Macroscopic Subkelvin Refrigerator Employing Superconducting Tunnel Junctions
Xiaohang Zhang, Peter J. Lowell, Brandon L. Wilson, Galen C. O’Neil, and Joel N. Ullom
Phys. Rev. Applied 4, 024006 — Published 10 August 2015
DOI: 10.1103/PhysRevApplied.4.024006
Macroscopic Sub-Kelvin Refrigerator Employing Superconducting Tunnel Junctions

Xiaohang Zhang,† Peter J. Lowell, Brandon L. Wilson, Galen C. O’Neil, and Joel N. Ullom‡

National Institute of Standards and Technology
325 Broadway, Boulder, Colorado, 80305, USA

(Dated: July 13, 2015)

In this paper, we demonstrate a general-purpose macroscopic refrigerator based on the transport of electrons through superconducting tunnel junctions. Our refrigerator is intended to provide access to temperatures below those achievable using pumped 3He. The refrigerator is cooled by 96 Normal-metal/Insulator/Superconductor (NIS) junctions divided among three separate silicon substrates. The use of thin-film devices on different substrates shows the potential to achieve higher cooling powers by connecting NIS devices in parallel. Improving on previous work [1], we demonstrate a larger temperature reduction, a more robust mechanical suspension, and a new electromechanical heat switch that will make it easier to integrate our refrigerator into other cryostats. The electromechanical heat switch has a measured thermal conductance in the on state of 1.2 \pm 0.3 pW/K at 300 mK and no measurable thermal conductance in the off state. We observe a temperature reduction from 291 mK to 228 mK in longer timescales. The cooled payload is a metal stage whose mass exceeds 150 g and with 28 cm2 of area for attaching user-supplied devices. Using the product of the cooled mass and the temperature reduction as a performance metric, this work is a more than 10-fold advance over previous efforts.

PACS numbers: 74.50.+r, 07.20.Mc, 85.30.Mn

I. INTRODUCTION

Sub-Kelvin temperatures play a growing role in both applied and basic science. Low temperature detectors are now used in applications such as single photon detection [2], standoff passive imaging for concealed weapons detection [3], and nuclear materials analysis [4]. Low temperature detectors are also now used in searches for weakly interacting dark matter [5] and an inflationary epoch in the early universe [6]. However, sub-Kelvin refrigeration is still challenging, especially below the minimum boiling point of 3He, which is about 300 mK.

Currently, temperatures below 300 mK are reached using adiabatic demagnetization or dilution refrigerators. These two types of coolers are capable and well-developed but are also significantly more complicated than technologies that can reach 300 mK, such as pumped 3He. Therefore, the development of a compact, easy-to-use, and simple refrigeration technology to cool from 300 mK to lower temperatures is of considerable practical interest. One candidate technology is refrigeration using superconducting tunnel junctions [7].

Following the first publication of superconducting tunnel junction refrigerator concepts [8] and the first demonstration of heat transfer from a normal metal to a superconductor [9], significant progress has been made towards practical tunnel junction refrigerators over the last two decades. NIS refrigerators have demonstrated large electronic temperature reductions [10, 11] and large cooling powers [12, 13]. They have cooled bulk objects [14] and lithographically integrated detectors [15, 16]. Very recently, we have demonstrated a general-purpose refrigerator using NIS junctions where general-purpose refer to a refrigerator that can cool user-supplied payloads, different payloads at different times, and payloads that are coupled to the refrigerator at a time of the user’s choosing [1]. However, our proof-of-principle refrigerator had limitations including a fragile suspended stage, a small area for payload attachment, the need for modification of the surrounding cryostat to accommodate a mechanical heat switch, and only modest temperature reduction. In the work of [1], a temperature reduction of 34 mK from launch temperatures near 300 mK was observed in a stage whose mass was about 25 g.

In this paper, we demonstrate a far more robust general-purpose refrigerator with a cold stage area of 28 cm2. Additionally, our refrigerator has an integrated electromechanical heat switch that is actuated via two superconducting wires to simplify the integration of the refrigerator with other cryostats. When cooled with NIS junctions, we show the temperature of the stage is reduced from 291 mK to 228 mK, which is a significant improvement over previous results.

II. THEORY AND FABRICATION

In an NIS junction biased near the energy gap of the superconductor, the most energetic electrons in the normal metal preferentially tunnel to the superconducting electrode so that heat in the normal metal is pumped to the superconductor [9] (Fig. 1). In order to cool a
FIG. 1. (Color online) Density of states in an NIS tunnel junction. Occupied states are shaded from blue to red, where blue corresponds to low energy, and red corresponds high energy. When a voltage bias near 0.9 Δ/e is applied to the junction, the most energetic electrons in the normal metal will preferentially tunnel to the superconductor. This tunneling lowers the average energy of electrons in the normal metal, thus cooling its electron system.

galvanically isolated macroscopic stage, we have to cool phonons in the normal metal and in the stage, in addition to the electrons in the normal metal. Phonons in the normal metal can be cooled via the electron-phonon coupling in the film by extending the normal electrode onto a thermally isolated membrane. If the membrane is thin enough, phonons in the membrane will be decoupled from the phonons in the bulk substrate while remaining coupled to the cooled electrons [17]. After cooling the phonons in the membrane, we need to couple the cooled phonons to other objects such as the copper stage of our macroscopic refrigerator. To achieve this, we used gold wire bonds to connect a galvanically isolated metal film on the cooled membrane to the macroscopic stage. The NIS devices used in this work are the same devices used in previous experiments and are described elsewhere [1].

III. ROBUST COOLING STAGE AND ELECTROMECHANICAL HEAT SWITCH

One important component of this work is improvement of the cooling stage compared to our previous efforts [1]. Our first stage was highly susceptible to mechanical vibration such that routine movements in the surrounding laboratory produced measurable heating. Therefore, we built a new stage whose suspension system is based on

FIG. 2. (Color online) (a) Photograph of macroscopic refrigerator based on superconducting tunnel junctions. The Kevlar cords that isolate the macroscopic stage have been enhanced for clarity. The upper inset shows the electromagnetic heat switch that can connect the stage to the 300 mK bath. The lower inset shows at left the gold wire bond connections between the macroscopic stage and two NIS devices on one of three silicon substrates. Additional wire bonds on the right side of the lower inset carry electrical signals to and from the NIS devices. (b) A view of the macroscopic refrigerator from a second angle to show the Kevlar suspension and the separation of the suspended stage from the 300 mK platform containing the NIS devices. The Kevlar cords that isolate the macroscopic stage have been enhanced for clarity.
The electromechanical heat switch is mounted on the 300 mK shield of our refrigerator and a gold plated copper foil extends from the suspended stage to the space between the center and right-side magnets. One direction of current to the solenoid draws the central magnet to the right side of the switch, pinching the copper foil from the stage between the two magnets and closing the heat switch. The other direction of current pushes the central magnet to the left side of the switch, breaking contact to the copper foil and leaving the suspended stage thermally isolated. Hence, the physical principle that determines the on-state conductance is the attractive force between two permanent magnets.

The operating principle of the switch described here is significantly different compared to prior work. So-called gas-gap switches are widely used at very low temperatures [20, 21] but the walls that contain the gas volume have a finite off-state conductance that is typically too high for our application. Mechanical heat switches have near zero off-state conductance [22] but are often physically large and can dissipate too much energy when actuated for use at 300 mK. Heat switches based on the thermal conductivity variation of metal foils or wires between their normal and superconducting states have been used to obtain very high conductance ratios [23]. A superconducting switch based on a material with a transition temperature above 3 K to minimize its electronic thermal conductivity at 300 mK might be a candidate for our application but we did not pursue such an approach.

We used Samarium-Cobalt (SmCo) permanent magnets since they retain their magnetic moment at cryogenic temperatures better than many other types of rare-earth magnets [24, 25]. In order to keep the switch compact, we used cylindrical magnets with 6.35 mm diameter and 6.35 mm thickness. We measured the minimum force to separate the two magnets with a push-tip tension force gauge. The force required to separate the two magnets is about 1 N at room temperature. The solenoid was wound from 0.1 mm diameter insulated Nb-Ti superconducting wire with a Cu-Ni matrix. The solenoid has a length of 2.5 mm, an inner radius of 9.4 mm, an outer radius of 25 mm, and contained 1,200 turns of wire. A current of 70 mA through the solenoid was sufficient to push and

![Diagram of electromechanical heat switch](image-url)
pull the central magnet from one side of the switch to the other.

To determine the optimal location of the three magnets and the solenoid, we made a prototype heat switch where the spacing between components could be adjusted. From tests at room temperature, we determined a successful geometry and then fabricated a second switch where the component locations were set by the two copper spacers shown in Fig. 3. During room temperature operation, current needed to be supplied to the solenoid to change the state of the switch but not to maintain the switch in either the open or closed positions. However, we found during cryogenic operation that the central magnet was not stable in the open position unless 30 mA of current was kept in the solenoid. Because the solenoid was superconducting, this current did not dissipate power but a mature version of the switch would not require current in steady-state. Because the magnetization of SmCo changes with temperature, we believe the spacings determined at 300 K were not optimal for operation at 300 mK.

To test the reliability of the heat switch, we opened and closed it 1,000 times at 300 mK and observed that it operated properly each time. We measured if the switch was opened or closed by determining if there was a galvanic connection between the suspended stage and the rest of the cryostat. We measured the energy deposited at 300 mK from actuating the switch to be about 100 µJ [26]. We measured the thermal conductance of the heat switch by depositing power P on the suspended stage with the switch closed and recording the temperature difference ∆T between the stage and the surrounding heat bath. The thermal conductance G is given by P/∆T so long as ∆T is much smaller than the 300 mK bath temperature. At 300 mK, our measured G is 1.2 ± 0.3 µW/K, which was suitable for our application. When the switch was open (off), the disappearance of the galvanic connection between the stage and the rest of the cryostat suggests the absence of a thermal pathway. The measured conductance between the stage and cryostat sets an extremely conservative upper bound on the off-state conductance of 7.9 ± 0.1 nW/K where this figure is dominated by the Kevlar, wiring, and connections to the tunnel junctions.

To compare our measured on-state conductance to historical data for pressed contacts, we used an expression for the thermal conductance of a pressed joint between two solids as a function of temperature, force, and contact material [27]. For 1 N and 300 mK, this expression predicts thermal conductances of 14.5 µW/K for gold-to-gold contacts and 0.7 µW/K for copper-to-copper contacts. We used gold-plated copper contacts and our results fall in between the predicted values. In the future, it may be possible to increase the G of the heat switch by using more powerful permanent magnets, by using current in the solenoid to increase the closing force, and by optimizing the choice of the contacting surfaces.

IV. COOLING PERFORMANCE

We measured the temperature reduction of the tunnel junction refrigerator in the following manner. First, we precooled our apparatus to about 300 mK using an Adiabatic Demagnetization Refrigerator (ADR). During precooling, the heat switch between the suspended stage and the surrounding heat bath was closed. Once the suspended stage temperature reached 291 mK, it was isolated from the rest of the cryostat by opening the heat switch and allowed to settle for an hour as shown in Fig. 4. Then, we biased the refrigerator junctions for cooling. Cooling was performed using six separate tunnel junction refrigerator devices each with 16 junctions. The six devices were deposited on three separate silicon substrates. The bias current for the entire experiment was supplied using a single pair of wires because all the junctions were electrically connected in series. The optimal bias current of 2 µA was previously selected by finding the point on the current-voltage curves of the refrigerator junctions that showed the largest voltage enhancement in the subgap region which corresponds to the point of maximum cooling. The bias current was supplied using a battery in series with a 100 kΩ resistor. These results demonstrate the very modest infrastructure required to operate tunnel junction refrigerators.

While the internal temperature of the refrigerator junctions was determined using their current-voltage curves, the temperature of the suspended stage was directly and unambiguously measured by a RuOx resistance thermometer. After about 20 hours of cooling by the 96 junctions, the temperature of the suspended stage fell from 291 mK to 233 mK, a temperature reduction of...
88 58 mK, which is a significant improvement over previous 89 results [1]. Small features in the stage temperature of 90 Fig. 4 at hours nine and 16 are due to vibrations from 91 the transfer of liquid nitrogen into the surrounding cryo- 92 stat.

93 After 20 hours, the cold heat capacity of the surround- 94 ing ADR was almost exhausted so we turned off the cur- 95 rent bias to the junctions. As shown in Fig. 4, the tem- 96 perature of the suspended stage then began to increase. 97 It is clear from the shape of the curve in Fig. 4 that the 98 stage had not yet reached its base temperature. While 99 the cooling power of the junctions and the power loads 100 on the stage have complex temperature dependencies, we 101 are able to fit the cooling curve to the functional form,

\[T = a e^{-t/\tau} + b, \]

where \(T \) is temperature, \(t \) is time, and \(a, b, \) and \(\tau \) are 102 constant, in order to determine its asymptotic behavior. 103 The results of the fit are also shown in Fig. 4 and indicate 104 that the ultimate temperature is 228 mK, which is 63 mK 105 colder than the launch temperature.

106 The ultimate temperature of 228 mK is warmer than 107 expected. Based on previous measurements of the 108 junction subunits, we expected the temperature of the 109 suspended stage would be reduced to 185 mK [28]. Since 110 the base temperature of the cooling subunits is known 111 as a function of applied power, we can deduce the power 112 load on the stage and compare to the predicted load. The 113 predicted load through the Kevlar and Nb-Ti wires is 114 218 pW when these connection span the temperature 115 range 291 mK to 228 mK. Consequently, an additional 116 power load of 684 pW is needed to account for the dis- 117 crepancy between the expected and observed tempera- 118 ture reduction of the stage. The warm up rate of the 119 stage after hour 20 is also consistent with an additional 120 power load in this range.

121 Thermal models for NIS tunnel junction refrigerators 122 are well established and balance the cooling power of the 123 junctions against loads from electron-phonon coupling 124 in the normal electrode, so-called quasiparticle back- 125 flow from the superconductor, Andreev currents, and hot 126 phonons absorbed by device components on the mem- 127brane [29–33]. Coupling to a macroscopic stage intro- 128 duces additional power loads from the mechanical and 129 electrical connections to the stage. All of these terms are 130 included in our power balance estimates. However, two 131 power loads specific to the macroscopic stage are not in- 132 cluded in thermal models to date. The first is long-term 133 heat release from the epoxy on the suspended stage used134 to immobilize the Kevlar [23]. Since the ADR is period-135 ically cycled to 4 K, the epoxy may never properly ther-136 malize at the 291 mK launch temperature. The epoxy 137 can be removed in the future. The second is power load-138 ing from the slow conversion of orthohydrogen to parahy-139 drogen after cooling from 300 K. Molecular hydrogen is 140 plausible but speculative \(\text{H}_2 \) concentration of 10 ppm,141 the estimated power load is within an order of magni-142 tude of the observed value[34]. The stage copper can be 143 heat treated in the future prior to assembly.

144 Another possible explanation is that the silicon block 145 under one of the six NIS membranes touched the metal 146 underneath. Ordinarily, the silicon blocks are several mi-147 crometers above the metal. However, the process of con-148 necting the NIS devices to the stage or roughness on the 149 metal surface could cause contact that results in an extra 150 power load. Detailed modeling of tunnel junction refrig-151 erators that are not attached to a macroscopic stage is 152 in excellent agreement with data [11] so our present diffi-153 culties are clearly due to the stage. Improving agreement 154 between the predicted and achieved temperature reduc-155 tion is an important topic of future work.

156 We define the surplus cooling power as the power that 157 can be added to the stage before the stage temperature 158 rises 10 mK above its baseline value. Using this defi-159 nition and including the mysterious 684 pW load, the 160 surprint cooling power at the present 228 mK base tem-161 perature is calculated to be 189 pW. If the power load 162 on the stage matched our predictions, then we calculate 163 a surplus cooling power of 149 pW at a 185 mK base 164 temperature. These cooling powers are low compared to 165 other refrigerators such as ADRs and dilution refrig-166 erators. However, the dissipation of typical cryogenic de-

168 169
dectors, such as Transition Edge Sensors, is only about 170 10 pW per device. In addition, we have shown that more 171 junctions can be attached in parallel to increase the cool-172 ing power.

173 Recent modeling of tunnel junction refrigerators like 174 the ones used in this work predicts that technologically 175 interesting temperature reductions are possible [35]. In 176 particular, the modeling shows that a fully optimized 177 macroscopic stage can be cooled from 300 mK to 100 – 178 110 mK. Looking farther into the future, related tunnel 179 junction devices have recently demonstrated large elec-

tronic temperature reductions from launching tempera-

181 ture of 1 K and 100 mK [36, 37]. These results sug-

182 gest that multi-stage tunnel junction refrigerators may 183 be able to cool macroscopic payloads from near 1 K to 184 below 100 mK.

V. CONCLUSION

186 In this paper, we demonstrate a thermally isolated and 187 mechanically robust stage with an integrated electromech-188 anical heat switch. The new mechanical suspension of 189 the stage greatly reduces its susceptibility to mechani-

190 cal vibrations from the outside environment. The new 191 electromechanical heat switch operates on the principle 192 of electrically induced magnetic latching and makes the 193 integration of the stage into other cryostats significantly 194 simpler by eliminating the need for a mechanical linkage 195 to 300 K. The heat switch has a measured thermal con-196 ductance of 1.2 µW/K at 300 mK in the on state and no 197 thermal conductance in the off state. We were able to op-
erate the switch 1,000 times in a row without error. The stage provides an area of 28 cm2 for other experiments.

We cooled the new stage using six discrete normal-metal/insulator/superconductor tunnel junction devices each with 16 junctions. The tunnel junction devices were distributed among three distinct silicon chips; these results clearly demonstrate the potential of NIS devices to provide increased cooling power when connected in parallel. The tunnel junction refrigerators were able to reduce the temperature of the stage from 291 mK to 228 mK and larger temperature reductions are anticipated in the future.

ACKNOWLEDGMENTS

This work is supported by the NASA Astrophysics Research and Analysis Program (APRA) and a National Research Council Postdoctoral Fellowship. We thank Douglas Bennett, Vincent Kotsubo, John Mates, and Daniel Schmidt for their technical assistance. We also thank Daniel Schmidt for the photographs used in this manuscript.

[26] This number is calculated based on the heat capacity of the stage $C = 25 \text{ mJ/K}$. Every time we operated the switch, the temperature of the suspended stage rose about 4 mK. Therefore the energy deposited from operating the switch is $25 \text{ mJ/K} \times 4 \text{ mK} = 100 \text{ µJ}$.

[28] These measurements were conducted without the suspended stage. The membrane of each device contained a pair of NIS thermometer junctions and an Ohmic heater. By depositing power onto the membrane while running the refrigerator junctions on the substrate, we obtained detailed data on membrane temperature as a function of power load on the membrane. For a detailed discussion, please see Ref. [35].

