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Abstract

The performance of photoinjectors is limited by the lowest value of the mean transverse energy of

the electrons obtained from photocathodes. The factors that influence the mean transverse energy

are poorly understood. In this paper we develop models to calculate the effect of spatial work

function variations and sub nanometer scale roughness and surface defects on the mean transverse

energy. We show that these can limit the lowest value of MTE achieved and that atomically perfect

surfaces will be required to further reduce the mean transverse energy obtained from photocathodes.

∗ ssk226@cornell.edu

1



I. INTRODUCTION

Photoinjectors provide electron beams for most 4th generation light sources like energy

recovery linacs and free electron lasers and ultra-fast electron diffraction (UED) setups.

For light source applications, the mean transverse energy (MTE) of electrons emitted from

the photocathode limits the beam brightness obtained from photoinjectors[1]. For UED

applications, the transverse coherence length of the electron beam is limited by the MTE

obtained from photocathodes[2, 3]. The transverse coherence length sets the maximum

size of the crystal unit cell for which a diffraction pattern can be resolved. Thus reducing

the MTE from photocathodes can result in brighter electron beams and can allow UED of

crystals with larger unit cells, for example, proteins.

Thermal emittance, which is the volume occupied by the electron beam in phase space,

is a more familiar quantity to accelerator physicists. The normalized thermal emittance can

be related to the MTE and the rms laser spot size on the cathode (σl,x) through the relation

εn,x = σl,x

√
MTE
mec2

where me is the mass of an electron and c is the speed of light.

The theoretical lower limit to the MTE, given by a disorder induced scattering after emis-

sion, is 1-2 meV[4]. The smallest MTE demonstrated is in the 25-40 meV range from GaAs

activated to negative electron affinity (NEA) using Cs and NF3[5] under infrared illumina-

tion or from antimony films using near photoemission threshold wavelengths[6]. However,

NEA-GaAs under infrared illumination has a very large response time in the 100 ps range[5]

and antimony or other metals have very small quantum efficiency near photoemission thresh-

old making them impractical for use in a photoinjector. In most photoinjectors, MTE in

range of 100 meV to 1 eV is obtained from photocathodes[7]. Before reaching the theoretical

limit, nearly two orders of magnitude improvement in MTE may be possible by engineer-

ing photocathode materials[8–10]that have smaller MTE with high quantum efficiencies and

quick response times. However, no theory exists that can explain the observed MTE from

photocathodes satisfactorily; several discrepancies exist.

One theory states that the MTE obtained from metal photocathodes is nearly one third

the excess energy[11]. Here, the excess energy is defined as the energy difference between the

incident photon and the work function of the material. An extension of this theory states

that the MTE approaches the lattice temperature energy (25 meV at room temperature) as

the excess energy tends to zero (near photoemission threshold)[12]. This theory produces
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reasonable agreement with experimental data for metal and thin film alkali antimonide

photocathodes[6, 13–15]. However, this theory does not take into account the effects of

band structure, conservation of transverse momentum during emission and the effective

mass of electrons in the lattice. In NEA-GaAs cathodes, the conservation of transverse

momentum and small effective mass of electrons in the Γ valley should result in a MTE

below 20 meV in infrared-green wavelengths[16, 17]. However, experimental results show a

MTE of 25-120 meV in this wavelength range[5]. This discrepancy has been attributed to a

surface scattering mechanism that redistributes the emitted electrons uniformly in the polar

angle[16] or causes the Γ valley electrons near the surface to have an effective mass equal to

the mass of a free electron[18]. However, no physical reason for this scattering mechanism

has been identified.

To add to the complexity, the surfaces of frequently used photocathode materials are

far from perfect. Photocathode surfaces often display roughness on the scales of 10s of

nm[19–21]. Single crystal photocathodes which are atomically flat may exhibit surface re-

constructions, atomic scale surface defects and monolayer adsorbates[22]. The effect of

greater than 10 nm scale roughness on MTE has been studied[20, 21, 23, 24]. However,

the effect of sub-nm scale surface defects, surface reconstructions and adsorbates on MTE

remained unexplored.

Work function variations ranging from 1 meV to 100s of meV over less than nm scale

to micron scale (along the cathode surface) can be caused due to atomic defects, atomic

steps, surface reconstructions, localized charging, localized strains, grain boundaries and

adsorbates[25–28]. The effect of such work function variations on MTE also remained un-

explored.

In this paper, we investigate the effect of these work function variations and surface

non-uniformities to show that it is important to consider their effects to achieve lower MTE.

First we treat the effect of spatial work function variations on emitted electrons in a classical

manner. The classical treatment is valid whenever the De Broglie wavelength of emitted

electrons is much smaller than the scale of the spatial work function variation. Electric fields

are formed in the vacuum region close to the cathode surface because of the work function

variations. These electric fields deflect the emitted electrons and cause the MTE to increase.

We estimate the rise in MTE due to these electric fields for a sinusoidal variation in the work

function. We show that the effect of work function variation can be significant, but reduces
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with increase in the kinetic energy of the emitted electron.

Next, we formulate a quantum mechanical emission model to include the effects of surface

non-uniformities in the case when the De Broglie wavelength of the emitted electrons is sim-

ilar to the scale of the surface non-uniformities. Such non-uniformities include atomic steps

and defects, surface reconstructions, work function variations on a nm scale and adsorbates.

Finally, using the quantum mechanical formulation and the example of photoemission

from activated GaAs photocathodes we show that sub nm scale roughness which can com-

prise of atomic steps, surface defects and surface reconstructions can limit the minimum

MTE attainable. We also show that these can account for the surface scattering mechanisms

responsible for increasing the theoretically predicted MTE from NEA-GaAs photocathodes

II. CLASSICAL TREATMENT

Generally, electrons emitted from photocathodes have kinetic energies in the 10 meV

to 1 eV range[7]. This results in a De Broglie wavelength of 1 nm to 10 nm. Thus spa-

tial variations in work functions at a scale much greater than 10 nm can be treated in a

classical manner. Work function variations at these large spatial scales can be caused due

to localized surface charging, localized strains, patches of surface adsorbates and different

grain orientations[25–28]. There have been previous attempts to study the effects of such

patchy work function surfaces on low energy electron reflection[29], thermionic emission[30]

and field emission[31].

The spatial variations in work function cause transverse (parallel to cathode surface)

electric fields. These give a transverse kick to the emitted electrons and increase the MTE

of the cathode. In this section, we calculate the electric fields formed due to a sinusoidal

work function variation and estimate the effect they have on the MTE.

A similar effect, in which the transverse electric fields are caused due to the surface

roughness of the cathode has been studied[23, 24, 32]. The calculation given below to

estimate the effects of work function variation on MTE closely follows surface roughness

effect calculation.
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Equipotential lines Electron trajectory

FIG. 1. Parallel plate capacitor model to calculated the effect of variation of work function on MTE.

The equipotential lines get distorted near the cathode due to the non-uniform work function. This

causes the electrons emitted from the cathode to gain transverse energy.

A. Details of model and calculation

The potential of an electron right outside an electrode is the negative of bias applied to

the electrode in volts plus the work function in eV. Thus variation in the work function

essentially causes a variation in the surface potential of the electrode. In any photoinjector,

a cathode is placed in a very high (∼1-50 MV/m) longitudinal electric field. The variations

in the surface potential cause the longitudinal electric field very close to the cathode surface

to deform and acquire transverse components which decay rapidly as one goes away from

the cathode. To model such a field we consider a parallel plate capacitor as shown in figure

1. It consists of a cathode that is grounded at z = 0 and a parallel anode biased to a

voltage φ0 at z = L0. Thus the longitudinal electric field at the cathode without the work

function variation is E0 = φ0/L0. Let the work function variation on the cathode be given

by f (x, y)� φ0. For simplicity we approximate the work function variation by a sinusoidal

function, f (x, y) = h sin
(
2π
a
x
)

sin
(
2π
a
y
)
, where h is the amplitude of the work function

variation and a is its spatial period.

Using the Laplace equation ∇2φ = 0 with boundary conditions φ|z=0 = f (x, y) and
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φ|z=L0 = φ0 we can obtain φ in the region between the cathode and the anode as

φ (x, y, z) = φ0
z

L0

+h

(
e−zγ − e(z−2L0)γ

)
1− e−2L0γ

sin

(
2π

a
x

)
sin

(
2π

a
y

)
(1)

where γ = 2
√
2π
a

. We also assume that a� L0 so that the transverse electric fields (Ex and

Ey) are nearly zero well before z = L0. Using this approximation the potential can be given

as

φ (x, y, z) = φ0
z

L0

+he−zγ sin

(
2π

a
x

)
sin

(
2π

a
y

)
(2)

From this the electric fields in the x, y and z can be calculated as:

Ex =
2π

a
he−zγ cos

(
2π

a
x

)
sin

(
2π

a
y

)
Ey =

2π

a
he−zγ sin

(
2π

a
x

)
cos

(
2π

a
y

)
Ez = −E0 + hγe−zγ sin

(
2π

a
x

)
sin

(
2π

a
y

)
(3)

The transverse velocities (vx and vy) can be calculated by integrating the equations

of motion. We integrate the equations of motion numerically using an 8-stage symplectic

implicit integrator[33]. Electrons are launched from a fine grid of spacing a/40 on the surface

to obtain a fine sampling of all areas of the surface. The electrons are launched perpendicular

to the surface with kinetic energy K. The initial transverse velocity and energy are set be

zero. The electrons are tracked in the electric field given by equation 3 and the trajectories

are calculated till the point the transverse electric fields become negligible and the transverse

velocities are constant. The mean transverse energy is then calculated by averaging over the

transverse energy of all the electrons. As the initial transverse velocities and energies are

zero, this analysis gives us only the contribution of work function non-uniformities to the

MTE.

An analytic expression for the MTE can also be obtained by making the assumption

h/a � E0 and that the change in the x and y is negligible compared to a. With these
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assumptions the expressions for the electric fields become:

Ex =
2π

a
he−zγ cos

(
2π

a
x0

)
sin

(
2π

a
y0

)
Ey =

2π

a
he−zγ sin

(
2π

a
x0

)
cos

(
2π

a
y0

)
Ez = −E0 (4)

where x0 and y0 are the co-ordinates of the point from where the electron in launched.

Under these approximations the equations of motion can be integrated analytically to

obtain the final transverse velocities, vx and vy. The MTE can by calculated by averaging

the transverse kinetic energy over the entire surface as MTE = 1
2
me

∫ ∫
(v2x+v2y)dxdy∫ ∫

dxdy
. The MTE

thus obtained can be given by the analytic expression:

MTE =
π2h2e

4
√

2aE0

e−
β2

2α erfc2
(

β

2
√
α

)
(5)

where α =
√
2πeE0

ame
and β = 4π

√
K

a
√
me

.

B. Results

Figure 2 shows the MTE calculated by numerically tracking electron trajectories for initial

kinetic energies (K) of 20 meV and 60 meV and a = 100 nm. Figure 2a shows the MTE

calculated at zero electric field as a function of h for K = 20 meV. We can see that values

of h as low as 0.1 V can result in MTE higher than 20 meV.

Figure 2b shows the variation of MTE with electric field for two cases: h = 0.1 V and

K = 20 meV; h = 0.6 V and K = 60 meV. We can see that for both cases the MTE is nearly

constant with electric field (E0) so long as the electric field is below h/a (shown by the black

lines in the figure). If E0 < h/a, the first term in the expression for Ez in equation 3 can

be ignored, making the electric field near the cathode surface independent of E0. Hence the

MTE does not vary much with E0 in this regime. However, as the electric field rises beyond

h/a, the electrons are extracted away from the cathode surface more quickly. This gives

them less time to interact with the transverse electric fields close to the surface and hence

the MTE reduces. This reduction in MTE with electric field should be easily observable

in with electric fields in the range of 1-10 MV/m if the MTE is indeed limited by work

function non-uniformities on a classical scale. Such a change with electric field is contrary
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FIG. 2. (a) Variation of MTE with h. The external electric field was set to zero for these calcula-

tions. (b) Variation of the MTE with the electric field, E0. The value of a was set to 100 nm for

these calculations. h/a for the red curve is 1 MV/m and for the blue curve is 6 MV/m (shown by

the black lines). The MTE is nearly independent of the electric field when E0 < h/a, beyond that

it reduces sharply with the electric field.

to the change expected due to the 10-100 nm scale surface roughness[23, 24]. Due to the

surface roughness effect, the MTE increases with increasing electric field.

MTE also reduces with increase in initial kinetic energy (K) and increase in the period

a. Figure 3 a and b show the variation of MTE with initial kinetic energy and the period

a respectively, for h = 0.1 V and E0 = 10 MV/m. These parameters are such that the

approximations made to estimate the MTE in equation 5 are valid. The MTE in figure 3 is

calculated from this equation.

In short, we see that work function variations of ∼ 0.1 eV over a scale of ∼ 100 nm can

limit the MTE to 20-30 meV if the kinetic energy of electrons emitted electrons is near 20

meV. This is often the case with near threshold photoemission, where the excess energy

and hence the kinetic energy of emitted electrons is ∼ 25 meV (thermal energy at room

temperature). Work function variations of similar magnitudes have been experimentally

observed on various surfaces due to localized surface charging, localized strains, patches of

surface adsorbates and different grain orientations[25–28]. Hence, in order to obtain MTE

of less than 20 meV it will be necessary to ensure the spatial uniformity of cathode work

functions. It is also important to measure the work function variations on practical cathode
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FIG. 3. (a) Variation of MTE with the initial kinetic energy. E0 = 10 MV/m, h = 0.1 V and

a = 100 nm (b)Variation of MTE with the the period a. E0 = 10 MV/m, h = 0.1 V and K = 1

meV.

surfaces.

III. QUANTUM TREATMENT

In this section, we develop an emission model that takes into account surface non-

uniformities of spatial scales less than or comparable to the De Broglie wavelength of the

emitted electrons and show how conservation of transverse momentum can be violated in

their presence.

A. Emission model

The emission model described here assumes a semiconductor cathode, however it can

easily be extended to metallic cathodes.

The model assumes Spicer’s 3-step process of photoemission[34]. The first two steps of

electron excitation from valence band to conduction band and subsequent electron transport

to the surface in the conduction band are well understood[16]. Here we discuss the last step

of emission to include the effects of surface non-uniformities.

Figure 4a shows the potential used to describe the cathode-vacuum interface. The elec-

trons approach the surface in the form of plane waves with crystal momentum kin and energy
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FIG. 4. (a) Potential to model the surface non-uniformities along with the incoming and scattered

wave functions (b) δ function approximation to the potential used to account for surface non-

uniformities

Ec. We assume that the energy and the crystal momentum are related via the parabolic,

spherical dispersion relation

Ec =
~2 |kin|2

2m∗
(6)

where m∗ is the effective mass of the electron inside the cathode. The potential within the

cathode and in vacuum is assumed to be constant. The interface is represented by a potential

g (x, y, z) along with a step of height V. The potential g (x, y, z) includes all interface effects,

transverse variations of the potential due to surface non-uniformities and defects and electric

fields due to work function variations. g (x, y, z) is zero in the cathode bulk and in vacuum,

but is non-zero in the interface region. The incoming electron wave gets scattered due to the

potential g (x, y, z). Part of the incoming wave gets reflected and the rest gets transmitted

into vacuum. In this study, we assume a field free region in the vacuum. This approximation

is true for small electric fields generally found in DC guns.

We approximate the wave function of the incoming electron with a plane wave ψin =

ei(kinrr+k1inzz) where kinr = kinx~x + kiny~y is the transverse component and k1inz~z is the

longitudinal component of the wave vector kin and r is the position vector in the transverse
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direction.

The challenge is to calculate the scattering of the incoming plane wave due to the interface

potential g (x, y, z). A similar problem has been studied extensively to model electron trans-

port across semiconductor heterojunctions[35–40]. The most general solution to this problem

is obtained by solving the Lippmann-Schwinger equation[35, 41]. Solutions using tight-

binding like approach[36–38] and transfer matrix approach have also been attempted[39].

Here, we simplify this problem by replacing the interface potential g (x, y, z) by a δ

function whose height varies in x and y and is given by Vd (x, y) =
∫
g (x, y, z) dz. Such a

simplification is valid when the interface region is much smaller than the wavelength of the

emitted electrons. Figure 4b shows the potential with this δ function approximation. The

Hamiltonian for this system can be written as

H = −~2

2
∇
(

1

m
∇
)

+ V · S (z) + Vd (x, y) δ (z) (7)

where m = m∗ if z < 0 and m = me if z ≥ 0 and S (z) is the heavy side function.

Vd (x, y) can be expanded in terms of its Fourier components as

Vd (x, y) =
∑
η

Vkrηe
i(krη ·r) (8)

The wave function of the incoming and the reflected electrons within the photocathode

can then be written as

ψ1 = ψin + αkinr
ei(kinr·r−k1inzηz) +∑

η

ei(krη ·r−k1zηz) (9)

where krη and k1zη~z are the transverse and longitudinal components, respectively, of the

wave vectors into which the incoming electron wave is scattered due to reflection from the

barrier Vd and αkrη are the probability coefficients for the respective scattered wave vectors.

The wave function of the electrons transmitted into vacuum can be written as

ψ2 = (1 + αkinr
) ei(kinr·r+k2inzz) +

∑
η

αkrηe
i(krη ·r+k2zηz) (10)

where krη and k2zη~z are the transverse and longitudinal components, respectively, of the

wave vectors into which the incoming electron wave is scattered in vacuum.

ψ1 and ψ2 are general and satisfy the condition ψ1 = ψ2 at z = 0.
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We assume that this scattering is elastic in nature. Hence from the conservation of energy,

all the reflected wave vectors satisfy the relation

~2
(
k2rη + k21zη

)
2m∗

= Ec (11)

and all the transmitted wave vectors satisfy the relation

~2
(
k2rη + k22zη

)
2me

= Ev = Ec − V (12)

~2 (k2inr + k22inz)

2me

= Ev = Ec − V (13)

where Ev is the kinetic energy of the electron emitted into vacuum.

Now the coefficients αkinr
and αkrη can be calculated by integrating the Schrodinger

equation for the Hamiltonian given in equation 7 across the δ barrier in the z direction from

0− to 0+ and comparing the coefficients of the same exponents as done by Liu and Coon[40].

For a 1-D sinusoidal δ barrier at the surface, given by Vd = 2V0 cos (ksx) the set of

equations to calculate α coefficients can be written in the form of a tridiagonal matrix

system as

A



...

αkinx−ks

αkinx

αkinx+ks
...


=



...

0

V0

R (kinx)

V0

0
...



, (14)

A =



. . .
...

...
... · · ·

· · · D (kinx − ks) −V0 0 · · ·

· · · −V0 D (kinx) −V0 · · ·

· · · 0 −V0 D (kinx + ks) · · ·

· · · ...
...

...
. . .


where, R (kx) = i~2

2

(
k2z
me
− k1z

m∗

)
and D (kx) = ~2

2i

(
k2z
me

+ k1z
m∗

)
. k1z and k2z can be calculated

in terms of kr from equations 11 and 12.
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By solving this system one can obtain the coefficients α in terms of the transverse wave

vector of the incoming plane wave kinx and the δ barrier at the interface. The probability

of transmission into one of the scattered components with transverse wave vector kx 6= kinx

is given by[39]

Tkx =
m∗ |αkx|

2 (k2z + k′2z)

2mek1z
(15)

and the probability of unscattered transmission is given by

Tkinx =
m∗ |1 + αkinx|

2 (k2inz + k′2inz)

2mek1inz
(16)

The MTE due to the emission of the plane wave can then be given by

MTE =

∑
m

~2(kinx+mks)2Tkinx+mks
2me∑

m Tkinx+mks
(17)

B. Example of NEA-GaAs

NEA-GaAs cathodes should exhibit MTE of less than 10 meV in infrared light due to

the small effective mass of Γ valley electrons and the conservation of transverse momentum

during emission[16]. However, the smallest MTE measured from these cathodes is in the

25-40 meV range[5, 8, 42].

Using the emission model discussed in section IIIA, we show that surface non-uniformities

including atomic surface defects and surface reconstructions could explain the large MTE

observed from GaAs.

In our model of the activated GaAs surface, we assume that the work function is uniform,

and the barrier due at the interface is negligible. The surface is modeled only by a step rise

in the potential along with a sudden change in effective mass as shown in figure 5a. For

the activated GaAs (100) surface, the conduction band minimum (CBM) at the surface is

∼ 0.5 V below the vacuum level[16], making the height of the step barrier V = 0.5 V. In

our model we assume that the band bending is very gradual and hence ignore any slope to

the CBM near the surface. This assumption is true for very lightly doped GaAs cathodes

or for layered GaAs cathodes with un-doped top layer[8].

The atomic defects, steps and reconstructions of the surface are modeled by introducing

a sinusoidal surface ‘roughness’ in the x direction. The z position of the potential step at

the interface changes due to this roughness and is given by z = t cos
(
2π
λ
x
)
, where t = 1
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FIG. 5. (a) Potential to model the GaAs surface. The non-uniformities are modeled using a small

sinusoidal roughness of in the x direction (b) The sinusoidal roughness is approximated using a δ

function.

nm, making the rms roughness only 0.7 nm. λ is the periodicity of the surface roughness.

As shown in figure 5b, this roughness can be approximated by a δ function barrier whose

height is given by V t cos
(
2π
λ
x
)

= 0.5 cos
(
2π
λ
x
)

nm-V. For this approximation to be valid the

wavelength of the electrons must be much larger than 1 nm. The MTE can be estimated

from equation 17.

Figure 6a shows MTE as a function of the period of the surface roughness (λ) for various

kinetic energies of emitted electrons. The transverse momentum of the incoming electrons

was set to zero. Thus the MTE calculated is purely due to the effect of sub-nm scale

roughness. We can see that the MTE can increase with increasing kinetic energy of the

electrons.

A realistic distribution of the electron wave-vectors emitted from the surface was cal-

culated from the Monte Carlo based electron transport simulation[16] for incident photon

energy of 1.6 eV. The MTE from such a distribution was calculated using equation 17 with

t = 1 nm. Figure 6b shows this MTE for various values of λ. The MTE obtained experi-

mentally and from the Monte Carlo simulation without assuming any surface scattering are

also shown.

Scattering occurs only when the electron wavelength is comparable to the period of the

surface non-uniformities. Hence, the MTE calculated using the quantum model for surface
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FIG. 6. (a) Calculated MTE as a function of the period (λ) of the surface non-uniformity for

various electron energies. A spike in MTE occurs whenever the electron energy is sufficient to allow

scattering into a higher order transverse wave-vector. (b) Calculated MTE as a function of the

period (λ) for a realistic distribution of incoming wave-vectors. The MTE measured experimentally

and calculated without the surface non-uniformity are also shown.

non-uniformities initially rises with increasing λ and then decreases. The MTE is comparable

to the measured value if the period of non-uniformities is 4-6 nm. Thus it is possible to

explain the higher MTE measured from GaAs cathodes.

Although we discuss a specific case of GaAs cathodes, a similar argument can be made

for any cathode material. Hence, to obtain very low MTE it may be necessary to make the

surface devoid of sub-nm scale roughness and essentially have a atomically perfect surface.

As the excess energy of the photons increases, electrons emitted have a higher kinetic

energy and a smaller wavelength. For kinetic energy equal to 0.2 eV, the De Broglie wave-

length becomes lower than 3 nm, questioning the δ function approximation. More general

solutions to the scattering problem should be implemented to investigate this regime.
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IV. CONCLUSION

We investigated the effect of surface non-uniformities on the MTE of photocathodes.

First, we developed a classical model to estimate the effect of the work function variations

on the MTE of emitted electrons. Using this model, we conclude that the surface work

function variations as low as 0.1-0.2 eV can at length scales of ∼100 nm can be sufficient

to limit the MTE of emitted electrons to 20-30 meV (very close to the minimum measured

value of 25 meV).

Second, we developed a quantum mechanical model to study the effects of surface unifor-

mities of transverse spatial extent comparable to the wavelength of the emitted electrons.

Using this model we show that sub-nm scale surface roughness, atomic scale surface de-

fects and surface reconstructions have can affect the MTE significantly. Using NEA-GaAs

cathodes as an example we show how such sub-nm scale defects could limit the minimum

measured MTE and account for various surface scattering effects.

Both of these effects have been ignored in photoemission models developed so far. The

calculations presented here show that a detailed study of both these effects should be per-

formed and included in photoemission models in order to explain photoemission accurately.

The detail study of work function variations on µm to nm scales, sub-nm scale surface

roughness and surface structures is missing. These surface properties can change once the

cathode samples are exposed to air. Hence an in-situ measurement of such surface character-

istics of real photocathode surfaces is required to obtain accurate results. The calculations

presented in this study show that the MTE from photocathodes may be limited by these

effects underscoring the importance of measuring these properties.
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