

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Retrapping Current in Bridge-Type Nano-SQUIDs D. Hazra, J. R. Kirtley, and K. Hasselbach Phys. Rev. Applied **4**, 024021 — Published 31 August 2015 DOI: 10.1103/PhysRevApplied.4.024021

Retrapping current in Nano-bridge Superconducting Quantum Interference Devices 1

D. Hazra^{1,2}, J.R. Kirtley^{1,2,3}, and K. Hasselbach^{1,2}

¹CNRS, Inst NEEL, F-38042 Grenoble, France ²Univ. Grenoble Alpes, Inst NEEL, F-38000 Grenoble, France and

³Center for Probing the Nanoscale, Stanford University, Palo Alto, California, U.S.A.

(Dated: August 10, 2015)

It is a challenge to fabricate nano-bridge Superconducting Quantum Interference Devices (nanobridge SQUIDs) that operate without hysteresis over a broad temperature range. Hysteresis defined by the difference between switching- and re-trapping current— is one of the foremost constraints to operating nano-SQUIDs with low noise. The quantum behavior of the switching current has been explored in nano-bridge SQUIDs; but studies exploring parameters ruling the re-trapping current are rare. Here, we study the temperature and magnetic field dependence of the re-trapping current in two different kinds of nano-bridge SQUIDs: tri-layer aluminum-niobium-tungsten nanobridge SQUIDs and suspended-bridge nano-SQUIDs. Our study confirms previous works showing that the re-trapping current decreases as the bath-temperature increases, and is insensitive to the magnetic field. Using a thermal model originally proposed by Skocpol et al. [1], we account for, and suggest a simple formula which describes, the temperature dependence of the re-trapping current. Our calculations show that the magnitude of the retrapping current is mainly dependent on the superconducting transition temperature and the effective resistance of the weak link, and that the temperature dependence of the retrapping current is ruled by the temperature dependence of the thermal conductivity in the normal and superconducting state. Finally we apply our calculation to newly fabricated shunted nano-bridge SQUIDs, which show non-hysteretic current-voltage characteristics down to at least 250 mK and display systematic voltage modulations as a function of externally applied magnetic fields.

7 ¹⁵ single electron spin using a Nano-SQUID [6].

16

Nano-Superconducting Quantum Interference Devices 22 That apart, special Nano-SQUIDs, capable of operating 8 (Nano-SQUIDs) have been used successfully for many ap- 23 at high magnetic field, have been fabricated by various ⁹ plications, such as to measure the magnetic properties of ²⁴ groups [15–17]. Very recently, Schwarz et al., [18] have ¹⁰ single nano-particles [2], local magnetic properties with ²⁵ fabricated $YBa_2Cu_3O_7$ based low-noise nano-SQUIDs, ¹¹ a scanning SQUID microscope [3, 4], and persistent cur- ²⁶ capable of performing magnetization reversal measure-¹² rents of a two dimensional electron gas in a ring [5]. Re- ²⁷ ments of nano-particles. Out of all these possibilities, ¹³ cent experiments have demonstrated sensitivities which ²⁸ because of their relatively simple fabrication process, the ¹⁴ would allow the detection of the magnetic moment of a ²⁹ nano-bridge SQUIDs remain the most preferred choice of ³⁰ nano-SQUIDs for nano-scale magnetometry.

Thus, varieties of nano-SQUIDs with different types ³¹ One of the striking features of such nano-bridge $_{17}$ of junctions— e.g., 3D tunnel junctions [7], 2D bridge $_{32}$ SQUIDs is their hysteretic current-voltage (I-V) char-¹⁸ type junctions[3, 8–11], superconductor-normal metal- ³³ acteristic: In a Nano-SQUID, when a current is ramped ¹⁹ superconductor (SNS) junctions [12], carbon nano-tube ³⁴ up from zero, the system remains in the superconduct- $_{20}$ junctions[13], 3D bridge type junctions[14] to mention $_{35}$ ing state until a threshold I_s . At I_s the system switches 21 only few— have been developed in the last few decades. 36 to a voltage state. After switching, when the current

2

³⁹ less than I_s .

Hysteresis and the temperature dependence of the I_r 40 ⁴¹ have been studied in various Weak-Link (WL) structures ⁴² such as superconducting Dayem Bridges (DBs) [19], SNS ⁴³ junctions[20], and superconducting nano-wires [21, 22]. 44 To understand the hysteresis phenomena in DBs and nano-wires, Skocpol et al. [1, 21] proposed the following: ⁴⁶ Upon increasing bias currents from zero, the WL switches $_{47}$ to the voltage state at I_s . Once in the voltage state the $_{48}$ local temperature T of the WL increases above the bath ⁴⁹ temperature T_b due to Joule heating. The temperature is ⁵⁰ highest at the center of the WL and decreases away from ⁵¹ the center to eventually reach the bath-temperature. In 52 the voltage state, a self sustained normal region, known $_{53}$ as the *hot-spot* and defined by the local temperature T $_{54} > T_c$, is created at the center of the WL. The size of the $_{55}$ hot-spot is a function of the bias-current I and the bath-⁵⁶ temperature T_b . When the current is ramped down from $_{57}$ above I_s the system regains its superconducting state at 58 a bias current I_r which is smaller than I_s at low temper-59 atures.

60 ⁶¹ nel junctions and this is understood by the Resistively 100 assumed $\kappa_s/\kappa_n = T/T_c$ in a numerical simulation of sus-⁶² and Capacitively Shunted Junction (RCSJ) [23, 24] model. ¹⁰¹ pended superconducting nano-wires, where κ_s and κ_n are ⁶³ Here, the capacitance across the junction is responsible ¹⁰² the thermal conductivities in the normal and supercon-⁶⁴ for the hysteresis [24]. In this model, I_r is proportional to 103 ducting states, respectively, and T_c is the critical tem- $\sqrt{I_s}$ [23]. The RCSJ model has also been used to explain 104 perature. Peng et al. [22] used the exact expression for ⁶⁶ hysteresis in micro-bridges [25] and SNS [12] junctions. ¹⁰⁵ thermal conductivity (see Eq. 2 below), but they did not ⁶⁷ For SNS and Micro-bridges, the capacitance is too small ¹⁰⁶ take into account the temperature variation of the energy 68 to explain hysteresis using the RCSJ model. Thus, for 107 gap; thus in their treatment thermal conductivity shows ⁶⁹ these cases, the authors introduced the idea of effective ¹⁰⁸ an unphysical discontinuity, i.e. $f(T) \neq 1$ at $T = T_c$ (see ⁷⁰ capacitance C_{eff} , by equating the RC_{eff} time constant ¹⁰⁹ Fig. 4 of [22]). Most recently, Kumar et. al [26] have ex-71 with the relaxation time of the Cooper pairs for micro- 110 plored the various thermal regions of a nano-SQUID, but $_{12}$ bridges [25] and the diffusion time of the Andreev pairs $_{111}$ they restricted their studies down to only half of T_c , and ⁷³ for SNS junctions [12]. Later on, Courtois et. al [20] have ¹¹² they did not theoretically explore I_r . Apart from these ⁷⁴ shown by directly measuring the electronic temperature ¹¹³ hot-spot model based calculations, recently, Vodolazov

37 is reduced again, the system regains its superconducting 76 of Joule heating. For micro-bridges also, the recent exs state only at a current I_r which, at low temperatures, is π periments and calculations [19, 21, 22, 26] show that the 78 hysteresis is a result of Joule heating.

In this article we extend the discussion from a single 79 ⁸⁰ WL to a 2-junction nano-SQUID for two reasons: First, $_{s1}$ unlike a single WL, in a nano-SQUID, the I_s can be ⁸² easily modulated using a perpendicular magnetic field, $_{83}$ and, therefore, we can readily verify whether I_r is pro-⁸⁴ portional to $\sqrt{I_s}$ or not. Second, understanding and over-⁸⁵ coming hysteresis in nano-SQUIDs is essential for their ⁸⁶ optimal performance [6, 8]. Here, we study the tempera- $_{87}$ ture and magnetic field dependence of the I_r in two dif-⁸⁸ ferent types of nano-bridge SQUIDs, tri-layer aluminum-⁸⁹ niobium-tungsten nano-bridge SQUIDs and suspended- $_{90}$ bridge nano-SQUIDs, down to 250 mK in temperature $_{91}$ and 20 mT in magnetic field (limited by our solenoid). ⁹² We develop a model, using the basic postulates of the ⁹³ hot-spot model, to analyze the temperature dependence $_{94}$ of I_r . Our work is complementary to previous works in 95 the following ways: In the original paper of Skocpol et ⁹⁶ al.[1], they ignored the temperature dependence of the ⁹⁷ thermal conductivity. This leads to a $\sqrt{T_c - T_b}$ [21] tem-⁹⁸ perature dependence of I_r , which doesn't agree with ex-The hysteresis is also observed in under-damped tun- ⁹⁹ periment at low temperatures [19, 26]. Tinkham et al. [21] ⁷⁵ that, for SNS junctions the hysteresis is indeed the result ¹¹⁴ et al. [27] considered non-equilibrium phenomena respon¹¹⁶ theoretical approach, though robust and thorough, is dif-¹⁵³ Si(100) wafer using electron beam evaporation. Here also 117 118 119 ¹²⁰ ductivity into account. More importantly, our results in-¹⁵⁷ along with the vertical etching with an approximate ra-¹²¹ volve parameters which can be measured experimentally. ¹⁵⁸ tio of 1:5. Thus, a considerable over-etching of Nb lead ¹²² Our calculations show that the magnitude of I_r is mainly ¹⁵⁹ to complete removal of Nb under the Al-bridge, produc- $_{123}$ dependent on the T_c and the effective resistance of the $_{160}$ ing suspended Al-bridges. For both types of nano-bridge $_{124}$ WLs (R_{WL}) , and that the temperature dependence of $_{161}$ SQUIDs the patterns were designed to allow a four ter- I_r is dependent on the temperature dependence of the $_{162}$ minal resistance measurement. 126 thermal conductivity in the normal and superconducting ¹²⁷ state. We also observe that, unlike I_s , I_r is insensitive to 128 small magnetic fields. Finally we demonstrate the use-129 fulness of our calculation by fabricating shunted nanobridge SQUIDs that show non-hysteretic current-voltage 130 characteristics at $250 \ mK$ and display systematic voltage 131 ¹³² modulations as a function of externally applied magnetic 133 fields while being biased just above their critical currents.

134

EXPERIMENTS AND RESULTS I.

We studied two different types of nano-bridge 135 ¹³⁶ SQUIDs, A and B, with three samples of each type, as listed in Table-I. The A-type devices were 137 138 tri-layer aluminium-niobium-tungsten(Al-Nb-W) nano-¹³⁹ bridge SQUIDs, whereas the B-types were bilayer Al-¹⁴⁰ Nb suspended-bridge Nano-SQUIDs. To see the detailed ¹⁴¹ fabrication methods and schematics for A type nano-¹⁴² bridge SQUIDs see Ref.[28], and for B type see Ref.[29]. ¹⁴³ Briefly, to fabricate A type nano-bridge SQUIDs, on a $_{144}$ bare Si(100) wafer, first W and then Nb films of thick- $_{182}$ 145 147 $_{149}$ 20 nm of Al as a etch mask. SF_6 gas was used for RIE $_{187}$ widths of the weak link. For both types of nano-bridge 150 of both Nb and W.

To fabricate B-type devices (suspended-bridge nano- $_{189}$ mately half of the T_c . 151

¹¹⁵ sible for hysteresis in superconducting weak-links. Their ¹⁵² SQUIDs), a 30 nm thick Nb film was deposited on a bare ficult to realize in a real device design. Here, we provide 154 the Nano-SQUID patterns were drawn using EBL and simple 1-D model which matches well with experiment 155 RIE. An Al layer of 25 nm thickness was deposited as a while taking the temperature dependence of thermal con-¹⁵⁶ mask during RIE. We observed a lateral etching of Nb

> In Fig. 1a, we present a schematic top view of our de-¹⁶⁴ vices, defining the length (2L) and width (w) of nano-¹⁶⁵ bridges. Fig. 1b and 1c show different layers near the ¹⁶⁶ nano-bridges for type-A (tri-layer Al-Nb-W) and type-B ¹⁶⁷ (suspended-bridge) nano-bridge SQUIDs, respectively.

Fig. 2 shows the DC I-V characteristics at 400 mK168 ¹⁶⁹ for sample A1 (tri-layer Al-Nb-W nano-bridge SQUID) $_{170}$ at different magnetic fields (from 0 to 20 mT). We see 171 that I_s modulates between $I_{s,min}$ and $I_{s,max}$, whereas $_{172}$ I_r does not have any detectable magnetic field depen-173 dence. The dotted arrows show the time evolution of $_{174}$ the voltage, confirming hysteresis. The T_c of the nano-175 bridge SQUIDs, listed in Table-I, is defined at the mini-¹⁷⁶ mum bath temperature where I_c is zero, i.e, the DC I-V 177 characteristic is linear. The inset of the Fig. 2 shows a ¹⁷⁸ Scanning Electron Micrograph (SEM) image of A1. The $_{\rm 179}$ reported sample has a size of 2.5 μm (i.e., a loop area of 180 6.25 μm^2). The other geometrical parameters are listed 181 in Table-I.

Fig. 3 plots the temperature dependence of the I_r for Bness 80 and 40 nm, respectively, were deposited in situ, 183 type (suspended-bridge) nano-bridge SQUIDs, whereas using a magnetron-sputtering system. The nano-bridge 184 the inset shows the same for A-type (tri-layer Al-Nb-SQUIDs were patterned using standard Electron Beam $_{185}$ W) nano-bridge SQUIDs. The magnitudes of I_r for A-Lithography (EBL) and Reactive Ion Etching (RIE) with 186 type nano-bridge SQUIDs varies due to differences in the 188 SQUIDs, I_r saturates for temperatures below approxi-

B1

B2

B3

1.6

1.2

FIG. 3. The temperature dependence of the re-trapping current for B1 (square), B2 (dot), and B3 (triangle). The inset shows the same for A1(square) A2(dot), and A3. I_r has little temperature dependence below $T_c/2$.

³T_b(K)⁶

0.8

 $T_{b}(K)$

2.5

2.0

1.5

1.0

0.5

0.0

0.0

I_r (µA)

350

300

250 I_r (µA) 200 150

100

50

A٢

A2

A3

0.4

FIG. 2. (a) The DC I-V characteristic at 1 K for A1, (tri-layer Al-Nb-W nano-bridge SQUID) at different magnetic fields. The switching current I_s is modulated between $I_{s,max}$ and $I_{s,min}$, whereas I_r is insensitive to magnetic field. The dotted arrows show the direction of current sweeps, evidencing voltage hysteresis. The insets show the SEM image of A1.

190

A MODEL CALCULATION II.

191 192 ¹⁹⁴ the exact nano-SQUID geometry, let us first consider, ²¹⁶ temperature T.

¹⁹⁵ for simplicity, a superconducting WL, connecting two ¹⁹⁶ large superconducting pads, as shown in Fig. 1. Later, we ¹⁹⁷ shall extend our calculation to the nano-SQUID geometry. The temperature profile of a WL in the voltage state 198 has been described in many articles [1, 19, 21]. Here, we 199 $_{200}$ focus on the dependence of I_r on the bath temperature.

In the voltage state, because of the Joule-heating, the 203 local temperature (T) of the bridge increases above the 202 $_{203}$ bath temperature T_b . We assume that the connecting 204 pads, being massive, act as a thermal bath to ensure the $_{205}$ thermalization of the two ends of the WL to T_b . In gen-²⁰⁶ eral, for a sufficiently large bias-current, the local temper- $_{207}$ ature at the connecting pads can be increased above T_b ²⁰⁸ [1, 19]; but here we focus on I_r . We also assume that the 209 temperature at the center (x = 0) of the bridge is higher ²¹⁰ than T_c , i.e., is in the normal state. At $x = \pm x_0$, away $_{211}$ from the center, the local temperature decreases to T_c , ²¹² defining normal metal-superconductor (N-S) interfaces. In this section, we develop a model for the tempera-²¹³ Thus, this model assumes the existence of a self-sustained ture dependence of I_r of nano-bridge SQUIDs based on $_{214}$ normal region (hot-spot) of length $2x_0$. We also assume ¹⁹³ the hypothesis of Skocpol et al. [1, 21]. Before exploring ²¹⁵ a quasi-equilibrium state, so that we can define a local

The schematic diagram of a current-biased FIG. 4. superconducting-bridge of length 2L, connecting two bulk electrodes. The black portion at the center represents the N-S interfaces. The contact pads at $x = \pm L$ thermalize the 246 experimentally. edges of the bridge to the bath temperature.

We shall now focus on the heat flow mechanism in the 249 of the entire WL. 217 $_{218}$ normal-state near I_r . The generated Joule-heat can be $_{250}$ removed either by thermal conduction or surface heat loss 219 ²²⁰ across the bridge-substrate interface. As has been shown earlier [19, 22], thermal conduction is much more effi-221 cient than surface heat loss for this kind of geometry. In 222 223 We subsequently show that a simple linear-model of the 224 $_{\rm 225}$ thermal conductivity is sufficient to explain the T_b de- $_{\rm 226}$ pendence of I_r . We also derive an analytical expression $_{\rm 256}$ $_{227}$ for I_r , showing good agreement with the experiments. The heat flow equation in the voltage state for the $_{258}$ at x = L, and t = 1 at $x = x_0$. This leads to 228 ²²⁹ superconducting section $(x_0 \leq x < L)$ of the bridge can 230 be written as:

$$-\kappa_s A \frac{dT}{dx} = I^2 R(x_0) \qquad (x_0 \le x < L).$$
(1)

Here, κ_s is the electronic part of the thermal conduc-231 $_{232}$ tivity in the superconducting state, R is the resistance $_{260}$ of the normal section and A is the cross-sectional area 234 of the bridge. Since the experiments were performed at 235 very low temperatures, we can ignore the phonon con- 261 $_{236}$ tribution to the thermal conductivity. The temperature $_{262}$ quired to maintain an N-S interface. Minimizing I with $_{237}$ dependence of κ_s can be expressed using the following $_{263}$ respect to x_0 , from Eq. 5, we get the following expression 238 formula [30]:

$$f(T) = \kappa_s / \kappa_n = \frac{3}{2\pi^2} \int_{\frac{\Delta(T)}{\kappa_B T}}^{\infty} \left(\frac{x}{\cosh(x/2)}\right)^2 dx. \quad (2)$$

Here, κ_n is the electronic part of the thermal conduc-²⁴⁰ tivity in the normal state and $\Delta(T)$ is the superconduct-²⁴¹ ing energy gap at temperature T. κ_n can be calculated ²⁴² using the Wiedemann-Franz law: $\kappa_n = L_0 T / \rho_n$, where $_{243}$ L_0 is the Lorentz number and ρ_n is the normal state re-244 sistivity of the material. This expression allows us to hot-spot in the voltage state. $x = \pm x_0$, where $T = T_c$, define 245 express κ_s in terms of ρ_n which is more easily accessible

> For a given I, the resistance can be written as $R(x_0) =$ 247 ²⁴⁸ $R_{WL}(x_0/L)$, where R_{WL} is the normal state resistance

Eq. 1 can now be re-written as:

$$tf(t)\frac{dt}{dx} = -\frac{I^2}{I_0^2}\frac{1}{L}\frac{x_0}{L} \qquad (x_0 \le x < L).$$
(3)

Here, $t = T/T_c$ is the normalized temperature, and $_{252} I_0 = \sqrt{2L_0} T_c/R_{WL}$ is the natural current-scale of the our calculation we ignore the surface-heat loss altogether. $_{253}$ problem. In re-writing Eq.1 we have expressed κ_s in $_{254}$ terms of ρ_n and also made use of the relation: $R_{WL} =$ 255 $2\rho_N L/A$.

> At a fixed $t_b = T_b/T_c$, to calculate x_0 as a function of ²⁵⁷ bias-current I we impose the boundary conditions $t = t_b$

$$\int_{t_b}^{1} tf(t) dt = -\frac{I^2}{I_0^2} \frac{1}{L} \frac{x_0}{L} \int_{L}^{x_0} dx = -\frac{I^2}{I_0^2} \frac{1}{L} \frac{x_0}{L} (L - x_0) (A)$$

Thus, re-arranging Eq. 4, I as a function of x_0 becomes

$$I^{2} = I_{0}^{2} \frac{L^{2}}{x_{0}(L - x_{0})} g(t_{b}), \qquad (5)$$

where we have defined

259

$$g(t_b) = \int_{t_b}^1 tf(t) \, dt.$$
 (6)

Now we recollect that I_r is the minimum current re-264 for I_r :

TABLE I. Experimental and fit parameters for all the samples. Here d is the thickness of various layers, w and ℓ are the width and length of the WLs, and T_c (exp) is the experimental critical temperature. 1, 2, and 3 stand for fit parameters for (1) f(t)(Eq.2), (2) f(t) = t, and (3) $f(t) = t^2$.

Sam.	d_W	d_{Nb}	d_{Al}	w	2L	$T_c (\exp)$	R_{WL} (1)	R_{WL} (2)	R_{WL} (3)
no.	(nm)	(nm)	(nm)	(nm)	(nm)	(K)	(Ω)	(Ω)	(Ω)
A1	80	40	30	90	100	$8.25 \pm \ 0.10$	10.5	9.9	8.5
A2	80	40	30	80	100	$8.25 \pm \ 0.10$	8.0	7.5	6.5
A3	80	40	30	60	100	$8.25{\pm}~0.10$	7.2	6.8	5.9
B1	-	30	25	40	200	$1.60{\pm}~0.05$	175.5	165.5	142.7
B2	-	30	25	40	200	$1.60{\pm}~0.05$	176.2	166.2	143.3
B3	-	30	25	40	200	$1.60{\pm}~0.05$	168.5	158.9	137.0

FIG. 5. The theoretical predictions showing the variation of the normalized I_r as a function of normalized T_b for f(t)(Eq.2), f(t) = t, and $f(t) = t^2$; the corresponding $I_r(0)$ is $1.23I_0$, $1.15I_0$, and I_0 , respectively. The inset shows the variation of f(t) (Eq.2), f(t) = t, and $f(t) = t^2$.

$$I_r(t_b) = 2 \frac{\sqrt{2L_0}T_c}{R_{WL}} \sqrt{g(t_b)}.$$
 (7)

The t_b dependence of I_r , as Eq. 7 suggests, depends, via 265 $_{266}$ Eq. 2 and Eq. 6, on the temperature dependence of the ²⁶⁷ thermal conductivity f(t). Before we solve numerically, ²⁶⁸ in order to have a better physical insight, let us try to ²⁶⁹ find an approximate analytical expression for f(t). Since 270 at T = 0, κ_s should be zero (i.e. f(t) = 0), and at T = $_{271} T_c$ (i.e. at t = 1), κ_s should be equal to κ_n (i.e. f(t) =272 1), we take the following approximation: $f_t = t^n$, where $_{273}$ n is a constant. In this case, Eq. 7 becomes

$$I_r(t_b) = \sqrt{\frac{4}{n+2}} \frac{\sqrt{2L_0}T_c}{R_{WL}} \sqrt{1 - t_b^{n+2}}.$$
 (8)

311

²⁷⁴ In Fig. 5, we plot the variation of I_r as a function of $_{275}$ T_b in normalized units for the exact expression of $f(t)_{312}$ In this section we first compare the experimental data 276 following Eq. 2, and also for f(t) = t (i.e. for n = 1) 313 with our theoretical calculations. In Fig. 6, we plot a uni $f(t) = t^2$ (i.e. for n = 2). The inset shows the $_{314}$ versal curve of I_r , for all six samples (dots), in normalized 278 temperature dependence of f(t) following Eq. 2, and also 315 units. The experimental I_r has been normalized with re- $_{279}$ for f(t) = t and $f(t) = t^2$. To evaluate f(t) numerically $_{316}$ spect to the value measured at the lowest temperature. we have made use of the approximation to the full BCS $_{317}$ The lines show the fits for f(t) (Eq. 2), f(t) = t, and f(t)281 expression $\Delta/\Delta(0) = \sqrt{(1-t)}$, with $\Delta(0) / \kappa_B T_c = 1.76$ 318 = t^2 . For clarity, f(t) = t and $f(t) = t^2$ have been shifted

²⁸² [23]. From Fig. 6, we see that f(t) = t is closer to the actual expression (Eq. 2) in predicting the temperature variation of I_r than $f(t) = t^2$. This is because I_r involves the integral of f(t), and as the inset of Fig. 6 suggests, for half of the temperature range t is smaller than f(t)(Eq. 2) while for the remaining half it is bigger, and thus ²⁸⁸ in the integration process they compensate each other. On the other hand, t^2 is almost always smaller than f(t)²⁹⁰ (Eq. 2), underestimating I_r .

To extend this model from a single WL to a nano-291 ²⁹² bridge SQUID (two parallel WLs, connected in a super-²⁹³ conducting ring), we note that, at a fixed t_b , the product ²⁹⁴ of I_r and R_{WL} is constant (Eq. 7). From an analogy with ²⁹⁵ a parallel resistor network, this implies that if two WLs ²⁹⁶ are connected in parallel, the net I_r would be the sum of $_{297}$ two individual WLs' I_r . Thus, the above calculations can ²⁹⁸ be extended — without any loss of generality — to nano-²⁹⁹ SQUID structures. In particular, as soon as in one of the $_{300}$ two junctions the hot spot disappears, that is when I_{bias} $_{301}$ becomes lower than I_r (retrapping current), the Joule 302 self heating disappears, the current passes without dissi-³⁰³ pation through this junction. The current sustaining the 304 self heating of the other branch is immediately diverted $_{\rm 305}$ to the superconducting branch ($I_c>2\times I_r)$. In the ab- $_{\rm 306}$ sence of Joule heating the latter hotspot disappears and 307 the second nano bridge becomes superconducting, and 308 thus the entire SQUID. Such dynamic processes on short 309 time scales are beyond the time window of our measure-³¹⁰ ments, but may deserve further investigation.

ANALYSIS AND DISCUSSIONS III.

FIG. 6. Universal curve (dots) of I_r , normalized with respect to the value measured at the lowest temperature, for all six samples. The lines show the theoretical predictions for (from bottom) f(t) (Eq.2), f(t) = t, and $f(t) = t^2$. The fitting parameter $R_W L$ is listed in Table-I for all three cases. For clarity, f(t) = t and $f(t) = t^2$ have been shifted vertically by 0.5 and 1, respectively.

FIG. 7. The temperature variation of the resistance for A1 (tri-layer Al-Nb-W nano-bridge SQUID) near T_c . The inset shows the same for B1(suspended bridge nano-SQUID). The measurement was done using a lock-in at frequency 1117 Hz and a bias current of 1 μA for A1 and 100 nA for B1. The broad transition reflects the onset of the superconductivity at different temperatures for different sections of the devices. The two arrows show the last two transitions, possibly reflecting the onset of the superconductivity in the nano-bridges.

³¹⁹ vertically by 0.5 and 1, respectively. The fit parameter ³²⁰ R_{WL} is listed in Table-I for all three cases. The standard ³²¹ deviations are 0.04, 0.05, and 0.07 for f(t), f(t) = t, and ³²² $f(t) = t^2$, respectively. As expected, the best-fit is ob-³²³ served for the exact expression of f(t) (Eq. 2). Between ³²⁴ the two approximate expressions, f(t) = t provides the ³²⁵ better fit, as expected.

Next we extract R_{WL} from the experimental curves, 326 and compare with theoretical fits. In general, the resis-327 tance — measured from the slope of the I-V curve in the 329 linear regime, i.e., at high bias current — is a few times $_{330}$ higher than R_{WL} . This is because at high bias-current ³³¹ the N-S interface may occur well inside the electrode. $_{332}$ Near I_r , the *I-V* characteristic is highly non-linear, mak- $_{333}$ ing it difficult to measure R_{WL} from the slope. Thus, $_{334}$ to estimate R_{WL} , we perform direct resistance measure-335 ments as a function of temperature with a small bias-336 current. Since the widths of the different parts of our 337 nano-bridge SQUIDs vary considerably — the bridges $_{\rm 338}$ are ~ 50 nm, the nano-SQUID arms are ~ 350 nm, $_{339}$ and the bonding pads are $\sim 250 \ \mu m$ — the T_c of the 340 different parts would also differ considerably; the bonding pads should have the highest T_c , whereas the WLs 341 $_{342}$ should have the lowest T_c . In Fig. 7, we plot the temperature variation of the resistance for A1 (tri-layer Al-Nb-343 W nano-bridge SQUID). The inset shows the tempera-344 ³⁴⁵ ture variation of the resistance for B1(suspended bridge ³⁴⁶ nano-SQUID). The measurement was performed using a ₃₄₇ lock-in at frequency 1117 Hz and bias currents of rms ³⁴⁸ amplitude 1 μA and 100 nA were applied for A1 and $_{349}$ B1, respectively. The onset of T_c for different regions of 350 the device occur at different temperatures, as expected. ³⁵¹ The broadening of the final resistance tail makes it dif- $_{352}$ ficult to estimate R_{WL} . We thus try to trace the last $_{353}$ two transitions, shown by the arrows, to estimate R_{WL} . ³⁵⁴ From this, we estimate R_{WL} for A1 between 18 and 5 Ω $_{355}$ and for B1 between 350 and 150 $\Omega.$ Apart from observ- $_{356}$ ing the resistance transition, we also estimate R_{WL} from 357 normal resistance and the known geometry of our nano $_{359}$ see from Fig. 7, is $\sim 71.0 \ \Omega$, which is the total contribu- $_{398}$ been etched. The underneath W layer has been left unaf-361 WLs. These, as we know from SEM images and our EBL 400 the WLs and shunting a fraction of the bias current. The $_{362}$ drawing, corresponds to $30R_{\Box}$ altogether, where R_{\Box} is $_{401}$ thickness of the Al, Nb, and W films are respectively 20, ³⁶³ the square resistance of the films. From this we estimate ⁴⁰² 25, and 80 nm, whereas the lengths and widths of the $_{364} R_{WL} \sim 2.6 \Omega$ for A1. This is less than the value from $_{403}$ bridges are ~ 180 and 40 nm, respectively. The presence $_{404}$ of the normal layer of W reduces T_c (2.0 K) by proximity ³⁶⁶ lengths of the WLs are actually longer than their geomet-⁴⁰⁵ effect. $_{367}$ rical lengths, implying that the hot-spot extends beyond $_{406}$ the WL into the electrode even at very small currents. $_{369}$ We can still use Eq.7, but with R_{WL} replaced by an $_{370}$ effective WL resistance $R_{WL,eff}$. For suspended-bridge 371 nano-SQUIDs, the absence of a Nb layer in the bridge $_{372}$ makes it difficult to estimate R_{WL} from geometry.

373 374 $_{375}$ devices (tri-layer Al-Nb-W nano-bridge SQUIDs) have $_{414}$ the DC I-V characteristic, we get $I_r \sim 20 \ \mu$ A. This, from $_{376}$ much higher I_r s than type-B devices (suspended-bridge $_{415}$ Eq. 7, gives an effective $R_{WL} \sim 27 \Omega$ for $T_c = 2K$. 377 378 properties are dictated by Nb, whereas Al and W provide 417 the normal resistance of a tri-layer Al-Nb-W film of the $_{379}$ thermalization to the bridge, and also help reduce the ef- $_{418}$ same width and length (see Fig. 1 of [28]) is $\sim 18 \Omega$, $_{360}$ fective R_{WL} . For type-B devices, the T_c is dictated by $_{419}$ comparable to the effective R_{WL} . Thus the presence of a $_{381}$ aluminum, which has a lower T_c than Nb. The higher T_c $_{420}$ W film underneath restricts the N-S interface very close $_{382}$ and lower effective R_{WL} results in higher I_r for type-A $_{421}$ to the WL. It also reduces the switching current I_s by ³⁸³ devices in comparison to type-B, as expected from Eq.7. ⁴²² proximity effect, further reducing the hysteresis. $_{\tt 384}$ In addition, since part of the bridge is normal just above $_{\tt 423}$ $_{385}$ I_r , a fraction of the current may pass through the Al $_{424}$ Fig. 9b shows the voltage modulation of the nano-bridge $_{425}$ and W layers for type-A devices, further enhancing their $_{425}$ SQUID as a function of an externally applied magnetic 387 re-trapping currents.

388 ³⁸⁹ non-hysteretic nano-bridge SQUIDs, which can be read-⁴²⁸ frequency. The systematic voltage modulation clearly 390 out continuously. Hysteresis can be suppressed either 429 demonstrate that the nano-bridge SQUID can be read 391 $_{392}$ As we learned from our discussion, I_r can be increased $_{431}$ the flux-noise Φ_n , we bias the device at the most sensitive ³⁹³ by reducing the effective R_{WL} . This has been achieved ⁴³² point of the flux-voltage (Φ -V) characteristic (maxima of ³⁹⁴ by fabricating a bi-layer Al-Nb nano-bridge SQUID on ⁴³³ $\frac{\partial V}{\partial \Phi} = V_{\Phi}$) and measure the voltage noise V_n . The Φ_n was $_{395}$ a continuous W film, as shown in Fig. 8. The fabrica- $_{434}$ then estimated from the formula [31] $\Phi_n = V_n/V_{\Phi}$. The

358 bridge SQUIDs. For A1, the normal resistance, as we 397 nano-bridge SQUID, except that only the Nb layer has tion from bonding pads, narrow-leads, SQUID arms, and $_{399}$ fected, which reduces the effective R_{WL} by thermalizing

Fig. 9a shows the DC I-V characteristic at 250 mK, 407 confirming a significant reduction in hysteresis; although 408 we still see a sharp jump near the transition. The inset $_{409}\,$ shows the AC I-V characteristic, measured using a lock-in ⁴¹⁰ at frequency 1117 HZ, demonstrating the absence of the ⁴¹¹ sharp jump near the transition. This is because the nano-Next we compare the re-trapping currents for the two 412 SQUID remains in the superconducting state for part of kinds of SQUIDs. From Fig. 3, we see that type-A 413 the applied sinusoidal signal (see Fig. 3 of Ref. 28). From nano-SQUIDs). In type-A devices, the superconducting 416 On the other hand, the WL resistance estimated from

Next we demonstrate the performance of our devices. ⁴²⁶ field at different rms current amplitudes. Here also the Finally we apply our model to design and fabricate 427 experiment was performed using a lock-in at 1117 Hz by increasing I_r , decreasing I_s , or both simultaneously. 430 out continuously down to at least 250 mK. To estimate ³⁹⁶ tion process is similar to an A-type (tri-layer Al-Nb-W) ⁴³⁵ voltage noise spectra shows that we are limited by our

FIG. 8. The schematic view near the nano-bridge of the shunted non-hysteretic bi-layer nano-SQUID of Al-Nb. The SQUID was patterned on a W film which reduces the normal resistance and also acts as an efficient heat sink.

 $_{436}$ room temperature amplifier noise $\sim 1 \text{ nV}/\sqrt{Hz}$. For our $_{437}$ sample, $V_{\Phi} \sim 2.5 \ \mu V / \Phi_0$ which translates to a spectral 438 density of flux noise, assuming a voltage noise density of the room temperature amplifiers of 1 nV/ \sqrt{Hz} , to 4.5 $\times 10^{-4} \Phi_0 / \sqrt{Hz}$. This result is encouraging for further 440 441 development of Nb/W devices, as ours were operated in an unshielded environment and room temperature elec-442 ⁴⁴³ tronics were used. We expect that low temperature am-⁴⁴⁴ plification schemes will lead to a significant reduction in the voltage noise. The ability of the nano-bridge SQUID 446 to operate in a continuous manner at such a low temper-447 ature makes it a useful tool to study the ground state properties of quantum systems. 448

In summary, we studied the temperature and mag-449 ⁴⁵⁰ netic field dependence of the re-trapping current in two 451 different kinds of devices: tri-laver aluminum-niobium-452 tungsten nano-bridge SQUIDs and suspended-bridge nano-SQUIDs. The re-trapping current was seen to be 453 454 insensitive to the magnetic field, but decreased as the bath-temperature increased. Using a thermal model, 455 we accounted for the temperature dependence of the re-456 ⁴⁵⁷ trapping current. We also suggested a simple analytical expression to fit the temperature dependence of the re-459 trapping current. Our theory showed good agreement 470 460 with experiment. Our calculations showed that the mag- 471 knowledge support from the Grenoble Nanosciences Fon- $_{461}$ nitude of I_r was mainly dependent on the T_c and the ef- $_{472}$ dation within the project "Chair of Excellence Super-

FIG. 9. (a) The DC I-V characteristic of the shunted nanobridge SQUID at $250 \ mK$ showing the reduction of hysteresis. The inset shows the AC I-V characteristic (rms values) of the same device measured at 1117 Hz using a lock-in. (b) The voltage modulation of the nano-bridge SQUID as a function of magnetic fields at different bias currents: 16.0, 16.5, 17.0, 17.5, and 18.0 μA from the bottom.

 $_{462}$ fective resistance of the WLs (R_{WL}), and that the tem-463 perature dependence of I_r was dependent on the tem- $_{\tt 464}$ perature dependence of the thermal conductivity in the 465 normal and superconducting state. We applied our theory to successfully fabricate non-hysteretic nano-bridge 466 467 SQUIDs capable of performing continuous read-out down $_{468}$ to at least 250 mK, which can be useful to study the ⁴⁶⁹ ground state of quantum systems.

Acknowledgements: D. Hazra and J.R. Kirtley ac-

473 NanoCharac". J.R. Kirtley was also supported by the 475 T. Crozes for e-beam lithography training and E. André 474 NSF under Grant No. PHY-0425897. The authors thank 476 for thin film preparation.

- [1] W. J. Skocpol, M. R. Beasley, and M. Tinkham, Self- 515 [10] A. G. P. Troeman, H. Derking, B. Borger, J. Pleikies, 477
- heating hotspots in superconducting thin-film micro- 516 478
- bridges, J. Appl. Phys. 45, 4054 (1974). 479
- 480
- reversal studied in nanometer-sized particles and clusters, 519 481 Adv. Chem. Phys. 118, 99 (2001). 482
- [3] K. Hasselbach, C. Veauvy, D. Mailly, MicroSQUID mag- 521 [12] L. Angers, F. Chiodi, G. Montambaux, M. Ferrier, S. 483
- netometry and magnetic imaging, Physica C 332, 140 522 484 485 (2000).
- [4] L. Embon, Y. Anahory, A. Suhov, D. Halbertal, J. Cup- 524 486 487
- paport, M. E. Huber, A. Gurevich, and E.Zeldov, Prob- 526 488
- ing dynamics and pinning of single vortices in supercon- 527 489
- ductors at nanometer scales, Scientific Reports, 5, 7598. 528 490 (2015).491
- [5] D. Mailly, C. Chapelier, and A. Benoit, Experimental 530 492 observation of persistent currents in GaAs-AlGaAs single 531 493 loop, Phys. Rev. Lett. 70, 2020 (1993).
- 494 [6] D. Vasyukov, Y. Anahory, L. Embon, D. Halbertal, J. 533 495
- Cuppens, L. Neeman, A. Finkler, Y. Segev, Y. Myasoe- 534 496
- dov, M. L. Rappaport, M. E. Huber, and E. Zeldov, A 535 497
- 498
- with single electron spin sensitivity, Nature Nanotech- 537 499 nology 8, 639 (2013). 500
- C. Granata, A. Vettoliere, R. Russo, M. Fretto, N. De 539 [7]501
- Leo, and V. Lacquaniti, Three-dimensional spin nanosen- 540 [17] 502
- sor based on reliable tunnel Josephson nano-junctions for 541 503 nanomagnetism investigations, Appl. Phys. Lett. 103, 542 504 102602 (2013). 543 505
- L. Hao, J. C. Macfarlane, J. C. Gallop, D. Cox, J. Beyer, 544 8 506 D. Drung, and T. Schurig, Measurement and noise per- 545 507
- formance of nano-superconducting-quantum-interference 546 [18] T. Schwarz, R. Wölbing, C. F. Reiche, B. Müller, M. 508 devices fabricated by focused ion beam, Appl. Phys. Lett. 547 509
- 92, 192507 (2008). 510
- [9] S. K. H. Lam and D. L. Tilbrook, Development of a nio- 549 511 512 bium nanosuperconducting quantum interference device 550
- for the detection of small spin populations, Appl. Phys. 551 513
- Lett. 82, 1078 (2003). 514

- d. Veldhuis, and H. Hilgenkamp, NanoSQUIDs Based on Niobium Constrictions, Nano Lett. 7, 2152 (2007). 517
- [2] W. Wernsdorfer, Classical and quantum magnetization 518 [11] K. Hasselbach, D. Mailly, and J. R. Kirtley, Microsuperconducting quantum interference device characteristics, J. Appl. Phys. 91, 4432 (2002). 520
 - Guéron, H. Bouchiat, and J. C. Cuevas, Proximity dc 523 squids in the long-junction limit, Phys. Rev. B 77, 165408 (2008).
 - pens, A. Yakovenko, A.Uri, Y. Myasoedov, M. L. Rap- 525 [13] J. P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarcuhu, and M. Monthioux, Carbon nanotube superconducting quantum interference device, Nature Nanotech., 1 53 (2006).
 - 529 [14] R. Vijay, E. M. Levenson-Falk, D. H. Slichter, and I. Siddiqi, Approaching ideal weak link behavior with three dimensional aluminum nanobridges, 96, 223112 (2010).
 - 532 [15] L. Chen, W. Wernsdorfer, C. Lampropoulos, G. Christou, and I. Chiorescu, On-chip SQUID measurements in the presence of high magnetic fields, Nanotechnology 21, 405504 (2010).
 - scanning superconducting quantum interference device 536 [16] S. Mandal, T. Bautze, O. A. Williams, C. Naud, È. Bustarret, F. Omnès, P. Rodière, T. Meunier, C. Bäuerle, and L. Saminadayar, The Diamond Superconducting 538 Quantum Interference Device, ACS Nano 5, 7144 (2011).
 - R. Wolbing, J. Nagel, T. Schwarz, O. Kieler, T. Weimann, J. Kohlmann, A. B. Zorin, M. Kemmler, R. Kleiner, and D. Koelle, Nb nano superconducting quantum interference devices with high spin sensitivity for operation in magnetic fields up to 0.5 T, Appl. Phys. Lett. 102, 192601 (2013).
 - J. Martínez-Pérez, T. Mühl, B. Büchner, R. Kleiner and D. Koelle, Low-Noise $YBa_2Cu_3O_7$ Nano-SQUIDs 548 for Performing Magnetization-Reversal Measurements on Magnetic Nanoparticles, Phys. Rev. Applied, 3, 044011 (2015).
 - 552 [19] D. Hazra, L. M. A. Pascal, H. Courtois, and A. K. Gupta,

- Hysteresis in superconducting short weak links and μ 574 553 SQUIDs, Phys. Rev. B 82, 184530 (2010). 554
- [20] H. Courtois, M. Meschke, J. T. Peltonen, and J. P. 576 555
- Pekola, Origin of Hysteresis in a Proximity Josephson 577 556
- Junction, Phys. Rev. Lett. 101, 067002 (2008). 557
- [21] M. Tinkham, J. U. Free, C. N. Lau, and N. Markovic, 579 558
- Hysteretic IV curves of superconducting nanowires, Phys. 580 [27] 559 Rev. B 68, 134515 (2003). 560
- [22] Peng Li, Phillip M. Wu, Yuriy Bomze, Ivan V. Borzenets, 582 561
- Gleb Finkelstein, and A. M. Chang, Retrapping cur- 583 562
- 563
- acteristics in ultranarrow superconducting aluminum 585 564
- nanowires, Phys. Rev. B 84, 184508 (2011). 565
- [23] M. Tinkham, Introduction to Superconductivity 2nd ed. 587 566 (Mc Graw-Hill, New York, 1996). 567
- 568 [24]W. C. Stewart, Current-voltage characteristics of 589 Josephson junctions, Appl. Phys. Lett. 12, 277 (1968); 590 569
- 570
- Current Characteristics of Superconductor WeakLink 592 571
- Junctions, J. Appl. Phys.39, 3113 (1968). 572
- 573 [25] Y. Song, Origin of capacitance in superconducting mi- 594

crobridges, J. Appl. Phys. 47, 2651 (1976).

578

581

- 575 [26] Nikhil Kumar, T. Fournier, H. Courtois, C. B. Winkelmann, and Anjan K. Gupta, Reversibility Of Superconducting Nb Weak Links Driven By The Proximity Effect In A Quantum Interference Device, Phys. Rev. Lett. 114, 157003 (2015).
 - D. Yu. Vodolazov and F. M. Peeters, Origin of the hysteresis of the current voltage characteristics of superconducting microbridges near the critical temperature, Phys. Rev. B 84, 094511 (2011).
- rent, self-heating, and hysteretic current-voltage char- 584 [28] D. Hazra, J.R. Kirtley, and K. Hasselbach, Nanosuperconducting quantum interference devices with continuous read out at milliKelvin temperatures, Appl. 586 Phys. Lett. 103, 093109 (2013).
 - 588 [29] D. Hazra, J.R. Kirtley, and K. Hasselbach, Nanosuperconducting quantum interference devices with suspended junctions, Appl. Phys. Lett 104, 152603 (2014).
- D. E. McCumber, Effect of ac Impedance on dc Voltage- 591 [30] A. A. Abrikosov, Fundamentals of the Theory of Metals, (Elsevier Science, Amsterdam, 1988).
 - 593 [31] J. Clarke and A. I. Braginski, The SQUID Handbook, Vol-1, (WILEY-VCH Verlag GmbH and Co. KGaA, 2004). 595