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Synaptic memory is considered to be the main element responsible for learning and cognition in
humans. Although traditionally non-volatile long-term plasticity changes have been implemented
in nanoelectronic synapses for neuromorphic applications, recent studies in neuroscience have re-
vealed that biological synapses undergo meta-stable volatile strengthening followed by a long-term
strengthening provided that the frequency of the input stimulus is sufficiently high. Such “memory
strengthening” and “memory decay” functionalities can potentially lead to adaptive neuromorphic
architectures. In this paper, we demonstrate the close resemblance of the magnetization dynamics
of a Magnetic Tunnel Junction (MTJ) to short-term plasticity and long-term potentiation observed
in biological synapses. We illustrate that, in addition to the magnitude and duration of the input
stimulus, frequency of the stimulus plays a critical role in determining long-term potentiation of
the MTJ. Such MTJ synaptic memory arrays can be utilized to create compact, ultra-fast and low
power intelligent neural systems.

I. INTRODUCTION

With significant research efforts being directed to the
development of neurocomputers based on the functionali-
ties of the brain, a seismic shift is expected in the domain
of computing based on the traditional von-Neumann
model. The BrainScaleS [1], SpiNNaker [2] and the
IBM TrueNorth [3] are instances of recent flagship neu-
romorphic projects that aim to develop brain-inspired
computing platforms suitable for recognition (image,
video, speech), classification and mining problems. While
Boolean computation is based on the sequential fetch, de-
code and execute cycles, such neuromorphic computing
architectures are massively parallel and event-driven and
are potentially appealing for pattern recognition tasks
and cortical brain simulations. To that end, researchers
have proposed various nanoelectronic devices where the
underlying device physics offer a mapping to the neu-
ronal and synaptic operations performed in the brain.
The main motivation behind the usage of such non-von
Neumann post-CMOS technologies as neural and synap-
tic devices stems from the fact that the significant mis-
match between the CMOS transistors and the underlying
neuroscience mechanisms result in significant area and
energy overhead for a corresponding hardware implemen-
tation. A very popular instance is the simulation of a
cat’s brain on IBM’s Blue Gene supercomputer where
the power consumption was reported to be of the order
of a few ∼ MW [4]. While the power required to simu-
late the human brain will rise significantly as we proceed
along the hierarchy in the animal kingdom, actual power
consumption in the mammalian brain is just a few tens
of watts.

In a neuromorphic computing platform, synapses form
the pathways between neurons and their strength mod-
ulate the magnitude of the signal transmitted between
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the neurons. The exact mechanisms that underlie the
“learning” or “plasticity” of such synaptic connections
are still under debate. Meanwhile, researchers have at-
tempted to mimic several plasticity measurements ob-
served in biological synapses in nanoelectronic devices
like phase change memories [5], Ag − Si memristors [6]
and spintronic devices [7], etc. However, majority of the
research have focused on non-volatile plasticity changes
of the synapse in response to the spiking patterns of the
neurons it connects corresponding to long-term plasticity
[8] and the volatility of human memory has been largely
ignored. As a matter of fact, neuroscience studies per-
formed in [9, 10] have demonstrated that synapses exhibit
an inherent learning ability where they undergo volatile
plasticity changes and ultimately undergo long-term plas-
ticity conditionally based on the frequency of the incom-
ing action potentials. Such volatile or meta-stable synap-
tic plasticity mechanisms can lead to neuromorphic ar-
chitectures where the synaptic memory can adapt itself
to a changing environment since sections of the memory
that have been not receiving frequent stimulus can be
now erased and utilized to memorize more frequent in-
formation. Hence, it is necessary to include such volatile
memory transition functionalities in a neuromorphic chip
in order to leverage from the computational power that
such meta-stable synaptic plasticity mechanisms has to
offer.

Fig. 1 (a) demonstrates the biological process in-
volved in such volatile synaptic plasticity changes. Dur-
ing the transmission of each action potential from the
pre-neuron to the post-neuron through the synapse, an
influx of ionic species like Ca2+, Na+ and K+ causes the
release of neurotransmitters from the pre- to the post-
neuron. This results in temporary strengthening of the
synaptic strength. However, in absence of the action po-
tential, the ionic species concentration settles down to
its equilibrium value and the synapse strength dimin-
ishes. This phenomenon is termed as short-term plas-
ticity (STP) [9]. However, if the action potentials oc-
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cur frequently, the concentration of the ions do not get
enough time to settle down to the equilibrium concentra-
tion and this buildup of concentration eventually results
in long-term strengthening of the synaptic junction. This
phenomenon is termed as long-term potentiation (LTP).
While STP is a meta-stable state and lasts for a very
small time duration, LTP is a stable synaptic state which
can last for hours, days or even years [10]. A similar dis-
cussion is valid for the case where there is a long-term re-
duction in synaptic strength with frequent stimulus and
then the phenomenon is referred to as long-term depres-
sion (LTD).

Such STP and LTP mechanisms have been often cor-
related to the Short-Term Memory (STM) and Long-
Term Memory (LTM) models proposed by Atkinson and
Shiffrin [11, 12] (Fig. 1(b)). This psychological model
partitions the human memory into an STM and an LTM.
On the arrival of an input stimulus, information is first
stored in the STM. However, upon frequent rehearsal,
information gets transferred to the LTM. While the “for-
getting” phenomena occurs at a fast rate in the STM,
information can be stored for a much longer duration in
the LTM.

In order to mimic such volatile synaptic plasticity
mechanisms, a nanoelectronic device is required that is
able to undergo meta-stable resistance transitions de-
pending on the frequency of the input and also transition
to a long-term stable resistance state on frequent stim-
ulations. Hence a competition between synaptic mem-
ory reinforcement or strengthening and memory loss is
a crucial requirement for such nanoelectronic synapses.
In the next section, we will describe the mapping of the
magnetization dynamics of a nanomagnet to such volatile
synaptic plasticity mechanisms observed in the brain.

II. FORMALISM

Let us first describe the device structure and principle
of operation of an MTJ [13–15] as shown in Fig. 2(a).
The device consists of two ferromagnetic layers separated
by a tunneling oxide barrier (TB). The magnetization of
one of the layers is magnetically “pinned” and hence it
is termed as the “pinned” layer (PL). The magnetiza-
tion of the other layer, denoted as the “free layer” (FL),
can be manipulated by an incoming spin current Is. The
MTJ structure exhibits two extreme stable conductive
states – the low conductive “anti-parallel” orientation
(AP), where PL and FL magnetizations are oppositely
directed and the high conductive “parallel” orientation
(P), where the magnetization of the two layers are in the
same direction.

Let us consider that the initial state of the MTJ
synapse is in the low conductive AP state. Consider-
ing the input stimulus (current) to flow from terminal
T2 to terminal T1, electrons will flow from terminal T1
to T2 and get spin-polarized by the PL of the MTJ. Sub-
sequently, these spin-polarized electrons will try to orient
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FIG. 1. (a) A synapse is a junction joining the pre-neuron to the
post-neuron. Incoming action potential from the pre-neuron results
in the influx of ionic elements like Ca2+ which, in turn, results in
the release of neurotransmitters at the synaptic junction. This
causes short-term synaptic plasticity (STP) while frequent action
potentials result in long-term potentiation (LTP). (b) Such STP
and LTP mechanisms can be related to the psychological model of
human memory where memory transitions from a temporary short-
term memory (STM) to a long-term memory (LTM) based on the
frequency of rehearsal of the input stimulus.

the FL of the MTJ “parallel” to the PL. It is worth noting
here that the spin-polarization of incoming electrons in
the MTJ is analogous to the release of neurotransmitters
in a biological synapse.

The STP and LTP mechanisms exhibited in the MTJ
due to the spin-polarization of the incoming electrons can
be explained by the energy profile of the FL of the MTJ.
Let the angle between the FL magnetization, m̂, and the
PL magnetization, m̂P , be denoted by θ. The FL energy
as a function of θ has been shown in Fig. 2(a) where the
two energy minima points (θ = 00 and θ = 1800) are sep-
arated by the energy barrier, EB . During the transition
from the AP state to the P state, the FL has to transition
from θ = 1800 to θ = 00. Upon the receipt of an input
stimulus, the FL magnetization proceeds “uphill” along
the energy profile (from initial point 1 to point 2 in Fig.
2(a)). However, since point 2 is a meta-stable state, it
starts going “downhill” to point 1, once the stimulus is
removed. If the input stimulus is not frequent enough,
the FL will try to stabilize back to the AP state after
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FIG. 2. (a) An MTJ structure consists of a FL separated from a PL by a TB. Initially the MTJ synapse is in the low conductive AP state.
On receiving an input stimulus it transitions to the high conductive P state conditionally depending on the time interval between the
inputs. The STP-LTP behavior can be explained from the energy landscape of the FL. (b) STP behavior exhibited in the MTJ synapse.
The MTJ structure was an elliptic disk of volume π

4
× 40× 40× 1.5nm3 with saturation magnetization of Ms = 1000KA/m and damping

factor, α = 0.0122. The AP and P conductances of the MTJ were taken to be 0.5mS and 1mS respectively. The input stimulus was taken
to be 100µA in magnitude (assuming η = 50%) and 1ns in duration. The time interval between the pulses was taken to be 6ns. (c) The
MTJ synapse undergoes LTP transition incrementally when the interval between the pulses is reduced to 3ns.

each stimulus. However, if the stimulus is frequent, the
FL will not get sufficient time to reach point 1 and ulti-
mately will be able to overcome the energy barrier (point
3 in Fig. 2(a)). It is worth noting here, that on crossing
the energy barrier at θ = 900, it becomes progressively
difficult for the MTJ to exhibit STP and switch back
to the initial AP state. This is in agreement with the
psychological model of human memory where it becomes
progressively difficult for the memory to “forget” infor-
mation during transition from STM to LTM. Hence, once
it has crossed the energy barrier, it starts transitioning
from the STP to the LTP state (point 4 in Fig. 2(a)).
The stability of the MTJ in the LTP state is dictated by
the magnitude of the energy barrier. The lifetime of the
LTP state is exponentially related to the energy barrier
[16]. For instance, for an energy barrier of 31.44KT used
in this work, the LTP lifetime is ∼ 12.4 hours while the
lifetime can be extended to around ∼ 7 years by engineer-
ing a barrier height of 40KT . The lifetime can be varied
by varying the energy barrier, or equivalently, volume of
the MTJ.

The STP-LTP behavior of the MTJ can be also ex-
plained from the magnetization dynamics of the FL de-
scribed by Landau-Lifshitz-Gilbert (LLG) equation with
additional term to account for the spin momentum torque

according to Slonczewski [17],

dm̂

dt
= −γ(m̂×Heff ) +α(m̂× dm̂

dt
) +

1

qNs
(m̂× Is× m̂)

(1)
where, m̂ is the unit vector of FL magnetization,
γ = 2µBµ0

~ is the gyromagnetic ratio for electron, α
is Gilbert’s damping ratio, Heff is the effective mag-
netic field including the shape anisotropy field for ellip-
tic disks calculated using [18], Ns = MsV

µB
is the num-

ber of spins in free layer of volume V (Ms is saturation
magnetization and µB is Bohr magneton), and Is = ηIQ
is the spin current generated by the input stimulus IQ
(η is the spin-polarization efficiency of the PL). Ther-
mal noise is included by an additional thermal field [19],

Hthermal =
√

α
1+α2

2KBTK

γµ0MsV δt
G0,1, where G0,1 is a Gaus-

sian distribution with zero mean and unit standard devi-
ation, KB is Boltzmann constant, TK is the temperature
and δt is the simulation time step. Equation 1 can be
reformulated by simple algebraic manipulations as,

1 + α2

γ

dm̂

dt
= −(m̂×Heff )−α(m̂× m̂×Heff )

+
1

qNs
(m̂× Is × m̂)

(2)

Hence, in the presence of an input stimulus the magne-
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tization of the FL starts changing due to integration of
the input. However, in the absence of the input, it starts
leaking back due to the first two terms in the RHS of the
above equation.

It is worth noting here that, like traditional semicon-
ductor memories, magnitude and duration of the input
stimulus will definitely have an impact on the STP-LTP
transition of the synapse. However, frequency of the in-
put is a critical factor in this scenario. Even though the
total flux through the device is same, the synapse will
conditionally change its state if the frequency of the input
is high. We verified that this functionality is exhibited
in MTJs by performing LLG simulations (including ther-
mal noise). The conductance of the MTJ as a function
of θ can be described by,

G = GP . cos2
(
θ

2

)
+GAP . sin

2

(
θ

2

)
(3)

where, GP (GAP ) is the MTJ conductance in the P
(AP) orientation respectively. As shown in Fig. 2(b),
the MTJ conductance undergoes meta-stable transitions
(STP) and is not able to undergo LTP when the time
interval of the input pulses is large (6ns). However, on
frequent stimulations with time interval as 3ns, the de-
vice undergoes LTP transition incrementally. Fig. 2(b)
and (c) illustrates the competition between memory rein-
forcement and memory decay in an MTJ structure that
is crucial to implement STP and LTP in the synapse.

III. RESULTS AND DISCUSSIONS

We demonstrate simulation results to verify the STP
and LTP mechanisms in an MTJ synapse depending on
the time interval between stimulations. The device simu-
lation parameters were obtained from experimental mea-
surements [20] and have been shown in Table I.

TABLE I. Device Simulation Parameters

Parameters Value

Free layer area π
4
× 40 × 40nm2

Free layer thickness 1.5nm

Saturation Magnetization, MS 1000 KA/m [20]

Gilbert Damping Factor, α 0.0122 [20]

Energy Barrier, EB 31.44 KBT

Spin polarization strength of PL, η 0.5

MTJ conductance 0.5-1mS

Pulse magnitude 100µA

Pulse width, tPW 1ns

Temperature, TK 300K

The MTJ was subjected to 10 stimulations, each stimu-
lation being a current pulse of magnitude 100µA and 1ns
in duration. As shown in Fig. 3, the probability of LTP
transition and average device conductance at the end
of each stimulation increases with decrease in the time
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FIG. 3. (a) Stochastic LLG simulations with thermal noise per-
formed to illustrate the dependence of stimulation interval on the
probability of LTP transition for the MTJ. The MTJ was subjected
to 10 stimulations, each stimulation being a current pulse of mag-
nitude 100µA and 1ns in duration. However, the time interval
between the stimulations was varied from 2ns to 8ns. While the
probability of LTP is 1 for a time interval of 2ns, it is very low for
a time interval of 8ns, at the end of the 10 stimulations. (b) Aver-
age MTJ conductance plotted at the end of each stimulation. As
expected, the average conductance increases faster with decrease
in the stimulation interval. The results have been averaged over
100 LLG simulations.
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FIG. 4. PPF (average MTJ conductance after 2nd stimulus)
and PTP (average MTJ conductance after 10th stimulus) mea-
surements in an MTJ synapse with variation in the stimulation
interval. The results are in qualitative agreement to PPF and PTP
measurements performed in frog neuromuscular junctions [21, 24].

interval between the stimulations. The dependence on
stimulation time interval can be further characterized by
measurements corresponding to paired-pulse facilitation
(PPF: synaptic plasticity increase when a second stimu-
lus follows a previous similar stimulus) and post-tetanic
potentiation (PTP: progressive synaptic plasticity incre-
ment when a large number of such stimuli are received
successively) [21, 24]. Fig. 4 depicts such PPF (after 2nd
stimulus) and PTP (after 10th stimulus) measurements
for the MTJ synapse with variation in the stimulation
interval. The measurements closely resemble measure-
ments performed in frog neuromuscular junctions [21]
where PPF measurements revealed that there was a small
synaptic conductivity increase when the stimulation rate
was frequent enough while PTP measurements indicated
LTP transition on frequent stimulations with a fast decay
in synaptic conductivity on decrement in the stimulation
rate. Hence, stimulation rate indeed plays a critical role
in the MTJ synapse to determine the probability of LTP
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FIG. 5. STM and LTM transition exhibited in a 34 × 43 MTJ memory array. The input stimulus was a binary image of the Purdue
University logo where a set of 5 pulses (each of magnitude 100µA and 1ns in duration) was applied for each ON pixel. While the array
transitioned to LTM progressively for frequent stimulations at an interval of T = 2.5ns, it “forgot” the input pattern for stimulation for a
time interval of T = 7.5ns.

transition.
The psychological model of STM and LTM utilizing

such MTJ synapses was further explored in a 34 × 43
memory array. The array was stimulated by a binary
image of the Purdue University logo where a set of 5
pulses (each of magnitude 100µA and 1ns in duration)
was applied for each ON pixel. The snapshots of the con-
ductance values of the memory array after each stimulus
have been shown for two different stimulation intervals
of 2.5ns and 7.5ns respectively. While the memory array
attempts to remember the displayed image right after
stimulation, it fails to transition to LTM for the case
T = 7.5ns and the information is eventually lost 5ns af-
ter stimulation. However, information gets transferred to
LTM progressively for T = 2.5ns. It is worth noting here,
that the same amount of flux is transmitted through the
MTJ in both cases. The simulation not only provides a
visual depiction of the temporal evolution of a large array
of MTJ conductances as a function of stimulus but also
provides inspiration for the realization of adaptive neu-
romorphic systems exploiting the concepts of STM and
LTM. Readers interested in the practical implementation
of such arrays of spintronic devices are referred to Ref.
[22].

IV. CONCLUSIONS

The contributions of this work over state-of-the-art ap-
proaches may be summarized as follows. This is the first
theoretical demonstration of STP and LTP mechanisms

in an MTJ synapse. We demonstrated the mapping of
neurotransmitter release in a biological synapse to the
spin polarization of electrons in an MTJ and performed
extensive simulations to illustrate the impact of stimulus
frequency on the LTP probability in such an MTJ struc-
ture. There have been recent proposals of other emerging
devices that can exhibit such STP-LTP mechanisms like
Ag2S synapses [23] and WOX memristors [24, 25]. How-
ever, it is worth noting here, that input stimulus magni-
tudes are usually in the range of volts (1.3V in [24] and
80mV in [23]) and stimulus durations are of the order of
a few msecs (1ms in [24] and 0.5s in [23]). In contrast,
similar mechanisms can be exhibited in MTJ synapses
at much lower energy consumption (by stimulus magni-
tudes of a few hundred µA and duration of a few ns). We
believe that this work will stimulate proof-of-concept ex-
periments to realize such MTJ synapses that can poten-
tially pave the way for future ultra-low power intelligent
neuromorphic systems capable of adaptive learning.
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