This is the accepted manuscript made available via CHORUS. The article has been published as:

Thermal Stability of Magnetic States in Circular Thin-Film Nanomagnets with Large Perpendicular Magnetic Anisotropy
Gabriel D. Chaves-O’Flynn, Georg Wolf, Jonathan Z. Sun, and Andrew D. Kent
Phys. Rev. Applied 4, 024010 — Published 18 August 2015
DOI: 10.1103/PhysRevApplied.4.024010
The scaling of the energy barrier to magnetization reversal in thin film nanomagnets with perpendicular magnetization as a function of their lateral size is of great current interest for high-density magnetic random access memory devices. Here we determine the micromagnetic states that set the energy barrier to thermally activated magnetization reversal of circular thin film nanomagnets with large perpendicular magnetic anisotropy. We find a critical length in the problem that is set by the exchange and effective perpendicular magnetic anisotropy energies, with the latter including the size dependence of the demagnetization energy. For diameters smaller than this critical length the reversal occurs by nearly coherent magnetization rotation and the energy barrier scales with the square of the diameter normalized to the critical length (for fixed film thickness), while for larger diameters the transition state has a domain wall and the energy barrier depends linearly on the normalized diameter. Simple analytic expressions are derived for these two limiting cases and verified using full micromagnetic simulations with the String Method. Further, the effect of an applied field is considered and shown to lead to a plateau in the energy barrier versus diameter dependence at large diameters.
I. INTRODUCTION

Nanomagnets with bistable states are being explored for the use in magnetic random access memories (MRAM). Data loss is associated with relatively rare thermally activated transitions between magnetic states and is typically modeled with methods from statistical mechanics [1, 2]. The rate of data loss is well approximated by an Arrhenius law $\Gamma = \Gamma_0 \exp (-U/k_B T)$, where U is the energy barrier to magnetization reversal, $k_B T$ is Boltzmann’s constant times the temperature and Γ_0 is an attempt frequency set by a natural time scale of the system (typically $\sim 10^6$ Hz). One major challenge to creating higher density magnetic memory chips is maintaining a large $U/(k_B T)$ to ensure long term data retention.

Recent developments in thin film materials with large perpendicular magnetic anisotropy (PMA) provide a path to achieving that goal [3–6]. Their anisotropy is associated with magnetocrystalline interface or bulk magnetic anisotropy [7–9]. As such, elements can be in the shape of a thin disk with their magnetization oriented perpendicular to the plane of the disk. This allows denser packing of MRAM cells, since magnetic dipole interactions between neighboring magnetic elements is reduced in comparison to those of in-plane magnetized elements. However, the scaling of an element’s energy barrier with the disk diameter remains a key issue. A macrospin model, where the magnetization is treated as uniform, would predict a quadratic increase of the energy barrier with the disk diameter.

However, experimental results from field driven switching as well as spin transfer torque driven switching experiments in variable diameter magnetic tunnel junctions devices with fixed layer thickness do not show the expected behavior. Reference [10] reports an almost linear dependence of the energy barrier on device diameter. Reference [11] presents a quadratic scaling of the energy barrier below a distinct device diameter. Moreover, both studies show saturation of the energy barrier for large diameters.

A starting point to understand the thermally activated reversal is a macrospin model [12], where the energy density of an elliptically shaped magnetic element is given by:

$$E = \frac{\mu_0 M_s^2}{2} \mathbf{m} \cdot \mathbf{N} \mathbf{m} - K_p m_z^2 - \mu_0 M_s m_z \mathbf{H}_{\text{ext}},$$

(1)

M_s is the saturation magnetization, \mathbf{m} is a unit vector in the direction of magnetization and m_z is its z component. \mathbf{N} is the demagnetization tensor of the structure, K_p is the intrinsic perpendicular anisotropy energy density (energy per volume), of the material, and \mathbf{H}_{ext} is an externally applied magnetic field. The energy barrier is defined as the difference between the metastable energy minima and the lowest energy saddle state, also known as the transition state. Approximating the thin disk as an ellipsoid the demagnetizing tensor is diagonal with trace 1 ($N_{xx} + N_{yy} + N_{zz} = 1$). Due to the cylindrical symmetry the in-plane components of the tensor are equal ($N_{xx} = N_{yy}$) and the demagnetizing energy density can be reduced to an expression that only depends on N_{zz}, the demagnetizing factor in the direction perpendicular to the film plane.

$$U = \left[K_p - \mu_0 M_s^2 (3N_{zz} - 1)/4 \right] \frac{\pi}{4} d^2 t.$$

(2)

Thus in this model of coherent (macrospin) magnetization reversal the energy barrier should depend mainly on element area (or equivalently its volume) with corrections due to changes in the demagnetization factor with area.

However, this simple macrospin is a poor description of thermally activated reversal processes because the elements studied experimentally are typically larger than characteristic magnetic lengths. One length scale is set by the width of a domain wall, which is related to the ratio of the exchange constant A (in J/m) [13] to the effective anisotropy per unit volume K_{eff}, $\lambda_{\text{DW}} = \sqrt{A/K_{\text{eff}}}$. We assume the effective anisotropy per unit volume $K_{\text{eff}} = K_p - \mu_0 M_s^2 (3N_{zz} - 1)/4$, consisting of a contribution from the intrinsic anisotropy K_p and a counteracting demagnetizing term, discussed further below. We treat the demagnetizing energy as we did in the macrospin model, which is a good approximation for a non-uniform magnetization configuration of a domain wall as long as the magnetic elements are much larger than the domain wall width. The energy density per unit length for a domain wall is given then by [14]:

$$E = 4\sqrt{AK_{\text{eff}}} t.$$

(3)

The energy associated with creating a domain wall that bisects a magnetic element is thus given by:

$$U = 4\sqrt{AK_{\text{eff}}} dt$$

(4)

and depends linearly on the diameter of the element.

In a prior modeling study by some of the authors a linear dependence of the energy barrier on diameter over a large range of sample sizes was found [15]. It also indicated that the transition state has a domain wall, which in zero applied field, bisects the element. A puzzling result was that even at seemingly small sample diameters the energy...
Figure 1. (a) Demagnetizing correction to the energy as a function of the ratio of disk diameter d to thickness t. (b) Rescaled energy barrier U/U_0 for macrospin reversal (solid line) and for a domain state (dashed line) as a function of the normalized diameter d/d_c. The blue open squares represents energy barriers obtain from micromagnetic simulations using the String Method. The insets show the micromagnetic configuration of the transition states for coherent reversal $d/d_c = 0.23$ and domain wall $d/d_c = 2.17$ cases.

barrier did not depend on the area, but it continued to be proportional to the disk diameter. In contrast to this previous work we determine the length scale at which there is a crossover between uniform and non-uniform thermally activated magnetization reversal and a corresponding change in the relationship between energy barrier and element size. We also show the effect of applied fields on the transition state and energy barrier and find a saturation of the energy barrier at large element sizes. Analytic results are derived that can guide experimental analysis and magnetic device design.

II. RESULTS

A. Analytic Model

The basic physics can be seen from Eqs. 2 and 4. For a given material system there is a critical diameter d_c where the domain wall energy becomes less then the energy barrier for coherent reversal. The critical diameter depends on the square root of ratio of the exchange constant and the effective anisotropy.

$$d_c = 16 \frac{1}{\pi} \sqrt{\frac{A}{K_{\text{eff}}(d)}}$$

(5)

Since $K_{\text{eff}}(d)$ depends on the diameter this expression must be evaluated for each element diameter using the appropriate demagnetizing factor $N_{zz}(d)$. Figure 1(a) shows the demagnetization factor $(3N_{zz} - 1)/2$ of a disk as a function of d/t. We choose to compute the demagnetizing energy numerically by saturating the sample along its principal axes and to treat the result as the equivalent demagnetizing tensor elements as described in [16]. It is clear that the demagnetizing energy is significantly reduced as the diameter is decreased, even for aspect ratios as large as ~ 50. For typical film thicknesses between 1 − 2 nm this corresponds to elements that are less than 50 nm in diameter, which are in the size range that are of great importance technologically (see, for example, [3]). Thus this correction factor due to the finite size disk aspect ratio needs to be considered when investigating the thermal stability. Ferromagnetic
resonance experiments on magnetic tunnel junctions showed a similar trend of the effective anisotropy decreasing with increasing device diameter [17].

In Ref. [15] material parameters for Co/Ni multilayers were used ($A = 8.3$ pJ/m, $M_s = 713$ kA/m, $K_p = 403$ kJ/m³, and $t = 1.6$ nm), resulting in a critical diameter of $d_c \approx 40$ nm. The number of elements smaller than this was quite limited in that study, so the crossover between coherent rotation and domain wall reversal could not be observed clearly.

The macrospin U_{MS} (Eq. 2) and domain wall U_{DW} (Eq. 4) energy barriers can be rewritten in terms of d_c to show that their characteristic scale is a product of the exchange constant and film thickness At we denote U_0:

$$U_0 = \frac{64}{\pi} At$$

$$\frac{U_{MS}}{U_0} = \left(\frac{d}{d_c}\right)^2$$

$$\frac{U_{DW}}{U_0} = \frac{d}{d_c}$$

For this reason we can choose a different set of material parameters that allows us to study this crossover more conveniently, to avoid discretization issues in micromagnetic modeling that occur for very small element sizes. We take $M_s = 300$ kA/m, $A = 83.0$ pJ/m, $K_p = 83.6$ kJ/m³, and $t = 1.6$ nm to give a critical diameter of $d_c \approx 275$ nm. The material parameters are considered to be constant throughout the sample volume, since spatial variations are a rather complex topic and beyond the scope of this study.

Figure 1(b) shows the rescaled energy barrier as a function of the ratio d/d_c for the set of material parameters chosen here. Using the rescaled expression the curves for both material parameter fall on top of each other, which demonstrates that we have identified the relevant length and energy scales in this problem.

B. Micromagnetic Modeling

In order to confirm this simple model's predictions we also performed String Method calculations [18], a minimal energy path method, which evolved in the OOMMF [19] framework without the precessional term, as described in Ref. [15]. The parametrized string consists of a set of micromagnetic configurations connecting the two stable configurations of the disk. The micromagnetic state with highest energy in the converged string corresponds to the transition state and the difference in energy with respect to the equilibrium state is the energy barrier. The open blue squares in Figure 1(b) show the energy barriers obtained by this method for a wide range of element diameters. The insets in Figure 1(b) also shows the micromagnetic transition states for a disk with d/d_c ratio 0.23 (60 nm) and 2.17 (600 nm), representing the two different reversal regimes. The $d/d_c = 0.23$ disk reverses through a nearly coherent process, while in the $d/d_c = 2.17$ disk a domain wall that bisects the element is the lowest energy transition state. The micromagnetic results agree with the predictions of the macrospin model up to the critical diameter (d_c) where the domain wall transition state becomes lower in energy; above d_c the simulation results follow the domain wall energy barrier. This quantitative agreement could only be achieved by using the demagnetization factor $N_{zz}(d)$ from Fig. 1 in Eq. 2. The energy barriers found in the micromagnetic simulation, which captures the full non-local nature of the dipole-dipole interactions, does not deviate from those predicted by the macrospin model nor does it deviate from those for a simple domain wall model in their respective regimes. This result demonstrates that a thin film nanomagnet in the shape of a circle can be treated within a model where the demagnetizing field is considered in a spatially averaged way, i.e. with only a single value N_{zz}, that gives the appropriate demagnetization energy for a uniformly magnetized element. However, as already noted, this value is a function of the sample diameter, as shown in Fig. 1(a).

C. Effect of Applied Fields

In experimental studies it was also noted that fringe fields from a proximal magnetic reference layer (e.g. in a magnetic tunnel junction or spin valve) might alter the energy barrier [11, 20]. Thus, in addition to this zero field case, we also studied the dependence of the energy barrier on perpendicular applied field. In the macrospin limit the energy barrier still scales with the volume, only the pre-factor (i.e. U_0) is altered by the field. However, in the domain wall transition state limit the situation is more complex. In addition to the domain wall energy there is now a reduction of the energy barrier due to the Zeeman energy from the reversed subvolume of the magnet which has to
Figure 2. (a) Transition states for different diameters larger than the critical diameter in an applied field of $0.22 \cdot H_k$ (40 mT). (b) Geometry of the domain wall transition state in an applied field. Reversed area Ω is given by the intersection of two circles, one the set by the diameter of the element d and the other by the diameter of the reversed subvolume d_s, with opening angles ϕ and ϕ_s.

be considered.

$$U = -2\mu_0 M_s H_{\text{ext}} \Omega t + 4\sqrt{AK_{\text{eff}}\Lambda t}. \quad (9)$$

Where Ω is the area of the subvolume and Λ the length of the domain wall, which have the unit of a length and thus should be normalized to d_c.

$$U = -\frac{16}{\pi} \frac{H_{\text{ext}}}{H_k} \frac{\Omega}{d_c^2} + \frac{\Lambda}{d_c} \quad (10)$$

H_k is the effective anisotropy field, $H_k = 2K_{\text{eff}}/\mu_0 M_s$. The problem now becomes an optimization of the area of the subvolume versus its perimeter. The String Method calculations (see Fig 2(a)) revealed that the transition state at larger diameters form a domain state with a curved wall, where the area and length of the wall depend on the diameter. It is plausible that the shape of the reversed section is circular. A simple model would describe this as the area of overlap of two intersecting circles of the diameters d and d_s and opening angles ϕ and ϕ_s (see Fig. 2(b)). This model assumes that the domain wall forms a 90° angle with the edge of the element, which minimizes the wall length. This constrains the opening angles and the diameters to be

$$\phi + \phi_s = \pi/2; \quad \frac{d_s^2}{d^2} = \tan(\phi). \quad (11)$$

Under these assumptions the total area Ω and the length of the wall Λ can be written in terms of the element diameter d and the opening angle ϕ.

$$\Omega = \frac{\phi}{4} d^2 - \frac{1}{8} d^2 \sin(2\phi)$$

$$- \frac{\pi/2 - \phi}{4} d^2 \tan^2(\phi)$$

$$+ \frac{1}{8} d^2 \tan^2(\phi) \sin(2\phi) \quad (12)$$

$$\Lambda = d\left(\frac{\pi}{2} - \phi\right) \tan(\phi) \quad (13)$$
This makes the energy a nontrivial function of ϕ, where the maximum of this function represents the energy barrier

$$U = \frac{d}{d_c} \left(\frac{\pi}{2} - \phi_{\text{max}} \right) \tan(\phi_{\text{max}})$$

$$- \frac{H_{\text{ext}}}{H_k} \left(\frac{d}{d_c} \right)^2 \frac{\phi_{\text{max}}}{4} - \frac{1}{8} \sin(2\phi_{\text{max}})$$

$$- \frac{\pi/2 - \phi_{\text{max}}}{4} \tan^2(\phi_{\text{max}})$$

$$+ \frac{1}{8} \tan^2(\phi_{\text{max}}) \sin(2\phi_{\text{max}}).$$

We choose to find the maximum numerically, since deriving an analytical expression for ϕ_{max} is not possible. Figure 3 shows the combined results of the String Method and the analytic models. The energy barriers obtained from the String Method (dots) for small diameters follow the quadratic dependency of the macrospin and are in good agreement with the solutions of the domain wall model (dashed lines) in case of the larger diameters. In general, larger fields lead to less change in the energy barrier as the diameter increases. In the limit of very large ratio of d/d_c the reversed area becomes a semi-circle and the energy barrier saturates. The saturation energy barrier U_{sat} and the saturation diameter d_{sat} are given by the ratio of the applied field to the anisotropy field.

$$U_{\text{sat}} = \frac{\pi^2}{32} \frac{H_k}{H_{\text{ext}}}$$

$$d_{\text{sat}} = \frac{\pi}{8} \frac{H_k}{H_{\text{ext}}}.$$

This field dependence of the energy barrier might explain the experimentally observed saturation of the energy barrier for larger diameters. The model shows a plateau in the energy barrier at a diameter only twice as big as the critical diameter for an external field of 20% of the anisotropy field. It is usually assumed that the stray field from the reference layer, is less than this, much less then the anisotropy field of the free layer. We note that the model prediction is for a uniform field in the perpendicular direction, while in real devices the stray field has a nonuniform distribution across the device and in-plane components, which might enhance this effect. Also, defects in the structure could function as nucleation centers for a domain wall; and this is not captured in our model.

III. DISCUSSION

This study determined the energy barrier for thermal activated magnetization reversal, which gives the lifetime for data retention of such a magnetic element in a storage device and thus the device’s thermal stability. From Eq. 5 it is clear that as K_{eff} is increased to increase the stability of smaller elements, the critical diameter also decreases and a domain wall state can become the lowest energy saddle state further reducing the stability. This can only be counteracted by increasing the exchange energy. It will thus be of greater importance when scaling to
smaller dimensions to not only increase the perpendicular magnetic anisotropy of magnetic memory elements, but also increase their exchange energy.

Furthermore, in a macrospin model for spin transfer torque driven reversal the critical current density is directly proportional to the anisotropy field. Thus the critical current should show a similar dependence on the device size as the energy barrier for sample diameters less than the critical diameter d_c. For larger diameters, it is presently not clear if the energy barrier and critical current will scale in the same way with sample diameter. Experimental results reported in Ref. [10] showed that the critical write current density is almost independent of device area, an thus appears not to be correlated to the energy barrier; this suggests that the critical current density continues to be proportional to the anisotropy field while the energy barrier does not. Recent modeling of the spin-transfer torque switching dynamics in perpendicular magnetized disks revealed that a dynamic instability leads to an incoherent reversal [21]. The instantaneous spatial profile of this instability shows a domain like state, which can reduce the effective energy barrier during reversal, as we have shown here. This topic deserves further study, particularly how the spin-current induced instabilities reported in [21] vary with disk diameter in the regimes identified here.

IV. SUMMARY

In summary we have demonstrated that the scaling of the energy barrier of circularly shaped thin film nanomagnet with perpendicular anisotropy depends strongly on the ratio between exchange constant A and the effective anisotropy K_{eff}. Only large exchange and relatively small effective perpendicular anisotropy will lead to the quadratic scaling of the energy barrier on normalized diameter d/d_c. The energy barriers determined with the String Method and micromagnetics confirmed that the analytical macrospin and domain wall model describe the scaling, when appropriate demagnetizing factors were used in the analytic model. Even in an applied field there is an analytic expression for the geometrical configuration of the magnetization that describes the transition states and thus a prediction of the energy barrier can be made without extensive numerical calculations. We also observe a plateau of the energy barrier for larger fields and large diameters of the disk, at a value which depends on the ratio of the applied field to the anisotropy field.

V. ACKNOWLEDGMENTS

This research was supported by NSF-DMR-1309202 and in part by Spin Transfer Technologies Inc. and the Nanoelectronics Research Initiative (NRI) through the Institute for Nanoelectronics Discovery and Exploration (INDEX).

