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Readout of the state of a superconducting qubit by homodyne detection of the output signal from a
dispersively coupled microwave resonator is a common technique in circuit quantum electrodynamics,
and is often claimed to be quantum non-demolition (QND) up to the same order of approximation
as that of the dispersive approximation. However, in this work we show that only in the limit of
infinite measurement time is this protocol QND, as the formation of a dressed coherent state in the
qubit-cavity system applies an effective rotation to the qubit state. We show how this rotation can
be corrected by a unitary operation, leading to improved qubit initialization by measurement and
unitary feedback.

I. INTRODUCTION

For most quantum information and computing proto-
cols measurement is a necessary component, either to
extract the answer to a computation, or as an operation
in the protocol, such as for entanglement generation. In
addition, many protocols benefit from so called quantum
non-demolition (QND) measurement, where the Hamil-
tonian describing the measurement operator commutes
with the self-Hamiltonian of the system [1]. As a result,
perfect QND measurement maximally dephases the sys-
tem in its eigenbasis, and the system state is projected
onto an eigenstate when the measurement result is ob-
served. Alternatively, one can think of a QND measure-
ment as having only the minimal (required by quantum
mechanics) back action on the system it measures.

In the field of circuit quantum electrodynamics
(cQED), the state of a superconducting qubit is typi-
cally measured in its eigenbasis by homodyne detection
of the phase of the output signal through a cavity disper-
sively coupled to the qubit [2, 3]. Due to the small signal
strength exiting the cavity, it is necessary to amplify the
signal using a low noise (near quantum limited) para-
metric amplifier based on the nonlinearity induced by a
Josephson junction [4–11]. In recent years this measure-
ment scheme has been a great success, with highlights
that include the observation of qubit quantum jumps [12],
monitoring of single quantum trajectories [13, 14], her-
alded initialization via measurement [15, 16], entangle-
ment generation between qubits [17–19], quantum tele-
portation [20], and readout fidelity greater than 99% [21].

Under the dispersive approximation, this readout
scheme has been reported in the literature to be QND [2],
as in the dispersive frame the qubit-cavity coupling is di-
agonal and commutes with the system self-Hamiltonian.
However, it was recently shown [22] that for a semi-
classically driven cavity, the joint system of the qubit-
cavity in the lab frame is an entangled state known as
the dressed coherent state. To lowest order, this entan-
glement results in a rotation of the qubit state that de-
pends on the coherent state amplitude in the cavity. As
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a result, dispersive measurement as previously proposed
is not perfectly QND, even up to the same order of ap-
proximation as the dispersive approximation, except in
the limit of infinite measurement time. This poses prob-
lems for schemes that require perfect QNDness, such as
those performing heralded initialization or entanglement
generation [15, 16, 23].

In this work we examine the dispersive qubit readout
protocol and account for the effects of the formation of
dressed coherent states during the protocol. In particu-
lar, we describe the effective coherent qubit rotation that
depends on both the amplitude and phase of the applied
cavity drive. This rotation is equivalent to a change of
the measurement basis, and, as it is coherent, it can be
corrected for by unitary feedback. This opens up the pos-
sibility for true QND measurement by introducing uni-
tary feedback.

II. PHYSICAL MODEL

We consider a system consisting of a single qubit cou-
pled to a microwave resonator (cavity), as described by
the familiar Jaynes-Cummings Hamiltonian [24]

Ĥ = ωcâ
†â− ωq

2
σ̂z + g

(
σ̂−â† + σ̂+â

)
, (1)

where â and â† are the usual bosonic annihilation and
creation operators for the cavity, σ̂z is the Pauli matrix
whose eigenstates are the qubit logical states, σ̂± are the
qubit raising and lowering operators, ωc/q are the cavity
and qubit frequencies, g is the Jaynes-Cummings cou-
pling strength, and we set ~ = 1 from here on. This
Hamiltonian describes evolution in the lab frame, by
which we mean we have not described any of the sys-
tem’s evolution by a (possibly time dependent) rotation
of Hilbert space.

After the dispersive frame transformation, in the limit
λ = g/∆ < 1, where ∆ = ωq−ωc, the Jaynes-Cummings
Hamiltonian reduces to the dispersive Hamiltonian

ĤD = ωcâ
†â− ωq + χ

2
σ̂z − χσ̂zâ†â, (2)

where χ = g2/∆, and we have kept terms only up to
second order in λ. The dispersive frame transformation,
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followed by the discarding of terms beyond second order
in λ is commonly called the dispersive approximation.
Under the dispersive approximation, the system eigen-
states in the lab frame of equation (1) are [25]

|g, n〉 = cos
(
λ
√
n
)
|g, n〉 − sin

(
λ
√
n
)
|e, n− 1〉 , (3)

|e, n− 1〉 = cos
(
λ
√
n
)
|e, n− 1〉+ sin

(
λ
√
n
)
|g, n〉 , (4)

which are referred to as the dressed eigenstates, and it
is worth pointing out that |g, 0〉 = |g, 0〉, i.e. the dressed
and bare ground states are the same as |g, 0〉 is dark.

The last required ingredient for dispersive qubit-state
readout is a classical cavity drive, described by the
Hamiltonian

Ĥd(t) = 2 cos(ωdt)
(
εâ+ ε∗â†

)
, (5)

in the lab frame. Under the dispersive approximation
this Hamiltonian is unaffected to lowest order in λ, and
the leading order correction term is both damped by
the small parameter λ and oscillates quickly provided
ωd 6= ωq. Now, if we consider photons from the applied
drive that interact with the qubit-cavity system, when
they exit the cavity they will carry qubit information
with them which can be used to read out the state of
the qubit. In particular, by setting ωd = ωc the qubit
state information is contained only in the phase of the
signal exiting the cavity, as described in Ref. [2]. These
statements will be made more concrete shortly.

III. ANALYTIC CALCULATIONS

As was shown in [22], if the system starts in either
initial state |g/e, 0〉 (see Appendix A for the bare first
excited state as the initial state), then, after applying
the cavity drive of equation (5) for a time td, the state of
the qubit-cavity system in the lab frame will be a dressed
coherent state [26]. The dressed coherent states are

∣∣g/e, αg/e(td)
〉

= e−
|αg/e(td)|2

2

∑
n

αg/e(td)n
√
n!

|g/e, n〉, (6)

where αg/e(td) are given by

αg(td) =
ε∗

χ

(
e−iχtd − 1

)
e−i(ωc−χ)td

= −2iε∗

χ
sin
(χ

2
td

)
e−i(ωc−χ2 )td ,

αe(td) =
−ε∗

χ

(
eiχtd − 1

)
e−i(ωc+χ)td

= −2iε∗

χ
sin
(χ

2
td

)
e−i(ωc+χ

2 )td , (7)

for ωd = ωc as used for dispersive readout. The phase fac-
tors e−i(ωc±χ)td are due to the cavity self-Hamiltonian as
well as the dispersive interaction. The dressed coherent

state is entangled, and correctly accounts for the corre-
lations created between the qubit and the cavity during
the applied classical drive.

To first order in λ, both dressed coherent states can be
approximated by (see Appendix B for further details)

|g, αg(td)〉 =
(|g〉 − λαg(td) |e〉)√

N
|αg(td)〉+O(λ2), (8)

|e, αe(td)〉 =
(|e〉+ λα∗e(td) |g〉)√

N
|αe(td)〉+O(λ2), (9)

where N = 1 + λ2|αg/e(td)|2, and even for λ� 1 we can
keep the term proportional to λ|αg/e(td)| as |αg/e(td)|
can be large. This approximation gives a good intuitive
picture of the effect of an applied cavity drive on a qubit-
cavity system described in the lab frame. The cavity is
driven to a coherent state (as expected), while the qubit
state is rotated a small amount. This rotation depends on
the coherent state amplitude αg/e(td), and therefore on
the amplitude, phase, and duration of the applied cavity
drive.

To connect to dispersive readout [2], we introduce a
cavity decay mechanism via the cavity-environment cou-
pling operator â+ â†, described for a bare cavity by the
quality factor QF. For an approximately Ohmic environ-
ment around the cavity frequency, such as for an open
transmission line, the decay rate is defined in terms of the
quality factor by κ(ωc) = ωc/QF. For a coupled qubit-
cavity system, following the dressed decoherence model
of [27, 28], in addition to cavity decay there will also be
cavity-mediated qubit decay (indirect Purcell decay [27]).
To lowest order in λ (as shown in [27, 28]), for an approx-
imately Ohmic environment around the qubit frequency,
this occurs at a rate γP = λ2(ωq+χ)/QF regardless of the
cavity photon number (photon number effects become
relevant at higher orders of λ). In experiment, Purcell
decay can be almost completely removed by appropriate
filtering of the cavity output at the qubit frequency, a
technique known as Purcell filtering [21, 29, 30].

In the eigenbasis of the Jaynes-Cummings Hamilto-
nian, the two decay mechanisms described above amount
to the following. “Cavity decay” is the dressed eigenstate
transition |g/e, n+ 1〉 → |g/e, n〉, which effectively pre-
serves the qubit state, while Purcell decay is the dressed
eigenstate transition |e, n〉 → |g, n〉, which effectively
preserves the photon number in the cavity. All other
transitions have zero matrix elements with the cavity-
environment coupling operator and are therefore forbid-
den.

Initially, let us assume that we can neglect Purcell de-
cay, as would be the case if a suitable Purcell filter is
connected to the cavity, as has been achieved in state
of the art dispersive readout [21, 29, 30]. In addition,
we assume that the cavity only begins decaying after the
state

∣∣g/e, αg/e(td)
〉
has been created, and we assume a

temperature of zero. For this simplified case, given that
only transitions of the form |g/e, n+ 1〉 → |g/e, n〉 are
allowed, we see that the dressed coherent state will de-
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cay similarly to a coherent state in a bare cavity, such
that after a time τ of decay the qubit-cavity state will be∣∣g, αg(td)e−

κ
2 τe−i(ωc−χ)τ

〉
=
(
|g〉 − λαg(td)e−

κ
2 τe−i(ωc−χ)τ |e〉

)
⊗
∣∣∣αg(td)e−

κ
2 τe−i(ωc−χ)τ

〉
/
√
N (τ) +O(λ2), (10)∣∣e, αe(td)e−

κ
2 τe−i(ωc+χ)τ

〉
=
(
|e〉+ λα∗e(td)e−

κ
2 τei(ωc+χ)τ |g〉

)
⊗
∣∣∣αe(td)e−

κ
2 τe−i(ωc+χ)τ

〉
/
√
N (τ) +O(λ2), (11)

which is just a dressed coherent state with a damped
amplitude |αg/e(td)|e−κ2 τ .

Following equations (10) and (11), after a cavity decay
of time τ the initial qubit states |g/e〉 have been mapped
approximately to

|g〉 →(
|g〉 − λ|α|e−i(ϕε+π/2)e−iωgtde−

κ
2 τe−iω

′
gτ |e〉

)
/
√
N (τ),

(12)
|e〉 →(
|e〉+ λ|α|ei(ϕε+π/2)eiωetde−

κ
2 τeiω

′
eτ |g〉

)
/
√
N (τ),

(13)

where we have used the fact that αg/e(td) differ in phase
only to define α = |αg/e(td)| and the phase factor −(ϕε+
π/2) of −iε∗, as well as the shifted cavity frequencies
ωg/e = ωc ∓ χ

2 and ω′g/e = ωc ∓ χ. The measured phases
of the output signal jump sharply when the drive pulse
is turned off, with the coherent states rotating around
phase space at frequencies ωg/e for times t ≤ td and at
frequencies ω′g/e for times τ = t− td > 0.

The qubit-state maps of equations (12) and (13) can
alternatively be understood as qubit-cavity interactions
during the cavity drive changing the basis of qubit mea-
surement, with measurement of the cavity frequency
ωg/ω′g for a total time td + τ corresponding to the qubit
state |g〉−λ|α|e−κ2 τe−i(ϕε+π/2+ωgtd+ω′

gτ) |e〉 and a similar
result for the measurement of ωe/ω′e. Only in the τ →∞
limit does the basis of measurement become {|g〉 , |e〉}
and the measurement QND.

The key observation in this work is that the change
of basis of measurement is a coherent rotation error ap-
plied to the qubit output state. As this error in the qubit
state is coherent, it can be corrected for by a single qubit
rotation that applies the inverse of the unitary map of
equation (12) or (13). This conditional rotation to cor-
rect the output state is defined by the unitary operators

Ûg (td, τ, |α|) = exp {i (cos(Σg)σ̂y − sin(Σg)σ̂x) θ} , (14)

Ûe (td, τ, |α|) = exp {i (cos(Σe)σ̂y − sin(Σe)σ̂x) θ} , (15)

where Σg = ωgtd + ω′gτ + ϕε + π/2, Σe = ϕε + π/2 +

ωetd + ω′eτ , and tan(θ) = λ|α|e−κ2 τ . Alternatively, the

qubit state can be corrected by actively emptying the
cavity of photons [31].

The magnitude of this erroneous qubit rotation is given
by λ2|α|2e−κτ . As an example, let us consider the sys-
tem of Ref. [21], where for one sample qubit-resonator
set-up system parameters were λ = 0.07, κ = 27 MHz
and |α|2 = 130. In this case, the magnitude of the rota-
tion error is on the order of 60% at τ = 0, but quickly
drops to below 1% within ≈ 150 ns. Therefore, after time
scales typically necessary for successful qubit readout the
residual rotation error on the qubit state is quite small.

However, this rotation error will propagate through-
out a computation, affecting the fidelity of all subsequent
gates and measurements. Therefore, the observation that
it can be easily corrected for is a useful one, especially
in architectures where qubit measurements are used for
initialization at the beginning of a computation [15, 16],
or used during the computation to stabilize error correc-
tion codes [32], and in light of the fact that dispersive
qubit readout fidelity approaches ever higher values [21].
It is important to note that the effective qubit rotation
described here changes the qubit population, and is dis-
tinct from the stochastic rotations to the relative phase
accounted for in previous work [33].

IV. NUMERICAL SIMULATIONS

In order to relax our previous assumption of an ini-
tially closed cavity, and to consider effects beyond first
order in λ, we numerically simulate the cavity drive and
decay process with the Purcell filtered master equation
(see Appendix C for a derivation and Appendix D for
simulations with Purcell decay)

ρ̇(t) = −i
[
ĤT(t), ρ(t)

]
(16)

+ κ
(

(1 + nth(ωc,T))D
[
âC

]
+ nth(ωc,T)D

[
â†C

])
ρ(t),

where the operator âC describes only cavity decay (see
equation (C9) for its definition), nth(ω,T) is the Bose dis-
tribution at frequency ω and temperature T, and D(x)ρ
is the dissipator defined by

D(x)ρ = xρx† − 1

2

{
x†x, ρ

}
. (17)

Here the total system Hamiltonian describes the full
Jaynes-Cummings interaction between the qubit and the
cavity as well as the classical cavity drive, and is given
by

ĤT(t) = ωcâ
†â− ωq

2
σ̂z + g

(
σ̂−â† + σ̂+â

)
+
(
εeiωdtâ+ ε∗e−iωdtâ†

)
Θ(t− td), (18)

where Θ(x) is the Heaviside step function. We simulate
the evolution for the initial states |g, 0〉 and |e, 0〉, with
the temperature set at either T = 0 or T = 100 mK. The
results are shown in FIG. 1.
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Figure 1. (a) Cavity occupation, and (b) 1−P (t) for T = 0 and T = 100 mK for both initial states. 1−Fν(τ) and 1−FC
ν (τ)

are shown in (c) for T = 0 and (d) for T = 100 mK. A drive strength of |ε|/2π = 0.04 GHz, a cavity decay rate of 1/κ = 100
ns, and |λ| = 0.1 were used for these simulations.

FIG. 1(a) shows the cavity occupation during the read-
out protocol. As expected, after an initial ring-up phase,
once the drive is turned off the cavity occupation decays.
Decay stops once the steady state is reached, which is
|g, 0〉 or |e, 0〉 for T = 0 and thermally broadened ver-
sions of these states for T = 100 mK. FIG. 1(b) shows
1− P (t), where P (t) is the purity of the qubit state, de-
fined for a reduced qubit state ρ(t) by P (t) = Tr[ρ(t)2].
Unit purity indicates a pure state. As can be seen, for
T = 0 the states remain very close to a pure state at
all times, verifying the analytic results of equations (10)
and (11). Even for T = 100 mK the states remain > 90%
pure for either initial state.

As the states remain mostly pure during the protocol,
it is possible to correct the qubit state error by the uni-
taries of equations (14) and (15), as described previously.
To quantify this correction we use the overlap between
the desired state (|g〉 or |e〉) and the simulated reduced
qubit state ρ(t). We measure the overlap before correc-
tion

Fν(τ) = Tr [|ν〉 〈ν| ρ(t)] , (19)

where the subscript ν ∈ {g, e} indicates whether we
started in |g, 0〉 or |e, 0〉, and the overlap after correction

FC
ν (τ) = Tr

[
|ν〉 〈ν| Ûνρ(t)Û†ν

]
. (20)

FIG. 1(c) shows the overlap error for both the uncor-
rected and the corrected state for T = 0, and as can be
seen FC

ν (τ) ≥ Fν(τ) for all time (to within numerical
precision of the simulations). For T = 100 mK, as shown
in FIG. 1(d), this is not the case, as within roughly 75 ns
the qubit state loses enough coherence that the unitary
correction actually worsens the overlap. While 100 mK is
above the average operating temperature of most super-
conducting qubit experiments, such a high temperature
was chosen for the simulations presented in this work to
emphasize the incoherent mixing effect of finite tempera-
ture. This highlights the coherent nature of the qubit ro-
tation error, as at more realistic temperatures (less than
50 mK) there is minimal change from the behavior seen
at zero temperature.

For both system temperatures the greatest benefit
from correction is seen early on in the decay time, long
before the cavity occupation has reached steady state.
Typically one would wait for the cavity to be unoccupied
before further operations on the qubit are preformed, as
cavity photons are still interacting with the qubit. How-
ever, in set-ups with tunable coupling between the cavity
and the qubit [34–36], it would be possible to turn off the
interaction between the cavity and the qubit once enough
measurement data has been accumulated and then cor-
rect the final state of the qubit. In this way one could
achieve both more accurate and faster initialization of
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the qubit state via measurement and unitary correction.
A similar initialization scheme involving both cavity and
qubit control has recently been implemented [37].

The analytic expressions of equations (14) and (15)
for the correction unitaries accurately calculate the am-
plitude of the rotation, described by the angle θ. Unfor-
tunately, due to higher order nonlinear effects in the full
Hamiltonian the analytic phases Σg and Σe do not give
good results at higher photon number. To correct this,
we performed a full optimization over the phase of the ro-
tation to obtain the excellent results shown in FIGs. 1(c)
and 1(d).

In many contemporary superconducting qubit exper-
iments Transmon qubits [38] are used. Transmons are
best described as weakly anharmonic oscillators, and so
differ from the true two-level qubits considered in this
work. However, for the purposes of readout, where the
system is driven at a frequency far from resonance with
either the 0−1 or 1−2 Transmon transitions, the Trans-
mon can effectively be considered a two-level system, and
the effect of the higher levels is contained in a modifica-
tion to expression for the dispersive shift χ [39]. To this
level of accuracy, the results of our paper are applicable
to Transmon experiments. It will be the focus of future
work to understand the analogue to the dressed coherent
state for a multi-level description of the Transmon.

V. CONCLUSION

In conclusion, we have shown that during the most
commonly used dispersive readout protocol for supercon-
ducting qubits a coherent rotation error is applied to the
qubit, and the measurement scheme is not QND for any
finite measurement time. This coherent rotation causes
errors in repeated measurements and in qubit initializa-
tion; however, as we have shown, it can be corrected for
by unitary feedback. This correction is most advanta-
geous early on in the decay time, and in experiments with
tunable qubit-cavity coupling our scheme shows promis-
ing results for faster and more accurate qubit initializa-
tion.

ACKNOWLEDGMENTS

The authors acknowledge insightful discussions with
Bruno G. Taketani, Daniel Sank, Karl-Peter Marzlin,
John M. Martinis, Alexander N. Korotkov, and Göran
Johansson. Supported by the Army Research Office un-
der contract W911NF-14-1-0080 and the European Union
through ScaleQIT. LCGG acknowledges support from
NSERC through an NSERC PGS-D.

Appendix A: Readout of the Undressed Qubit
Excited State

In the main text we considered starting with the ex-
cited initial state |e, 0〉, which is the first excited state in
the energy eigenbasis of the qubit-cavity system. How-
ever, for some quantum information protocols it is ad-
vantageous to work in the qubit logical basis, where the
logical excited state is the state |e, 0〉. Such a state can
be prepared by initializing the qubit-cavity system into
its ground state |g, 0〉, followed by a short non-adiabatic
qubit pulse that flips the state of the qubit.

If we now attempt to read out the state of the qubit,
from Ref. [22] we see that starting in the state |e, 0〉,
after an applied cavity drive (with the same form as in
the main text) the state of the system is

|Ψ(td)〉 = cos (λ) |e, αe(td)〉

− eiG(td) sin (λ) Û†D |g〉 e
−i(ωcâ

†â−χσ̂z â†â)tdD̂(α′g(td)) |1〉 ,
(A1)

where α′g(td) = ε∗
(
e−iχtd − 1

)
/χ, D̂(β) is the usual

displacement operator for a harmonic oscillator, ÛD =
exp

{
λ
(
σ̂+â− σ̂−â†

)}
is the dispersive frame transfor-

mation operator, and eiG(td) is a relative qubit phase
whose form is unimportant [22]. From equation (A1) we
see that the final state contains a component for which
the qubit is in its ground state, and the frequency of the
cavity signal for this component will be close to ωg, mea-
surement of which indicates the qubit is in its ground
state. This introduces the possibility of misidentifying
the qubit state; however, the amplitude of the ground
state component is small as it as scales with sin2(λ) ≈ λ2.
Nevertheless, this sets a fundamental limit for the read-
out fidelity of the undressed excited state via standard
dispersive readout as presented here, and partly explains
the unequal readout fidelities reported in [21].

After sufficiently long measurement of the frequency
ωe, the state of equation (A1) will have collapsed to the
dressed coherent state |e, αe(td)〉, and the rest of the read-
out and unitary feedback protocol can occur as described
in the main text, without further modification.
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Appendix B: First Order Approximation of the
Dressed Coherent States

For the ground qubit dressed coherent state, we have

|g, α〉 = e−
|α|2
2

∑
n

αn√
n!
|g, n〉

= e−
|α|2
2

∑
n

αn√
n!

(
cos
(
λ
√
n
)
|g, n〉

− sin
(
λ
√
n
)
|e, n− 1〉

)
= e−

|αg|2

2

∑
n

αn√
n!

((
1− nλ2

2

)
|g, n〉

− λ
√
n |e, n− 1〉

)
+O(λ3). (B1)

Tracing out the cavity we obtain

TrC

[
|g, α〉〈g, α|

]
=
(
1− λ2|α|2

)
|g〉 〈g|+ λ2|α|2 |e〉 〈e|

− λα∗ |g〉 〈e| − λα |e〉 〈g|+O(λ3)

= (|g〉 − λα |e〉) (〈g| − λα∗ 〈e|)− λ2|α|2 |g〉 〈g|+O(λ3).
(B2)

We now approximate this minimally mixed state by a
pure state to obtain

|g, α〉 = (|g〉 − λα |e〉) /
√
N +O(λ2), (B3)

where N = 1 + λ2|α|2 is the normalization.
Now for the excited qubit dressed coherent state, we

begin with

|e, α〉 = e−
|α|2
2

∑
n

αn√
n!
|e, n〉

= e−
|α|2
2

∑
n

αn√
n!

(
cos
(
λ
√
n+ 1

)
|e, n〉

+ sin
(
λ
√
n+ 1

)
|g, n+ 1〉

)
= e−

|α|2
2

∑
n

αn√
n!

((
1− (n+ 1)λ2

2

)
|e, n〉

+ λ
√
n+ 1 |g, n+ 1〉

)
+O(λ3). (B4)

Tracing out the cavity we obtain

TrC

[
|e, α〉〈e, α|

]
=
(
1− λ2(1 + |α|2)

)
|e〉 〈e|

+ λ2(1 + |α|2) |g〉 〈g|+ λα∗ |g〉 〈e|+ λα |e〉 〈g|+O(λ3)

= (|e〉+ λα∗ |g〉) (〈e|+ λα 〈g|)
+ λ2 |g〉 〈g| − λ2(1 + |α|2) |e〉 〈e|+O(λ3). (B5)

Making the same approximation as for the previous case,
we arrive at the pure state

|e, α〉 = (|e〉+ λα∗ |g〉) /
√
N +O(λ2), (B6)

where, as before, N is the normalization.

Appendix C: Numerical Master Equation

To derive a master equation for the system we begin
by considering the system-bath Hamiltonian

ĤE = ĤT(t) +
∑
k

ηk b̂
†
k b̂k +

∑
k

gk
(
â+ â†

) (
b̂k + b̂†k

)
(C1)

where the second term in equation (C1) is the bath self-
Hamiltonian, and the third term is the system-bath cou-
pling. To derive an effective master equation for the sys-
tem, it is appropriate to work in the instantaneous eigen-
basis of ĤT(t); however, to simply things we will derive
the master equation in the eigenbasis of the time inde-
pendent Jaynes-Cummings Hamiltonian described in the
main text. The difference between these two is a frame
transformation by a time dependent cavity displacement,
which for the parameter regime under consideration is in-
consequential to the applicability of the master equation
obtained.

Following the procedure of [27] we derive an effective
evolution equation for the system (ignoring the coherent
evolution for the time being)

ρ̇(t) =∑
j,n
k>j
m>n

CjkC
∗
nm

(
|j〉 〈k| ρ(t) |m〉 〈n| − |m〉 〈n| |j〉 〈k| ρ(t)

)

× ei(∆jk−∆nm)t

∫ ∞
0

ds
〈
b̂(s)b̂†(0)

〉
e−i∆jkt

+
∑
j,n
k>j
m>n

CjkC
∗
nm

(
|j〉 〈k| ρ(t) |m〉 〈n| − ρ(t) |m〉 〈n| |j〉 〈k|

)

× ei(∆jk−∆nm)t

∫ ∞
0

ds
〈
b̂(0)b̂†(s)

〉
ei∆nmt

+
∑
j,n
k>j
m>n

C∗jkCnm

(
|k〉 〈j| ρ(t) |n〉 〈m| − |n〉 〈m| |k〉 〈j| ρ(t)

)

× e−i(∆jk−∆nm)t

∫ ∞
0

ds
〈
b̂†(s)b̂(0)

〉
ei∆jkt

+
∑
j,n
k>j
m>n

C∗jkCnm

(
|k〉 〈j| ρ(t) |n〉 〈m| − ρ(t) |n〉 〈m| |k〉 〈j|

)

× e−i(∆jk−∆nm)t

∫ ∞
0

ds
〈
b̂†(0)b̂(s)

〉
e−i∆nmt (C2)

where {|j〉} is the eigenbasis of the Jaynes-Cummings
Hamiltonian Ĥ ordered in increasing eigenenergy, ∆jk

is the frequency difference between the j’th and k’th
eigenstate (Bohr frequency), b̂(s) =

∑
k gk b̂ke

−iηkt is
the time dependent bath lowering operator, and Cjk =
〈j|
(
â+ â†

)
|k〉. We have also assumed that the bath state

is a stationary state of the bath self-Hamiltonian.
Unlike in [27], it is not possible to make a rotating

wave approximation, as in the parameter regime under
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consideration the eigenspectrum of Ĥ has many nearly
degenerate transitions. Instead, it is possible to derive a
Lindblad form master equation in a way similar to that
done in the singular coupling limit [40] by assuming that
the nearly degenerate transitions are actually degener-
ate. We notice that the coefficients Cjk are nonzero if
|j〉 = |g/e, n〉 and |k〉 = |g/e, n± 1〉, or if |j〉 = |g/e, n〉
and |k〉 = |e/g, n〉, while all other Cjk are zero. The
former case is what we have been calling cavity decay,
while the latter case is Purcell decay, and for each decay
type the energy difference ∆jk between adjacent states
is approximately constant (ωc in the former case and ωq

in the latter).

Therefore, we can split the sums of equation (C2) into
two parts, and make a secular approximation to neglect
the fast oscillating cross terms between decay types to
arrive at the equation

ρ̇(t) =

C∑
j,n
k>j
m>n

CjkC
∗
nmD

[
|j〉 〈k| , |m〉 〈n|

]
ρ(t)

×
(

1 + nth(ωc,T)
)
J(ωc)

+

C∑
j,n
k>j
m>n

C∗jkCnmD
[
|k〉 〈j| , |n〉 〈m|

]
ρ(t)nth(ωc,T)J(ωc)

+

P∑
j,n
k>j
m>n

CjkC
∗
nmD

[
|j〉 〈k| , |m〉 〈n|

]
ρ(t)

×
(

1 + nth(ωq,T)
)
J(ωq)

+

P∑
j,n
k>j
m>n

C∗jkCnmD
[
|k〉 〈j| , |n〉 〈m|

]
ρ(t)nth(ωq,T)J(ωq),

(C3)

where we have ignored the Lamb shifts, and the super-
scripts C and P indicate summation over cavity decay
transitions and over Purcell decay transitions respec-
tively. For more compact notation, we have also defined
the two operator “dissipator”

D
[
Ô1, Ô2

]
ρ(t) = Ô1ρ(t)Ô2 −

1

2

{
Ô2Ô1, ρ(t)

}
. (C4)

Following the usual procedure of Fermi’s golden rule we

have made the identification∫ ∞
0

ds
(〈
b̂(s)b̂†(0)

〉
e−iωt +

〈
b̂(0)b̂†(s)

〉
eiωt

)
=
(

1 + nth(ω,T)
)
J(ω), (C5)∫ ∞

0

ds
(〈
b̂†(s)b̂(0)

〉
eiωt +

〈
b̂†(0)b̂(s)

〉
e−iωt

)
= nth(ω,T)J(ω), (C6)

where J(ω) is the spectral density of the bath, and
nth(ω,T) is the Bose function evaluated at frequency ω
and temperature T.

If we choose a global Ohmic spectral density J(ω) =
ω/QF, then using the relations∑

j,k>j

Cjk |j〉 〈k| = â,

∑
j,k>j

Ckj |k〉 〈j| =
∑
j,k>j

C∗jk |k〉 〈j| = â†. (C7)

we can write equation (C3) in Lindblad form

ρ̇(t) =
(

1 + nth(ωc,T)
)(

κD
[
âC

]
+ γPD

[
âP

])
ρ(t)

+ nth(ωq,T)
(
κD
[
â†C

]
+ γPD

[
â†P

])
ρ(t) (C8)

where κ = ωc/QF is the cavity decay rate and γP =
λ2ωq/QF is the Purcell decay rate. The operators âC
and âP are defined by

âC =

C∑
j,k>j

Cjk |j〉 〈k| = â−
P∑

j,k>j

Cjk |j〉 〈k| , (C9)

âP =

P∑
j,k>j

Cjk |j〉 〈k| = â−
C∑

j,k>j

Cjk |j〉 〈k| , (C10)

and describe the cavity and Purcell decay processes re-
spectively.

Equation (C8) is valid for t � tME, where
tME = 1/ωmax describes the timescale over which
ei(∆jk−∆nm)t = eiωmaxt is no longer unity, with ωmax

the largest degeneracy between transitions that were as-
sumed to be degenerate. For cavity decay ωmax ∝ Nχλ2,
while for Purcell decay ωmax ∝ Nχ, with N the photon
number of the largest occupied state. For the parame-
ters under consideration (χ ≤ 10 MHz, λ ≤ 10−1) we
have tME ∼ 10/N µs for cavity decay, and tME ∝ 100/N
ns for Purcell decay. For typical experimental parameters
the simulation length is on the order of 100s of nanosec-
onds, well below the limit imposed by cavity decay for
reasonable values of N , but unfortunately on the same
order as that set by Purcell decay. As such, we expect
that the simulations of equation (C8) are somewhat non-
physical; however, as the Purcell decay rate is quite small,
we do expect the results to remain mostly trustworthy.

If instead of choosing a global Ohmic spectral density,
we choose a spectral density for which J(ωc) = ωc/QF
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but J(ωq) ≈ 0, such as has been achieved in contempo-
rary dispersive readout schemes by a filter [21, 29, 30],
then the resulting Lindblad equation contains only cavity
decay, and is given by

ρ̇(t) = κ
(

1 + nth(ωc,T)
)
D
[
âC

]
ρ(t)

+ κnth(ωc,T)D
[
â†C

]
ρ(t). (C11)

This is the master equation used in the main text to
described dispersive readout in a Purcell filtered system.

Appendix D: Purcell Decay

To examine the effect of Purcell decay we simulate the
unfiltered master equation

ρ̇(t) = −i
[
ĤT(t), ρ(t)

]
+ κ

(
(1 + nth(ωc,T))D

[
âC

]
+ nth(ωc,T)D

[
â†C

])
ρ(t)

+ γP

(
(1 + nth(ωq,T))D

[
âP

]
+ nth(ωq,T)D

[
â†P

])
ρ(t),

(D1)

where the operator âP of equation (C10) describes Pur-
cell decay. As before, we simulate the evolution for the
initial states |g, 0〉 and |e, 0〉, at a temperature T = 0.

The overlap error for the uncorrected and corrected states
are shown in FIG. 2. As can be seen, for the initial state
|g, 0〉 the results remain unchanged, as Purcell decay only
minimally affects the decay of states of the form |g, α〉.
Unitary feedback can still be used in this case to correct
the qubit state, with excellent improvement in the over-
lap. For |e, 0〉 the results are quite different from that
of FIG. 1(c) of the main text, as Purcell decay drives
the system to the global ground state |g, 0〉 and, as such
the qubit state decays. In this case the unitary correc-
tion does little good, as the qubit state is lost by Purcell
decay.

2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
10
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10
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10
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10
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10
0

 

 

Ground state

Excited state
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Figure 2. 1−Fν(τ) and 1−FC
ν (τ) for T = 0. A drive strength

of |ε|/2π = 0.04 GHz, a cavity decay rate of 1/κ = 100 ns,
and |λ| = 0.1 were used for this simulation.
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