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In this work, we determine the intrinsic mechanical energy dissipation limit for single-crystal
resonators due to anharmonic phonon-phonon scattering in the Akhiezer (Ωτ << 1) regime. The
energy loss is derived using perturbation theory and the linearized Boltzmann transport equation
for phonons, and includes the direction and polarization dependent mode-Grüneisen parameters
in order to capture the strain-induced anharmonicity among phonon branches. This expression is
the first to reveal the fundamental differences among the internal friction limits for different types
of bulk-mode elastic waves. For cubic crystals, 2D-extensional modes have increased dissipation
compared to width-extensional modes because the biaxial deformation opposes the natural pois-
son contraction of the solid. Additionally, we show that shear-mode vibrations, which preserve
volume, have significantly reduced energy loss because dissipative phonon-phonon scattering is re-
stricted to pure-shear phonon branches, indicating that Lamé or wine-glass mode resonators will
have the highest upper limit on mechanical efficiency. Finally, we employ key simplifications to
evaluate the quality factor limits for common mode shapes in single-crystal silicon devices, explic-
itly including the correct effective elastic storage moduli for different vibration modes and crystal
orientations. Our expression satisfies the pressing need for a reliable analytical model that can
predict the phonon-phonon dissipation limits for modern resonant microelectromechanical systems
(MEMS), where precise manufacturing techniques and accurate finite element methods can be used
to select particular vibrational mode shapes and crystal orientations.

I. INTRODUCTION

The performance of mechanical resonators is governed
by dissipation of energy stored in the resonant vibra-
tional mode to other acoustic modes or the environment
[1]. Despite the increasing prevalence of resonant micro-
electromechanical systems (MEMS) as high-performance
inertial sensors, mass-based chemical sensors, timing ref-
erences and frequency filters, the energy dissipation in
these structures is not well understood [2]. The dissi-
pation can be difficult to determine because there is no
single, predictive theory to evaluate the quality factor
(Q), defined as 2π Energy stored

Energy loss per cycle . A number of damp-

ing mechanisms, each requiring its own unique physical
model, may contribute to the dissipation; however, the
losses add linearly, so the quality factors add reciprocally
and a single loss mechanism will dominate for a particular
set of operating conditions [3]. Accurate prediction of Q
has tremendous design implications because it is directly
related to device performance metrics including sensitiv-
ity for resonant sensors, bandwidth for radio-frequency
filters and phase-noise for timing references.

Energy loss mechanisms may be intrinsic, fundamental
to the material and device geometry, or extrinsic, a func-
tion of the operating environment of the resonator. This
work focuses on determining intrinsic dissipation limits
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in dielectric and semiconductor crystals, which are gov-
erned by the interaction between the elastic wave and
thermal phonons. This interaction, also called internal
friction, has two components: spatial phonon transport
and local phonon scattering. Time varying strain gra-
dients drive irreversible spatial phonon transport (heat
flow), known as thermoelastic dissipation (TED). TED is
a well understood loss mechanism that can be accurately
predicted using a finite element solver and can be min-
imized via appropriate design of device geometry [4, 5].
Moreover, it is negligible for vibration modes with uni-
form strain, because there are no strain-induced thermal
gradients, and becomes less significant as resonators ap-
proach the GHz regime due to a mismatch between the
time constant for heat transfer and the mechanical vi-
bration period. Thus, for high-frequency and bulk-mode
resonators, the dissipation is ultimately limited by lo-
cal phonon-phonon scattering, commonly referred to as
Akhiezer damping. In this work, we derive a new ex-
pression for Akhiezer loss that captures the effect of an-
harmonic phonon-phonon scattering as well as crystalline
anisotropy.

In the Akhiezer damping model, the strain produced
by the mechanical wave modulates the phonon frequen-
cies and, consequently, the local equilibrium phonon dis-
tribution. The phonon populations cannot change in-
stantaneously and will relax towards the modulated equi-
librium distribution via phonon-phonon scattering when
the thermal relaxation time (τ) is significantly less than
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the period of the mechanical wave. Due to the applica-
tion of rapidly varying strain and a finite τ , the time-
dependent phonon populations lag behind their (per-
turbed) equilibrium value. This relaxation towards equi-
librium is an entropy producing process that consumes
energy from the elastic wave. It is important to note that
the Akhiezer damping model only applies when the scat-
tering rate (1/τ) is significantly larger than the frequency
(Ω) of the mechanical vibration, Ωτ << 1, which is the
case at room temperature for commonly used acoustic
materials like silicon, germanium and quartz [6].

This limit on mechanical energy dissipation was
first described by Akhiezer [7] and later solved by
Woodruff using the linearized Boltzmann transport equa-
tion (BTE) and the Debye approximation to arrive at a
simplified expression for internal friction (Q−1) involving
only classical, bulk parameters [8].

Q−1 =
γ2

0CvT

ρc2
Ωτ (1)

In the above expression, T is the ambient temperature,
ρ is the material density, c is the Debye average sound
velocity, Cv is the specific heat per unit volume and γ0

is the average Grüneisen parameter associated with ther-
mal expansion. Woodruff derives this result by assuming
that all phonon modes are perturbed identically by the
strain wave and neglecting the perturbation of the inter-
nal temperature of the solid. Typically, this expression
is used to make an order of magnitude prediction of the
internal friction limit in a given material [9].

Mason provides an alternate approach, arriving at an
expression for internal friction by taking the derivative
of the total phonon energy with respect to the applied
strain and interpreting this as a loss modulus in accor-
dance with Zener’s phenomenological theory of anelastic
relaxation in solids [10, 11]. Critically, Mason shows that
because the dissipation originates from anharmonicity of
phonon modes, third-order elastic coefficients can be used
to estimate the mode-Grüneisen parameters, γi, which
represent the strength of the phonon frequency pertur-
bation to an applied strain for a particular pure phonon
mode, i, characterized by a crystal direction and polar-
ization. Thus, Mason dispenses with the assumption that
all phonon branches have the same γi in an attempt to
provide a more accurate estimate of the Akhiezer damp-
ing limit.

Mason’s derivation was heavily criticized by Barrett
and Holland because of its lack of analytical rigor [12];
the most notable objections were the seemingly arbitrary
designation of certain phonon frequency terms as strain-
independent and the cursory assumption that the cut-
off frequency in the Debye integral is strain-independent.
Nevertheless, Mason’s expression for acoustic attenuation
appeared to provide better agreement with experimental
results in silicon and germanium than Woodruff’s simpler
but more analytically sound expression. Consequently,
Mason’s (incorrect) expression is often cited when at-

tempting to fit experimental data while Woodruff’s is
used to provide an upper bound on the quality factor
(Q) for a given material system [9, 13]. A few refine-
ments to Mason’s method have been introduced includ-
ing a correction factor for the Debye integral to account
for the modulation of the upper integration limit [14]
and Brugger-Fritz integration schemes to include phonon
scattering to arbitrary directions [15]. Even with these
corrections, Mason’s expression is inherently flawed [16],
so it should not be used to predict experimental results.
Similarly, in an attempt to better match acoustic atten-
uation measurements, Nava et al. modified Woodruff’s
method by introducing a pure-mode ultrasonic Grüneisen
parameter. They rigorously define this parameter as a
weighted average of mode-specific phonon thermal con-
ductivities, but cannot evaluate their complex expression
and instead simply fit its value to experimental results
[17]. Ultimately all these refinements require careful in-
tegration over the spectrum of acoustic phonon modes,
which unnecessarily complicates evaluation of the energy
dissipation.

More recently, Kiselev and Iafrate considered the in-
ternal friction for the specific case of a doubly-clamped,
flexural mode cantilever and, following the approach in-
troduced by Bommel and Dransfeld, showed qualitatively
that the anharmonicity induced by the presence of just
two groups of phonons with different mode-Gruneisen
parameters results in local phonon-phonon dissipation
[18, 19]. However, they oversimplify their evaluation
of the dissipation limit by assuming only two phonon
groups and arbitrarily designating values for the mode-
Gruneisen parameters for each group, prohibiting valid
comparison with experimental data. Kunal and Aluru
used molecular dynamics to calculate the Akhiezer limit
for nickel nanowires with a maximum size of 20 atoms
per edge [20]. Ultimately, likely due the resonator size
restriction imposed by the practical computational lim-
itations, they do not compare the molecular dynamics
results to experimental data, and only attempt to cor-
relate their results to existing theory by evaluating Ma-
son’s nonlinearity parameter, D, which we have already
indicated is a not an analytically sound choice. Hence,
there is a compelling need for a more predictive, ana-
lytical model that employs appropriate simplifications so
that the energy loss can be evaluated in a straightforward
and consistent manner using known material constants
and reliably compared with experimental results.

In this work, we rigorously derive an expression for
the internal friction limit due to anharmonic phonon-
phonon scattering that incorporates important elements
of both Woodruff’s and Mason’s derivations. We solve for
the energy loss using the analytically sound Boltzmann
transport method, but rather than assuming all phonon
modes are perturbed equally by strain, we include the
directional and polarization dependent mode-Grüneisen
parameters. The resulting expression for Akhiezer damp-
ing still depends only on bulk parameters, but distin-
guishes between different vibration modes and crystal di-
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rections. As we will show, for common vibration modes
this expression can be reduced to match equation 1, but
replacing the average Grüneisen parameter, γ0, with an
anharmonic Grüneisen parameter, Γa, that depends on
the strain profile of the vibration.

II. ENERGY LOSS

The derivation of the anharmonic phonon-phonon dis-
sipation begins with the assumption that the strain wave
is time-harmonic with wavevector K and angular fre-
quency Ω so that ε(t) ∝ exp(i(K · r − Ωt)), where r is
the position vector. The strain perturbs the frequencies
(ω) of all thermal phonons, satisfying the relation,

ωi = ωi0[1 + ~γi · ~ε(t)] = ωi0 + ∆ωi (2)

where the index i denotes a pure-mode branch charac-
terized by a direction and polarization along a crystal
axis so that ωi is the instantaneous phonon frequency of
the ith branch and ωi0 is the unperturbed equilibrium
phonon frequency. Each high-symmetry direction in the
Wigner-Seitz cell, the primitive Brillouin zone (BZ), has
a longitudinal mode that is polarized along the direction
of phonon propagation and two transverse modes that
are polarized perpendicularly to the propagation direc-
tion. Figure 1 shows the 13 principal crystallographic di-
rections (high-symmetry directions) in the Wigner-Seitz
cell for the diamond lattice with the 〈100〉, 〈110〉 and
〈111〉 families of directions in distinct subplots. Defor-
mation of the solid due to strain, even in just a single
direction, deforms the entire BZ resulting in perturba-
tion of all phonon branches.

FIG. 1. Wigner-Seitz cell for the diamond lattice centered
about the Γ-point. (a) Three 〈100〉 directions (blue). (b)
Six 〈110〉 directions (red). (c) Four 〈111〉 directions (green).
There are 13 high-symmetry crystal directions and each con-
tributes three pure modes, one longitudinal and two trans-
verse, resulting in 39 distinct phonon branches.

For cubic crystals, the strain tensor is assumed to be
symmetric, so we can express it compactly as a vector,
~ε(t), with six independent components, denoted εj , where
the index j indicates one of the six possible strain direc-

tions: three normal and three shear (see equation 3).
εxx
εyy
εzz
εyz
εzx
εxy

 =


ε1
ε2
ε3
ε4
ε5
ε6

 (3)

Consequently, ~γi is also a vector with six compo-
nents that are the mode-Grüneisen parameters, γi,j , cor-
responding to the anharmonic perturbation of the ith

branch frequency due to strain in the jth direction. Here,
we assume that the γi,j ’s are independent of the phonon
frequency and wavenumber. As a result, the instanta-
neous phonon population in each branch, Ni, deviates
from its thermal equilibrium Bose-Einstein distribution,
Ni0 = (eh̄ωi0/kBT − 1)−1, so that

Ni = Ni0 + ∆ni (4)

Now, we use the linearized Boltzmann transport equa-
tion (BTE) to solve for Ni. We are deriving the dissipa-
tion limit due to local phonon-phonon scattering, so we
assume uniform strain and can eliminate all spatial terms
in the BTE. Thus, the relaxation towards equilibrium is
solely determined by the scattering term.

∂Ni
∂t

∣∣∣∣
scatt

=
∂Ni
∂t

(5)

Following the approach of Woodruff and others [12, 17],
we employ the relaxation time approximation to de-
scribe the scattering term as decay of Ni towards a Bose-
Einstein distribution, N ′i0, at a modulated local temper-
ature, T ′ = T + ∆T .

∂Ni
∂t

=
Ni −N ′i0

τ
(6)

where

N ′i0 = (eh̄ωi/kBT
′
− 1)−1 (7)

and τ is the average time between phonon collisions. The
mode-specific time constants, τi, are not all available, so
we make the practical assumption that τ is the same for
all acoustic modes. Figure 2 outlines the perturbation
theory and the corresponding dissipative relaxation.

Solving BTE assuming plane wave solutions,
∆ωi,∆ni,∆T ∝ exp(i(K · r− Ωt)), yields

∆ni = ωi0

(
∂N ′i0
∂ωi

)
0

(
∆ωi
ωi0
− ∆T

T

)
(1− iΩτ)−1 (8)

After evaluating the partial derivative and combining
terms we have

∆ni =

(
−TCk,i
h̄ωi0

)(
∆ωi
ωi0
− ∆T

T

)
(1− iΩτ)−1 (9)
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FIG. 2. Overview of the energy loss due to anharmonic
phonon-phonon scattering. Strain in one of the normal di-
rections ε1−3 leads to a perturbation of phonon frequencies
in each branch, characterized by the mode-Grüneisen param-
eter γi,j , where j is the strain direction and i represents the
crystal direction and polarization. For the diamond lattice,
we can express i using the notation [hkl]P , where [hkl] is a
particular crystal direction (expressed using Miller indices)
and P is the polarization, which can be either longitudinal
(L) or transverse (T1 or T2). The modulation of phonon fre-
quencies (and energies) means the respective branch popula-
tions are out of equilibrium. Each branch distribution relaxes
towards the perturbed equilibrium distribution via phonon-
phonon scattering. The energy loss that occurs during this
irreversible relaxation process is assumed to come from the
acoustic wave, because that is the source of the perturbation.
The shear strains ε4−6, however, only perturb the phonon fre-
quencies in branches with transverse polarizations, because a
volume change is prohibited. Hence, shear-mode vibrations
tend to have reduced dissipation because only a fraction of
the phonon branches contribute to the loss.

where Ck,i is the specific heat contribution from a par-
ticular phonon mode that depends on the branch, i, and
the phonon wavevector, k. It can be written explicitly as

Ck,i =
(h̄ωi0)2eh̄ωi/kBT

kbT 2(eh̄ωi0/kBT − 1)2
(10)

and is related to the classical specific heat per unit vol-
ume using

Cv =
∑
k,i

Ck,i (11)

where the subscripts indicate a summation over all acous-
tic phonon modes, specified by k and i.

For clarity, we proceed with the remainder of the
derivation assuming uniaxial strain (i.e. ~ε(t) = εj). We
will show later how to make the appropriate modifica-
tions to capture the effect in realistically achievable vi-
bration modes where Poisson contraction leads to defor-
mation of more than one strain component. Under this

uniaxial assumption, equation 2 reduces to

∆ωi
ωi0

= γi,jε(t) (12)

because εj is the only nonzero strain component so that
only the jth component of ~γi (indicated by the second
subscript) contributes to the anharmonicity. As shown
by Akhiezer, the temperature modulation can be deter-
mined self-consistently using the condition that the colli-
sion process conserve energy to first order [7, 12], giving

∆T

T
=
∑
k,i

Ck,i
∆ωi
ωi0

(1− iΩτ)−1

/∑
k,i

Ck,i(1− iΩτ)−1

(13)
We can express this succinctly as

∆T

T
= 〈γi,j〉ε(t) (14)

where 〈γi,j〉 is the average of the jth component of each
~γi, weighted by it’s contribution to the total specific heat,
over all phonon branches. Substituting equations 12 and
14 into the solution to the BTE gives

∆ni =

(
−TCk,i
h̄ωi0

)
(γi,j − 〈γi,j〉) ε(t)(1− iΩτ)−1 (15)

Now, we can proceed with the energy loss calculation.
The energy loss per cycle of oscillation is simply the time
average of the rate at which energy is lost via phonon-
phonon scattering,

Uloss/cycle = −
∑
k,i

〈
Hi

(
∂Ni
∂t

)
scatt

〉
cycle

(16)

where the Hi = h̄ωi, is the phonon Hamiltonian and
〈·〉cycle denotes the time average over one period of the
mechanical vibration, 2π/Ω. We can rewrite this using
the chain rule for derivatives,

Uloss/cycle = −
∑
k,i

〈
Ni
∂Hi

∂t
− ∂(NiHi)

∂t

〉
cycle

(17)

The second term is simply the time derivative of the total
energy, which we can eliminate because it must be con-
stant in time. Due to the time average over one cycle,
only the time-harmonic component of Ni contributes to
the loss, so we can ignore Ni0 and

Uloss/cycle = −
∑
k,i

〈
∆ni

∂Hi

∂t

〉
cycle

(18)

Substituting the solution to the BTE in equation 15 and
evaluating the derivative yields

Uloss/cycle = −
∑
k,i

TCk,i
γi(γi − 〈γi,j〉)

1− iΩτ
iΩ〈ε2(t)〉cycle

(19)
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after removing the time-independent terms from the
〈·〉cycle brackets. Noticing that 〈ε2(t)〉cycle = π

Ωε
2
0, where

ε0 is the amplitude of the strain wave, and taking the
real part of the energy loss reduces this to

Uloss/cycle =
∑
k,i

TCk,i(γ
2
i,j − γi,j〈γi,j〉)πε20

Ωτ

1 + Ω2τ2

(20)
Assuming each branch contributes equally to the total
phonon specific heat, we can eliminate the cumbersome
summation and express the energy loss as

Uloss/cycle = π(〈γ2
i,j〉 − 〈γi,j〉2)CvTε

2
0

Ωτ

1 + Ω2τ2
(21)

where the angle brackets indicate an average over all
phonon branches. If the second- and third-order elas-
tic coefficients are known, theoretical values for γi,j can
be obtained[6] and the energy loss expression can be cal-
culated using only bulk parameters. Ultimately, as we
will show in Section V, the total energy loss can be ex-
pressed as the superposition of the uniaxial losses. The
remaining sections show how to normalize the loss for the
strain magnitude so we can evaluate the loss and compare
the performance of different devices in a given material
system.

III. ENERGY STORAGE

The quality factor is a ratio of energy stored to en-
ergy lost per cycle, so it is important to account for
the anisotropy and mode-dependence in both. For cubic
crystals, the energy storage is anisotropic and depends on
the deformation profile. The elasticity of the crystal can
be described by relating stress (~σ) and strain (~ε) using
the second-order elastic tensor.

~σ =


c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

 · ~ε (22)

Here, appropriate simplifications have been made given
cubic symmetry and the equivalence of shear directions,
so that the elasticity matrix can be described using only
three components c11, c12 and c44.

For a given vibration mode and orientation, an effec-
tive Young’s modulus or storage modulus, Eeff , can be
defined so that the energy storage per unit volume is
Estored = 1

2Eeff ε
2
0 [21]. For spatially uniform modes, we

can eliminate the integral over the volume of the struc-
ture, because the energy storage (and loss) in any volume
element of the solid is the same. The modes of interest are
width-extensional (WE), square-extensional (SE), cubic-
extensional (CE) and Lamé; their deformation profiles
and expressions for effective storage moduli are given in

Table I. These are commonly used vibration modes for a
single-crystal rectangular paralellepiped with edges ori-
ented along the [100] axes. The WE, SE and CE modes
are modes where the deformation of the solid is primar-
ily due to extension (and contraction) along one, two or
three principal axes, respectively. The Lamé mode (also
called a ’contour’ mode) is a pure shear mode with only
one nonzero strain component.

TABLE I. Displacement profiles and elastic storage moduli
for common vibration modes of a single-crystal rectangular
parallelepiped with edges oriented along the [100] directions.

Width- Square- Cubic- Lamé
Extensional Extensional Extensional (shear)

(c11−c12)(c11+2c12)
c11+c12

c11 + c12 −
2c212
c11

c11+2c12
3

c44

IV. QUALITY FACTOR

Using the definition of the quality factor, the energy
storage expression in the previous section and the energy
loss in equation 21 we can write the quality factor as,

Q =
Eeff

(〈γ2
i,j〉 − 〈γi,j〉2)CvT

1 + Ω2τ2

Ωτ
(23)

for the uniaxial case. If we employ Woodruff’s simplifi-
cations that the material is isotropic so all γi,j = γ0 and
that ∆T = 0, and assume the storage modulus is sim-
ply the bulk modulus, B = ρc2, this expression reduces
identically to equation 1 in the low-frequency limit. This
result is expected because both methods use the BTE to
determine the energy loss. Woodruff’s assumptions allow
for simple estimation of Q using bulk material data, but it
is important to note that these assumptions are not self-
consistent. If the material is assumed to be isotropic and
all γi,j = γ0, then the average 〈γi,j〉 = γ0 which implies
that ∆T 6= 0. In fact, when this assumption is employed
rigorously, 〈γ2

i,j〉 = 〈γi,j〉2 = γ2
0 and the dissipation in

equation 21 is zero. We also note that the result derived
here does in fact match Zener’s expression for quality fac-
tor due to anelastic relaxations in a solid. This suggests
that Mason’s method can also be used to obtain the same
result, although we do not include it here [22]. Briefly,
Mason’s simplification is approximately valid in the low-
temperature limit, where the upper integration limit in
the Debye integral approaches infinity and the assump-
tion that the integration limits are strain-independent is
satisfied. In this low-temperature limit, the total acous-
tic phonon energy U0 ≈ CvT/4. This is precisely the
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condition that reveals the T 3 dependence of the low-
temperature Debye specific heat in insulators [23]. This
likely explains the persistent deviation from experimen-
tal values at high temperatures when employing modi-
fied versions of Mason’s expression for acoustic attenua-
tion [13]. Even if these low-temperature conditions are
satisfied, Mason’s expression omits a factor of 4, which is
produced when proper care is taken to include the strain-
dependence of all phonon frequency terms [12].

V. MODE-DEPENDENT ENERGY LOSS

The expression in equation 23 accounts for the
anisotropic and mode-dependent energy storage, but still
only includes loss due to strain in a single direction. In
order to more accurately determine the losses, we de-
fine an effective mode-Grüneisen parameter, γi,eff , as
the weighted average of the components of ~γi by their
corresponding strain component, εj . Thus, we can cap-
ture the perturbation of the phonon branch frequency
due to strain in more than one direction.

For cubic crystals, symmetry dictates that 〈γi,1〉 =
〈γi,2〉 = 〈γi,3〉 and the equivalence of shear directions
implies 〈γi,4〉 = 〈γi,5〉 = 〈γi,6〉. For pure extensional vi-
bration modes the shear strain components are all zero.
Thus, the effective mode-Grüneisen parameter can be re-
duced to γi,eff = α γi,1, where α is a coefficient deter-
mined by the relative axial strain in the x, y and z di-
rections. α is determined from the strain profile, so it is
the same for all branches and the quality factor is sim-
ply reduced by a factor of 1/α2. In order to retain the
simplicity of equation 1, we express the quality factor as

Q =
Eeff

Γ2
aCvT

1 + Ω2τ2

Ωτ
(24)

and define the anharmonic Grüneisen parameter as

Γ2
a = α2(〈γ2

i,1〉 − 〈γi,1〉2) (25)

Unlike Nava’s pure-mode ultrasonic Grüneisen parame-
ter, which can only be evaluated assuming a pure sound
mode oriented and polarized along crystal axes, our an-
harmonic Grüneisen parameter accounts for the deforma-
tion in real mechanical modes, which are superpositions
of pure modes and are determined from both material
properties and the geometry of the structure. For pure
shear modes, which include Lamé modes, we can write
γi,eff = α γi,5 so that Γ2

a = α2(〈γ2
i,5〉 − 〈γi,5〉2). Ex-

pressions for α2 for vibration modes in cubic crystals are
given in the first row of Table II. For vibrations that are
a mix of both longitudinal and shear perturbations, γeff
will be a weighted sum of γi,1 and γi,5 determined by the
dot product in equation 2.

Equation 24 shows that the quality factor depends dis-
tinctly on the resonant frequency, due to a mismatch
between the period of the elastic wave (2π/Ω) and the

phonon lifetime (τ), and the strain profile, due to funda-
mental differences in the strength of the phonon pertur-
bation, which we quantify using α2. The resonant fre-
quency and vibrational mode shape are, of course, fun-
damentally linked and should be solved simultaneously
using the material properties and boundary conditions
of the resonator in the mechanical eigenvalue problem.

TABLE II. Expressions for the strain deformation coefficient
α2 (row 1) and the anharmonic Grüneisen parameter Γ2

a (row
2) for the common vibration modes identified in Table I.

Width- Square Cubic Lamé
Extensional Extensional Extensional (shear)

α2 (c11−c12)
2

c2
11

+2c11c12+3c2
12

2(c11−c12)
2

c2
11

+2c2
12

3 1

Γ2
a α2(〈γ2

i,1〉 − γ2
0) α2(〈γ2

i,1〉 − γ2
0) α2(〈γ2

i,1〉 − γ2
0) α2〈γ2

i,5〉

Mason and Bateman establish that the mode-
Grüneisen parameters can be determined from second-
and third-order elastic moduli and calculate γi,1 and γi,5
for silicon and germanium [10]. Critically, they show that
〈γi,1〉 ≈ γ0 as expected, because both averages relate to
volume perturbation of the solid. They also verify that
〈γi,5〉 = 0, which satisfies the restriction that shear defor-
mations do not perturb volume. The simplified expres-
sions for Γ2

a are in included in the second row of Table
II. Finally, equipped with the knowledge of γi,1 and γi,5,
we can calculate 〈γ2

i,1〉 and 〈γ2
i,5〉 and evaluate Γ2

a.

VI. RESULTS AND DISCUSSION

In this section, we evaluate the quality factor limits
in silicon and compare the performance for common vi-
bration modes. The final parameter needed to evaluate
Q is the phonon lifetime, τ . Following Woodruff’s ap-
proach, we determine τ using the definition of bulk ther-
mal conductivity, κ ≡ 1

3Cvc
2τ . This is, in effect, an

average time constant over all phonon branches. Oth-
ers have replaced the average phonon time constant τ
with the direction-specific lifetimes τ[hkl] corresponding
to the particular crystal orientation of the mechanical vi-
bration [24, 25], but we assert that this is not the most
accurate approach, because the strain perturbs phonon
branches in all crystal directions, not just along the along
the direction of sound propagation, making a collective
relaxation time a better estimate. The most accurate
approach would be to use the branch-specific τi, which
depend on both direction and polarization; however, lack
of a complete set of experimental values for these time
constants prohibits calculation in this way.

Figure 3 shows the room temperature f × Q product
as a function of the mechanical resonant frequency for
the WE, SE, CE and Lamé modes of a resonator with
edges oriented along the [100] directions in intrinsic sili-
con evaluated using the expression in equation 24 along
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with Woodruff’s result for reference and a number of ex-
perimental results from silicon resonators in the litera-
ture [26–39]. As expected, given the quadratic depen-
dence of Q on resonant frequency in the Zener model, the
curves remain constant up to ∼ 20.5 GHz, correspond-
ing to the condition Ωτ = 1. Again, we note that the
Akhiezer damping model only applies when Ω << 1/τ ,
so the results should only be interpreted below this value;
at higher frequencies, the strain varies faster than the
phonon scattering rate, so the number of average col-
lisions per cycle is severely reduced and an alternate
model, often called Landau-Rumer dissipation, should
be used instead [40]. We can equivalently express this
condition as lph << λac, where lph is the mean-free-path
for thermal phonons and λac is the wavelength of the
elastic wave. As a result, we can reframe the frequency
cutoff as a minimum size limitation. A simple calcula-
tion (ignoring phonon dispersion) gives lph ≈ 47nm for
silicon at room temperature. This means our damping
model provides a valid picture of the phonon-phonon dy-
namics for resonators where all dimensions are greater
than ∼ 47nm, which serves as a theoretical minimum
cutoff size for bulk phonon phenomena in single-crystal
silicon at room temperature. We note, however, that Ju
and Goodson report average phonon mean-free-paths of
∼ 300nm in thin silicon layers via thermal conductivity
measurements [41] and more recent work provides evi-
dence of a broad spectrum of phonon mean-free-paths in
silicon, where phonons with lph > 1µm contribute sig-
nificantly to the thermal conductivity [42, 43].

FIG. 3. Anharmonic and anisotropic f × Q product limits
vs. mechanical resonant frequency at room temperature for
WE, SE, CE and Lamé modes in [100] silicon. The solid
lines represent the quality factor limits derived in this work
(equation 24). The dashed line is Woodruff’s estimation of
the Akhiezer damping limit and the points are experimental
results from high quality factor resonators surveyed from the
literature [26–39]. A number of recently fabricated resonators
have quality factors that exceed Woodruff’s limit, indicating
that the simplified, isotropic expression does not provide suf-
ficient accuracy. The ungrouped points are measurements of
higher-order harmonics, so the assumption in this work of
uniform strain is not directly applicable.

The (solid) theory curves show that the upper limit

on Q for the WE mode is greater than that of SE mode,
which is, in turn, larger than the CE mode. This re-
sult can be inferred from the deformation constants, α2,
derived in Section V. In the WE mode, the structure ex-
pands in the x-direction and contracts in both the y- and
z- directions due to the Poisson ratio; as a result, the dis-
sipation is reduced compared to the uniaxial strain case
because α2

WE < 1. In the SE mode, the solid expands
in x and y (and contracts in z) so that the deformation
of the mechanical mode resists the natural contraction of
the solid. The perturbations of x and y add construc-
tively, leading to increased dissipation compared to the
WE mode. This leads to reduced Q despite the fact that
the SE mode has a higher energy storage density than
the WE mode. In the CE mode, the solid expands in the
x-, y- and z-directions resulting in the largest combined
perturbation and energy dissipation and the smallest Q.
Our results indicate that the quality factor limits for sil-
icon at a specified resonant frequency can vary by more
than an order of magnitude when including anisotropic
energy storage and loss (QWE ≈ 2.5QSE ≈ 23.5QCE).

The Lamé mode has the highest upper bound on Q
for the modes considered in this work, despite having
the smallest energy storage modulus. This is an im-
portant consequence of the condition that shear vibra-
tions modes preserve volume. In a pure shear vibration,
the mode-Grüneisen parameters for longitudinal phonon
branches do not contribute, because these perturbations
would change the volume of the solid. Effectively, the
phonon-phonon scattering for shear vibrations is limited
to the volume-preserving transverse phonon branches,
which leads to reduced energy dissipation because fewer
branches, and less phonon energy, are subject to the re-
laxation process. This result indicates that Lamé mode
resonators may be the best candidates for ultra high Q
silicon resonators. We note that Woodruff’s isotropic for-
mula actually predicts infinite Q (zero dissipation) for
shear modes because the average Grüneisen parameter
(γ0 in equation 1) for volume-preserving modes is zero.
The limitations of Woodruff’s expression have been ac-
knowledged in the past [12, 16], but we are the first to
provide a viable alternative expression that shows that
shear mode vibrations do in fact lead to anharmonic
phonon-phonon dissipation.

The evaluation of the anharmonic and anisotropic ex-
pression derived in this work indicates that Woodruff’s
order-of-magnitude result (dashed line) fails to provide
an upper bound on quality factor due to Akhiezer damp-
ing. In fact, several silicon resonators with quality fac-
tors that exceed Woodruff’s limit have already been fab-
ricated and measured in the literature [26–29], indicating
the important need for our more accurate damping model
that provides a robust upper bound on the performance
of modern micromechanical resonators.

The experimental points are broadly categorized by ge-
ometry and mode type. The highest Q resonators of a
given type are grouped horizontally, reinforcing the as-
sertion that the f×Q product is constant for a particular
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mode shape, in accordance with Equation 24. It is im-
portant to convey the fact that evaluation of Equation 24
provides an upper bound on the quality factor, so it only
predicts the performance of devices that are limited by
anharmonic phonon-phonon dissipation, meaning other
loss mechanisms including TED, air-damping and anchor
loss have insignificant contributions. We also note that
the the theory lines in Figure 3 use the idealized mode
profiles in Table I, and, consequently, do not necessar-
ily predict the exact behavior of the devices included as
experimental references, because the actual vibrational
modes are complicated functions of the geometry and
boundary conditions of the structure. Additionally, the
results here are for intrinsic silicon, and do not account
for variations due to dopant species and density. The
most accurate results can be obtained if the doping de-
pendencies of second- and third-order elastic coefficients
and thermal conductivity, which determines τ , are known
[44].

VII. CONCLUSION

In this work, we have provided the first analytical
expression for the quality factor due to anharmonic
phonon-phonon dissipation that explicitly includes the
anisotropic energy storage and loss in a cubic semicon-
ductor or dielectric crystal. We provide a rigorous deriva-
tion of the anharmonic loss using the phonon BTE and

introduce the important simplifications that must be
made in order to facilitate quality factor calculation us-
ing known material parameters. These simplifications
are presented and justified in Sections III-V and evalu-
ated for the most common vibration modes for [100] sil-
icon in Section VI. Our advanced model combined with
relatively straightforward evaluation allows for meaning-
ful comparisons between theory and experimental results
and provides new insight on efficiency of different vibra-
tional modes in the Akhiezer dissipation limit. Despite
having lower energy storage moduli, the Lamé and width-
extensional vibration modes have the highest potential
quality factor, meaning they are the best candidates for
high performance, Akhiezer-limited resonators. The for-
mulations introduced in this work can easily be extended
to account for doping dependence (when appropriate ma-
terial data are available) and integrated into a finite el-
ement solver to provide the most accurate predictions of
phonon-phonon dissipation for arbitrary vibration pro-
files, including higher-order modes, in cubic crystals.
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