a pair
of biasing points, we must first simulate the transport



5

-4 -2 0 2 4 6
0

1

2

3

4

5

Difference frequency ω
1
/(2π) (THz)

|Y
(2

) (ω
1

=
ω

3
- 

[1
3
0
 m

e
V

])
| 
(M

m
/V

s
)

(a)
Three-frequency sim.

Active Region A

100 120 140 160 180
0

1

2

3

4

5

Single input ħω (meV)

2
n
c
∆

J
d
c
/I

ω
(M

m
/V

s
)

(c)
Single-frequency sim.

Active Region A

-4 -2 0 2 4 6
0

1

2

3

4

5

Difference frequency ω
1
/(2π) (THz)

|Y
(2

) (ω
1

=
ω

3
- 

[1
3
0
 m

e
V

])
| 
(M

m
/V

s
)

(b)
Three-frequency sim.

Active Region B

100 120 140 160 180
0

1

2

3

4

5

Single input ħω (meV)

2
n
c
∆

J
d
c
/I

ω
(M

m
/V

s
)

(d)
Single-frequency sim.

Active Region B

12-11-10
resonance

12-10-9 resonanceCurrent beating

12-11-10 resonance

12-10 resonance

12-11 resonance

12-9 resonance

12-10 resonance
12-11 resonance

Current beating

FIG. 4. (Color online) (a,b) Simulated difference frequency current susceptibility Y (2)(ω1 = ω3 − ω2) with increasing pump
intensity for (a) Active Region A (long wavelength) and (b) Active Region B (short wavelength). The difference frequency ω1 is
swept with pump ω2 fixed at 130 meV and the other pump ω3 swept in conjunction. The black, blue, and green lines correspond
to 0.1 kW/mm2, 1 kW/mm2, and 10 kW/mm2, respectively, in each pump. Values at optical rectification are marked by the
dots. (c,d) The increase in current as a function of a stimulating frequency as found from a single-frequency simulation for (c)
the long wavelength and (d) the short wavelength active regions. (Input intensities are four times the intensity of the single

fields in a,b.) Scaling by 2nc reproduces the value of Y (2) at optical rectification (denoted by dots), although only for small
intensity. Equivalent points in the two simulations along the horizontal axis (single frequency input at 130 meV) are marked
by the dashed lines, and resonant processes are denoted on each plot.

characteristics. Bandstructure, tunnel couplings between
all pairs of states, and scattering rates are computed at
each bias to produce the characteristic shown in Fig. 3a,
where we can choose a pair of biases at current density
10 kA/cm2. It is noted here that the transport charac-
teristic levels off more than was experimentally observed;
this is likely due to the fact that leakage to the continuum
is not included in our model, which increases with the
bias field. Therefore, although it appears in the model
that it would be difficult to bias both active regions si-
multaneously at their highest gain point, in reality the
leakage current helps to alleviate this constraint.

Bandstructures calculated using a three-band k.p
model at the chosen bias combination are shown in Fig.
1. Wavefunctions are calculated within a single module
bounded by adjacent injection barriers, and tunnel cou-
plings are calculated between all possible pairs of states in

neighboring modules so as to include any possible injec-
tion channels (entering into H1,−1 of Eq. (2)). The tun-
nel couplings were calculated by direct evaluation of the
k.p Hamiltonian matrix elements using all of the conduc-
tion, light-hole, and split-off wavefunction components
which makes for a reliable scheme when nonparabolicity
is significant.

Gain for the two active regions with increased inten-
sity (each region treated independently) is shown in Fig.
3b. These simulations include input at only a single fre-
quency, and so neglect cross-saturation due to another
pump. The longer wavelength active region exhibits less
gain in the model than the shorter, because of the bi-
asing condition explained above. The saturation inten-
sity is realistic: 10 kW/mm2 amounts to 2 W inside the
waveguide with mode area 200 µm2.
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B. Nonlinear susceptibility

Rather than examine the difference frequency suscepti-
bility χ(2) itself, we instead define a current susceptibility

Y (2), which is linked to the current, rather than polar-
ization response:

Y (2)(ω1 = ω3−ω2) ≡
Jω1

ǫ0Eω2
Eω3

= iω1χ
(2)(ω1 = ω3−ω2),

(11)
where Jω1

is the current density response at ω1 and Eω2,3

are the input electric fields at ω2,3. The actual THz power

is then proportional to |Y (2)|2:

P1 =
l2coh

∣

∣Y (2)
∣

∣

2
P2P3

8ǫ0c3n1n2n3Seff
, (12)

where lcoh is the coherence length, Pn are the powers
inside the waveguide for each frequency ωn, nn are the
refractive indices for the same, and Seff is the effective
area of interaction [15].
Y (2) is a function of two independent variables, which

we could choose to analyze over different lines, as long
as the condition ω1 = ω3 − ω3 is retained. Figs. 4a,b
show |Y (2)| as a function of generated frequency ω1 with
one pump ω2 fixed at energy 130 meV (9.5 µm). Pump
frequency ω3 is thus swept in conjunction with ω1 for
this scenario. Equal intensities are input in both pumps
ω2, ω3, while the intensity in the generated frequency is
assumed to be negligible. For both active regions, the
resonant nonlinearities in the vicinity of 3-5 THz are vis-
ible, but they are added to a background which peaks
at the optical rectification limit (ω1 = 0, ω3 = ω2). The
nonzero value of Y (2) at DC generation implies that a
steady current is generated, rather than only a polariza-
tion; this is the root of the need to analyze Y (2) since
χ(2) exhibits a pole.
Insight into the mechanism behind this peak comes

from a single-frequency simulation, shown in Figs. 4c,d.
This simulation includes only one optical frequency,
which is swept, tracking the increase in DC current ∆Jdc.
These functions are, not suprisingly, similar in shape
to the gain profile, since the increase in current comes
primarily from stimulated emission across the radiative
transition. The value of Y (2) at optical rectification can
be explained entirely by this mechanism, as shown by the
dots connecting equivalent points in the two simulations.
At least for vanishing intensity, we see that:

lim
ω3→ω2

Y (2)(ω1 = ω3 − ω2) = 2nc
∆Jdc(Iω)

Iω
, (13)

with n being the refractive index and ∆Jdc(Iω) the
change in DC current due to intensity Iω in single pump
frequency ω. For fair comparison, we choose Iω = 4Iω2

=
4Iω3

, which is the peak intensity when beating the two
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FIG. 5. (Color online) Simulated increase in current den-
sity for both active regions in response to a pump at energy
130 meV. The intensity axis is extended to 40 kW/mm2, the
peak intensity when beating two pumps of 10 kW/mm2 each.
Linear expansion of each around zero intensity is given by the
dashed lines.

pumps. At higher intensity, the right side is found to
underpredict the value of Y (2) at optical rectification,
meaning that effects at fourth and even higher order be-
gin to have importance. Specifically, this can be inter-
preted in terms of the harmonics of the beatnote itself;
the left-hand side calculates only the first harmonic at ω1,
while the right-hand side would give the complete peak-
to-trough distance in the responding current. The fact
that the latter underestimates the first means that the
higher harmonics work to reduce this distance. Regard-
less, the quantity of interest is not the peak-to-trough
distance but rather the first harmonic itself. Ability to
account for this saturation effect highlights the advantage
of the nonperturbative treatment used here.

The relationship between current and input intensity
at pump energy 130 meV is shown in Figure 5, where the
saturation effect, a nonlinearity in Y (2) itself, is clearly
evident. The model predicts Active Region A to have less
increase in current with intensity than Active Region B,
which is an effect of the pump being further from the
peak in current stimulation (approximately the same as
peak in gain). This is seen also in Figure 4d as compared
to Figure 4c, and is also reflected in the reduced height
of the optical rectification peak in Figure 4b as compared
to 4a.

C. Shortcomings of the perturbative expressions

The nonlinear susceptibility in quantum well active re-
gions has usually been estimated using a perturbative
“sum-over-states” (SOS) expression, given as [18]:
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χ(2)(ω1 = ω3 − ω2) =
Ndq

3

~2ǫ0

∑

lmn

zlnznmzml(ρ
(0)
ll − ρ(0)mm)

×
(

1

ωnl − ω1 − iΓnl
+

1

ωnm + ω1 + iΓnm

)

×
(

1

ωml + ω2 − iΓml
+

1

ωml − ω3 − iΓml

)

.

(14)

The triple sum over state indices l,m, n is within a
single module, with ωxy being the resonant frequency
between states x and y, zxy the dipole matrix elements,

ρ
(0)
xx the populations at zeroth order (vanishing intensity)

and Γxy the decay rate of density matrix elements at xy.
The SOS expression is not meant to handle permanent
dipoles (diagonals of the z operator), as it is intended for
centrosymmetric atom-like systems, and it can be shown
that introduction of these terms does not in general yield
a translationally-invariant result. However, the perma-
nent dipoles might in some cases provide a mechanism of
intersubband second-order nonlinearity; one classic ex-
ample is optical rectification in a two-state antisymmet-
ric quantum well system where a case-specific expression
had to be derived more carefully [33]. In systems with
permanent dipole it is also conceivable that one pump
could modulate the energy difference between spatially
separated states (a first-order Stark effect). This modu-
lates the first-order susceptibility seen by another pump
close to resonance, so that χ(1)(ω2) could be modulated
at ω3 or vice versa. The end result is a second-order non-
linearity only requiring resonance with respect to one of
the pump frequencies. To test the hope that the trans-
lational variance is small, however, we will additionally
consider the result of the SOS expression with permanent
dipoles included to attempt to account for permanent
dipole effects in the perturbative approach.
Figure 6 displays a comparison between the full calcu-

lation of Y (2) and the SOS result both with and without
permanent dipoles included in Active Region B this time
analyzing: (a) as a function of generated frequency with
one pump held at 130 meV, (b) as a function of pump
frequency for generation of 4 THz, and (c) as a function
of pump frequency for generation of 1 THz. Population
inputs to the SOS expression are given from the steady-
state solution itself for fair comparison. The phases of
Y (2) are given in the insets, where for reference a phase
of zero (positive real Y (2)) implies velocity in phase with
the beating of intensity. We find that while the SOS
expression with permanent dipoles included provides a
rough estimation of Y (2) in the higher THz range (mag-
nitude comparable and phase within π/8 at 4 THz), for
frequencies in the lower THz the full calculation becomes
absolutely necessary. Approaching optical rectification,
both SOS expressions yield a vanishing Y (2) since χ(2)

is finite, meaning that any process describable using the
sum-over-states has zero efficiency in that limit. It can
also be seen from the stark difference in phases that even

-6 -4 -2 0 2 4 6
0

1

2

3

4 (a)

ω
1
/(2π) (THz)

|Y
(2

) (ω
1

=
ω

3
- 

1
3

0
 m

e
V

)|

100 120 140 160 180 200
0

1

2

3

4 (b)

ħω
3

(meV)
|Y

(2
) (2

π
(4

T
H

z
) 

=
ω

3
-

ω
2
)|

100 120 140 160 180 200
0

1

2

3

4 (c)

ħω
3

(meV)

|Y
(2

) (2
π
(1

T
H

z
) 

=
ω

3
-

ω
2
)|

−6 0 6

−π/2

0

+ /2π

p
h
a
s
e

100 150 200

−π/2

0

+ /2π

p
h
a
s
e

Full calculation

Sum-over-states w/
permanent dipoles

Sum-over-states w/o
permanent dipoles

100 150 200

−π/2

0

+ /2π
p
h
a
s
e

FIG. 6. (Color online) Comparison of Y (2)(ω1 = ω3 − ω2) in
Active Region B for the full calculation vs. a sum-over-states
for three different scenarios: (a) swept-signal generation with
one pump fixed at 130 meV, (b) fixed-signal generation of
4 THz, (c) fixed-signal generation of 1 THz. The magnitudes
are shown in the main plots and phases are displayed in the
insets. The calculations were done for vanishing intensity.
Units for vertical axes are Mm/Vs.

the SOS expression with permanent dipoles does not in-
clude all of the necessary processes; for generation of
1 THz the phase is off by approximately π/2, and at
optical rectification the SOS expressions predict phase
at opposite ±π/2. This latter implies a DC polarization,
when in fact Y (2) has a phase of zero in that limit, cor-
responding to DC current.
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D. Analysis

The effect that we have predicted can be described
as the high-frequency tail of self-detection: the addition
of two mid-IR waves amounts to a beating of intensity
which stimulates current response at the difference fre-
quency. This is associated with the radiative transition,
evident in the similar shape to the gain profile with re-
spect to pump frequency (exhibited in all of Figs. 4c,d
and 6b,c). Indeed, the increase of current with intensity
is experimentally visible in QCLs, most noteably as a
discontinuity in the differential conductance at threshold
as the onset of stimulated emission decreases the upper
state lifetime. The response time associated with this
mechanism is linked to the subpicosecond intersubband
scattering times, which allows the bandwidth to reach
into the THz range.
QCLs have an inherent design advantage in using this

effect, since it is tied to the radiative transitions which
the pumps are automatically close to resonance with.
One might choose to approximate this detection effect
by fitting to a simple response model:

Y
(2)
detection ≈ 2nc

1 + iωτ
β, (15)

where τ is a phenomenological response time and β
is a coefficient for the current increase with intensity
(β = ∂J/∂I for vanishing I). At lasing intensity, how-
ever, the coefficient β is reduced because of the saturation
of the detection effect, which is tied to gain saturation,
exhibited in Figure 4. Nevertheless, we can fit β to the
full model for different intensity levels. Figure 7 shows
an approximate fit to this model, where the full calcu-
lation is compared to a simpler one where the detection

(Y
(2)
detection) and SOS (Y

(2)
SOS) contributions are directly

superimposed:

Y (2) ≈ Y
(2)
detection + Y

(2)
SOS . (16)

Moderate quantitative agreement is found with the
simple model, with Y (2) being overpredicted by inclusion
of permanent dipoles in the SOS expression but under-
predicted by their exclusion. This suggests that perma-
nent dipole effects even not linked to current beating play
an important role reaching over the whole THz range,
and that the translational variance of the SOS expression
in accounting for them presents a significant error. Some
error might also be introduced into the simpler model by
the fact that β has frequency-dependence which would
become important as the higher frequency pump moves
further away, or by additional sources including the tun-
nel couplings which cannot be accounted for in the SOS
expression.
Given that the current beating effect contributes sig-

nificantly to difference frequency generation, it is useful
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FIG. 7. (Color online) Fitting of the full calculation to a
simpler model involving superposition of detection and SOS
components. The black, red, and blue lines give results from
the full calculation, SOS expression with permanent dipoles,
and SOS expression without permanent dipoles. Calculations
are performed on Active Region B, for the same fixed-pump
scenario as in Figs. 4a,b and 6a. (a) Real and (b) imaginary
parts are given for vanishing intensity. The fitted parame-
ter β = 0.125 ((kA/cm2)/(kW/mm2)) for vanishing inten-
sity, although at 10 kW/mm2 in each pump (not shown) this
coefficient is reduced to 0.072 ((kA/cm2)/(kW/mm2)). The
approximate response time τ is 240 fs.

to establish a way to estimate its strength in real de-
vices using commonly measured experimental parame-
ters. One such parameter is the differential conductance
discontinuity at threshold ∆G, and another is the “slope
efficiency” of the output power Pout vs. injection current
Id. Since the key parameter of interest is β, we solve for
it at threshold:

β =
∆G

G0 +∆G

1

S

Amode

Aactive

T

2
, (17)

G0 is the differential conductance just below threshold,
S is the slope efficiency defined as dPout/dId, Amode and
Aactive are the lasing mode and top-down active region
areas, respectively, and T is the output facet transmission
(approximating that T/2 is the ratio of output power to
total power inside the waveguide). Since Amode, Aactive,
and T are primarily cavity-related parameters, Eq. (17)
provides a useful metric for comparison between different
active regions by placement in the same cavity configura-
tion. In a QCL, this expression would be approximately
proportional to the population inversion [34], which is in-
tuitively linked to the strength of current beating. It is
important to note that the value of β as found by (17)
is for vanishing intensity and at threshold, but will likely
still be indicative of the strength at more normal operat-
ing conditions.
The injection barrier thickness is well known to have

large impact on the coherence of the injection process,
and hence on ∆G. Fig. 8 displays the effect of an altered
barrier width on Y (2) for both active regions. The results
suggest that there is some danger in suppression of the
current beating by choosing too thick a barrier, and also
that there may be some room for improvement by its
reduction - at least in the case of Active Region A.
The collective results of this paper suggest a simple

strategy for optimizing performance for low THz gener-
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FIG. 8. (Color online) Effect of the injection barrier width

(in legends) on Y (2) for vanishing intensity. Green lines cor-
respond to values chosen in Ref. [14].

ation (< 2 THz). We suggest using only a single active
region, which should have sufficient mid-IR gain band-
width when the pumps are closer in frequency. Using a
single active region removes the current continuity con-
straint of using two active regions, and allows operation
at the optimum point. Active region A appears to be pre-
ferred; that is to say, it is predicted to have a larger Y (2)

value when biased at its optimum point, and has more
room for improvement by thinning the injection barrier.

IV. CONCLUSIONS

We have presented a density matrix transport model
for QCLs which handles both gain and optical nonlin-
earity coherently and nonperturbatively. Scattering and
dephasing processes were carefully accounted for by de-
tailed calculation of the most relevant mechanisms, and
care was taken to account for hot subband distributions
and nonequilbrium electrons. The model predicts rea-
sonable current levels as compared with experiment and
predicts the expected amount of gain for lasing and a
reasonable saturation intensity.
The computed nonlinearity exhibits a peak in effi-

ciency, as opposed to merely susceptibility, at optical
rectification, which is ascribed to the increase of DC cur-
rent proportional to intensity. This increase is identi-
fied as a self-detection effect occurring through stimu-
lated emission across the radiative transition, a familiar
phenomenon in QCLs which has even seen recent use
in THz phase-sensitive imaging systems [35, 36]. We
have shown that the high-frequency tail of this effect
extends into the THz range because of the subpicosec-
ond intersubband scattering times. The detection itself
is highly nonlinear, meaning that fourth- and higher-
orders are significant. A sum-over-states expression was
found not to accurately reproduce the complete suscep-

tibility, especially for generated frequencies in the lower
THz range where the detection is strong. The complete
susceptibility is reasonably well-matched by superposi-
tion of a fitted detection susceptibility and a sum-over-
states expression, although even this is still not exact,
since permanent dipoles and other mechanisms play a
role in the nonlinearity which is not correctly accounted
for by a sum-over-states. Finally, a metric was derived
to assess the strength of self-detection for active regions
through experimentally-accessible parameters, and sug-
gestions were made for improvement of the performance
in the lower THz range (< 2 THz) .

The current beating, or self-detection, effect is large,
and our results serve to explain the surprisingly low-
frequency THz generation in a device demonstrated in
the literature. The prediction of significant current sus-
ceptibility Y (2) extending to DC-generation suggests that
the eventual low-frequency shutoff is owing more to other
factors such as free-carrier absorption, phase matching,
and output coupling, which are beyond the scope of this
work. Regardless, a route forward to increased conver-
sion efficiency in the lower THz range might aim to ex-
ploit this effect. There is no need to attempt to lower the
frequency of a resonant nonlinearity whose conversion ef-
ficiency will scale downwards as the square of the gener-
ated frequency. Specifically, we have pointed out that a
simple experimental metric useful for the assessment of
such active regions is the relative differential conductance
change at the onset of lasing.

Finally, it is possible that the formalism developed
in this work is applicable to the study of the recently
developed multi-mode QCLs and frequency combs [37–
39]. Most directly, it is conceivable that the same de-
tection process predicted here is responsible for the fa-
miliar radio-frequency beatnote generation, as a result of
current beating from pairs of adjacent frequency lines.
Further, a similar model could be extended to study
the effect of radio-frequency modulation on such active
regions [40, 41], particularly to assess the contribution
coming from nonresonant transition energy modulation
enabled by permanent dipoles. The formalism presented
here could also be readily extended to encompass third
order nonlinearities, which would allow the study of comb
generation itself.
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Appendix A: Steady-state density matrix solution

We begin by separating the evolution in Eq. (1) into coherent, transition, and dephasing components and writing
in the steady-state condition:
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ρ̇ = ρ̇|coh + ρ̇|trans + ρ̇|deph =
∑

n

iωnρ
(ωn)eiωnt. (A1)

Applying block matrix multiplication to the coherent evolution with Eqs. (2,3) as input, we arrive at the general
equation for coherent evolution of any submatrix in ρ:

ρ̇p|coh =
∑

q

[Hp−q, ρq]− p∆ρp. (A2)

Next, ∆ and submatrices of H and ρ are expanded into their steady-state harmonics (Eqs. (4-6)), and by isolating
in frequency we arrive at the general equation for coherent evolution of any harmonic of any submatrix in ρ:

ρ̇p|(ωm)
coh = eiωmt

∑

qn

(

− i

~

[

H
(ωm−ωn)
p−q , ρ(ωn)

q

]

− δpqq∆
(ωm−ωn)ρ(ωn)

q

)

. (A3)

This equation provides some interesting insight, which also aids in writing down the complete solution later:
submatrices in ρ connect to other submatrices through the difference submatrix in H , and also frequencies in ρ
connect to other frequencies through the difference frequency components in H . Since we are to solve for all elements
in each matrix, we apply the vectorization transformation (columnwise conversion of a matrix into a column vector),
which has the useful property that vec{AB} = (1N ⊗A)vec{B} = (BT ⊗1N)vec{A}, for multiplication of two square
matrices A and B each having dimension N . Vectorization of Eq. (A3) gives:

vec
{

ρ̇p|(ωm)
coh

}

= eiωmt
∑

qn

[

− i

~

(

1N ⊗H
(ωm−ωn)
p−q −H

(ωm−ωn),T
p−q ⊗ 1N

)

− δpqqE
(ωm−ωn)
mod

]

vec
{

ρ
(ωn)
p−q

}

, (A4)

with E
(ωm−ωn)
mod as the scalar module energy at the different frequencies, including DC.

Next we move to the transition contribution (
∑

X terms in Eq. (1)), where we will work under the assumption that
transitions only occur within the module. Each transition process has separate instances inside each module, each of
which has its own Lindblad superoperator (as in Eq. (A5) in Ref. [19]) formed with a lone instance of the intramodule
submatrix C̄X at the module position. The result of each can be found using a similar block matrix multiplication
tactic as was used for the coherent contribution, and added to yield:

ρ̇p|trans =
∑

X

δp0C̄X
†
ρpC̄X − 1

2

[

C̄X
†
C̄Xρp + ρpC̄X

†
C̄X

]

, (A5)

which is again a fairly intuitive equation as we see that the transitions can only increase the intramodule elements of ρ,
where the population transfer occurs, while the associated dephasing affects all elements. Separation into frequencies
is trivial since the jump operators carry no time dependence, and then we can vectorize Eq. (A5), leading to:

vec
{

ρ̇p|(ωm)
trans

}

= eiωmt
∑

x

[

δp0
(

C̄X ⊗ C̄X

)

− 1

2

(

1N ⊗ ¯
C†

X C̄X + C̄X
†
C̄X ⊗ 1N

)

]

vec
{

ρ(ωm)
p

}

. (A6)

Finally, the dephasing processes are the simplest to treat. Given matrices of the dephasing times in each submodule
named T2,p, where T2,0 is the intramodule dephasing and T2,±1 are the dephasings of ρ1,−1, (T2,−1 = T T

2,1), we have:

vec
{

ρ̇p|(ωm)
trans

}

= −eiωmtvec
{

T
◦(−1)
2,p

}

◦ vec
{

ρ(ωm)
p

}

, (A7)

with the symbol ◦ denoting the Hadamard (elementwise) product and the superscript in T
◦(−1)
2,p the Hadamard inverse.

Now based on substitution of Eqs. (A4), (A6), and (A7) into the steady-state condition of (A1), we can organize the
entire solution by the following:
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Sp = 17 ⊗
{

∑

X

[

δp0
(

C̄X ⊗ C̄X

)

− 1

2

(

1N ⊗ C̄X
†
C̄X + C̄X

†
C̄X ⊗ 1N

)

]

}

∣

∣

∣

∣

∣

Dp = −17 ⊗ diag
{

vec
{

T
◦(−1)
2,p

}}

.

The complete steady state is then soluble after substituting a population sum condition to a single row in (A8).
The method is formulated here for a set of three frequencies where ω1+ω2 = ω3, but it is straightforward to generalize
to other situations including the single-frequency simulation referred to in Figs. 4c,d and 5.

Appendix B: Evaluating the velocities

The sum in Eq. (7) can be rearranged for interpretation in two different ways: if we choose 〈v〉 =
∑

ab zab (
∑

cdXab,cdρcd), we recover the original concept of 〈v〉 = Tr(zρ̇), whereas if we choose instead 〈v〉 =
∑

cd ρcd (
∑

ab zabXab,cd), it appears we have found a velocity operator v and are now using 〈v〉 = Tr(vρ). In this
spirit, the sum scheme drawn in Fig. 2 can be separated into three parts based on origination from ρ0, ρ1, and ρ−1,
formally:
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〈v〉 = Tr(v0ρ0) + Tr(v−1ρ1) + Tr(v1ρ−1). (B1)

The first term can be computed directly from the pieces of (A8) and the dipole operator, since all the pieces of the
time evolution superoperator X are in place. Even the necessary frequency mixing is already organized. Using the
intramodule dipole submatrix Z0, we can evaluate the first term contributions to (B1) at all frequencies as follows:
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0
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P (H0) + S0 +D0
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vec
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ρ
(ω...)
0

}
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−ω2

−ω1

0
+ω1

+ω2

+ω3






, T r(v0ρ0)

(ω...) = vec {Z0}T A(ω...). (B2)

The second and third terms in Eq. (B1), on the other hand, cannot be evaluated in the same approach, because the
matrix equation (A8) does not distinguish between destination modules in the evolution pointing from intramodule
to intermodule elements. However, since it is seen clearly that evolution of this nature is entirely coherent (always
P (H±1)), we can be sure that the intermodule velocity operators can be constructed entirely from H and the dipole
matrix Z using v = (i/~)[H,Z]. Applying block matrix multiplication given H in the form of Eq. (2) and a similar
Z having only intramodule submatrices, we obtain the off-diagonal velocity operator submatrices:

v±1 =
i

~
([H±1, Z0]∓ LH±1) , (B3)

with L as the spatial separation between modules employed in the same fashion as the energy separation in Eq. (2).
Since v±1 carries no time dependence, evaluation of the second and third traces in (B1) are now straightforward.

Appendix C: Subband electron distributions

To retain simplicity while still capturing the important
effects of the nonequilibrium subband distributions, we
mandate that the subbands are mostly thermalized to a
Boltzmann distribution at 500 K with a certain fraction
of hot nonequilibrium electrons. Hot electrons are pro-
duced mainly by elastic or LO-phonon scattering across
the radiative transition to states high up in the lower
lasing subbands, and may exist further down the injector
although they will gradually disappear through electron-
electron and other intrasubband scattering. Assuming
that the hot electrons are produced across the radiative
transition, the end result is a bump in the electron distri-
bution at roughly the radiative transition energy above
the subband minimum for the lower lasing state; this is
approximated in this work as a normal distribution cen-
tered at 140 meV. The explicit equation for the subband
distribution (fraction of population per unit energy) is
then:

Pn(E‖) =
(1− fn)

kBT
e−E‖/kBT +

fn√
2πσ2

e−(E‖−µ)2/2σ2

,

(C1)
where E‖ is the in-plane electron kinetic energy, fn is
the hot electron fraction assigned to the subband, µ =
140 meV is the hot electron energy center, and σ is the
standard deviation (chosen as 25 meV). The hot electron
fractions are assigned as the following:
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FIG. 9. Assumed electron distributions for selected subbands
in Active Region B.

fn =

{

f11
En−E1

E11−E1

n ≤ 11

0 n ≥ 12
(C2)

where f11 = 0.3 is the hot electron fraction for the lower
lasing state 11 and En are the subband energies. A plot
of selected subband distributions for Active Region B is
shown in Fig. 9. Our choice of subband electron distri-
bution is in light of other works, most notably the Monte
Carlo simulation by Matyas et. al. (see Ref. [30] Fig.
3a), the NEGF results by Lindskog et. al. (see Ref. [31]),
and the experimental measurements by Spagnolo et. al.
(Ref. [32]).
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