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Josephson junctions and superconducting nanowires, when biased close to superconducting critical
current, can switch to a non-zero voltage state by thermal or quantum fluctuations. The process
is understood as an escape of a Brownian particle from a metastable state. Since this effect is
fully stochastic, we propose to use it for generating random numbers. We present protocol for
obtaining random numbers and test the experimentally harvested data for their fidelity. Our work
is prerequisite for using Josephson junction as a tool for stochastic (probabilistic) determination of
physical parameters such as magnetic flux, temperature and current.

I. INTRODUCTION

In microworld particles are subject to random interac-
tion with environment and undergo a perpetual random
walk. Usually these temperature stimulated movements,
random and uncorrelated at a single particle level, seem
to be not visible in everyday live and in fact were first
identified only in 1827, by botanist Robert Brown. Sub-
sequently Johnson and Nyquist proved that thermal mo-
tions are also responsible for noise in electrical circuits
that competes with a desired signal [1, 2]. However they
may manifest themselves in a more sophisticated manner
e.g. rubber band holds a stack of paper because smaller
molecules “kick” the long ones, thus not allowing them
to elongate [3]. Quite recently Brownian motions have
been utilized in a modern Maxwell’s demon experiment
to transfer hot electrons from colder to hotter electrode
across a tunnel junction leading to refrigeration of the
former [4].

In superconductivity electrons are strongly correlated
which allows to describe them with a single macroscopic
wave function. The phase of the wave function across a
Josephson junction (JJ), interacting randomly with en-
vironment, fluctuates just like a position of a single par-
ticle. This time, however, we deal with a macroscopic
Brownian particle, since for any fluctuation to happen,
many electrons must be involved. It has been shown that
JJs provide a convenient tool for studies of superconduct-
ing fluctuations [5, 6]. In the current work we propose
to use the Brownian behavior of a superconducting wave
function of a JJ or a superconducting nanowire to gener-
ate a sequence of random numbers.

Random numbers are ubiquitous: in cryptography we
use them to encode information, in computer simulations
– to predict the behavior of various statistical systems,
in gambling – to earn and lose money. Software ran-
dom number generators are actually only pseudo-random
due to their dependence on a seed and generating algo-
rithm. Hardware random number generators, if properly
designed, can approach the true random number gener-
ation. Existing fast hardware random number genera-
tors (RNGs) are based on the processing of natural noise
or stochastic physical phenomena. One of such devices
is based on the radioactive nucleus decay [7]. Electric

pulses, generated by detected particles, are counted and
processed resulting in random stream of 10 kb/s. Ultra
fast RNGs derive their randomness from a quantum op-
tical physics, by detecting single photons received from
attenuated and split beam of light, incident on two de-
tectors [8, 9]. Each photon detection is converted into
a random bit. Such devices can generate even 2 Gb/s
[10]. Commercial devices are primarily taking advantage
of other physical observable, such as Johnson-Nyquist
noise of resistors. Generally, amplified resistor noise is
converted by comparator into a train of random-length
pulses, which afterwards can be processed in many differ-
ent ways in order to obtain random bits streams [11, 12].
The other examples of techniques and phenomena used
for generating random bits are based on subharmonic os-
cillators [13], spontaneously initiated stimulated Raman
scattering [14], turbulent electroconvection [15]. Since
fluctuations are more pronounced in small physical sys-
tems it is reasonable to develop random number genera-
tors based on nanoobjects. It has been recently demon-
strated that thermal oscillations of the magnetic moment
in magnetic tunnel junctions [16] may be harnessed for
such generation.

Our generator, upon optimization, is capable of de-
livering similar speeds as state-of-the-art RNGs, being
inherently limited only by the frequency of superliquid
oscillation on the junction (so called plasma frequency,
with response in ps range), but there are also other fea-
tures that make it unique on the market of RNGs: (i) it
is to the best of our knowledge the smallest solid state –
based RNG (decaying atom is smaller but it can generate
only one bit while our generator can work perpetually),
(ii) it is very simple – just piece of a nanowire inter-
rupting a thicker wire, (iii) its operation is conceptually
transparent: it behaves like a coin with tunable probabil-
ity. After probing with current pulse it can be found in
two easily distinguishable states, normal (the head, with
probability P ) or superconducting (the tail, with proba-
bility 1 − P ), with no arbitrary criterion separating the
two.

In the next section we describe the roots of random-
ness in JJs and superconducting wires. We then present
a protocol allowing to obtain a random sequence of bits.
This is followed by a few statistical tests on the exper-
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imentally obtained sequences of data. Next, in discus-
sions, possible improvements and extensions of our RNG
are presented. Subsequently, prior to summary, we go be-
yond random number generation and briefly mark poten-
tial of JJ probed with pulses to measure magnetization,
temperature and current noise.

II. JOSEPHSON JUNCTION AND
SUPERCONDUCTING NANOWIRES AS

RANDOM SWITCHES

Tunneling weak links or Dayem nanobridges are ex-
amples of Josephson junctions (JJs). The former con-
sist of two superconducting leads having a weak con-
tact through a thin insulating layer, the latter are simply
narrow short constrictions (bridges) in otherwise contin-
uous superconducting material. Supercurrent carrying
state of a JJ or a superconducting nanowire is conve-
niently described within tilted washboard potential aris-
ing from the Resistively and Capacitively Shounted Junc-
tion model (RCSJ) [5] (Fig. 1). Within the model, state
of the superconducting wavefunction is mapped into a
position of a particle moving in the one-dimensional po-
tential. The particle exhibits Brownian fluctuations due
to interaction with constant temperature bath [6]. They
correspond to random changes in the superconducting
phase across the JJ around a mean value, meaning, by
virtue of DC Josephson effect, average DC supercurrent
flowing in the JJ. The height of the potential barrier sep-
arating two local minima is controlled by biasing current.
For supercurrents much below critical current, the height
of a potential barrier is much larger than accessible ther-
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FIG. 1. Brownian particle undergoing random oscillations in
tilted washboard potential can jump over or tunnel through
barrier (switching), or may stay trapped in the well (no
switching). Γs denote rates for both processes. The fluc-
tuations of the particle are visualized in Video 1 and 2.

mal energy kBT and the particle cannot escape through
the barrier. However, increasing the biasing current, one
can reduce the barrier height to an extent that thermal
or quantum fluctuations are sufficient to drive the parti-
cle over the barrier [17–19]. If such a so-called phase slip
happens [20, 21], the particle acquires sufficient inertia to
jump over lower barriers (it is true for an underdamped
junction). Superconducting wave function accumulates
the phase and this, by virtue of AC Josephson effect,
creates voltage across the JJ giving an experimentalist a
mean to test the escape. We call such an event switching.
In case of superconducting wires and Dayem nanobridges,
the voltage appears due to phase-slip followed by over-
heating and transition to normal state [20, 22, 23].

The Brownian behavior of superconducting wavefunc-
tion suggests that JJs and superconducting wires can be
used as random number generators. By applying a rect-
angular current pulse we give the particle a chance to
jump over the barrier. If lifetime in local minimum is
τ then a probability for the particle to escape in short
time dt is dt/τ . It follows that 1 − dt/τ is the proba-
bility that the particle does not escape in time dt. For
current pulse of length T the probability for the particle
NOT to escape is (1−dt/τ)T/dt = exp(ln(1−dt/τ)T/dt).
After expanding logarithm around 1 (ln(x) = 1 − x) we
get exp(−T/τ). Finally, the probability for the particle
to escape is P = 1 − exp(−T/τ). In experiment, since
the escape rate Γ = 1/τ is both current and temperature
dependent, escape probability can be tuned by using the
feedback on current pulses e.g. by applying bisection al-
gorithm. The formula for probability has general validity,
both for wires and Josephson Junctions. For the case of
JJs the switching rate is Γ = (ωp/2π) exp(−∆U/kBTesc),
where ωp is natural frequency of the particle oscillations
at the bottom of the potential, Tesc is an effective temper-
ature of the escape [5], ∆U is the height of the potential
barrier roughly equal to Φ0Ic (Φ0 - flux quantum, Ic -
critical current) at zero current and can be lowered with
bias current ∆U(i) = ∆U(0)(1 − i/i0)3/2. For 1D su-
perconducting wires the formula is the same, but ∆U at
zero current corresponds to the condensation energy of
the smallest possible volume of the superconducting wire
which can be driven to normal state i.e. Ω = ξS [21]
(ξ - superconducting coherence length, S - wire cross-
section) and exponent has the value of 5/4 instead of 3/2
[22]. For thicker wires we can think of similar formula,
but the exact energy landscape and switching scenario is
more disputable (e.g. one could assume that energy fluc-
tuation necessary to drive wire normal is related to the
condensation energy of the piece of the wire of length ξ).
Since it is not the primary goal of our paper we will not
discuss it here, but only notice that the exact nature of
switching in thick superconducting wires is not essential
for generating random bits.
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FIG. 2. JJ tested with pulse train (EXCITATION). For each testing pulse the JJ switches or remains silent (RESPONSE).
Response as recorded on oscilloscope is rounded, for it is measured with twisted pairs serving as low-pass filters. For analysis
we split testing pulses in groups of 2. If within the group for the first pulse the JJ switches and for the second pulse it does
not, it encodes logical one (solid red circle). In the opposite case, logical zero is encoded (dashed green circle). Other results
(dotted black box) are discarded (INTERPRETATION).

FIG. 3. Scanning electron micrograph of the Dayem
nanobridge. Inset shows the nanobridge dimensions.

III. PROTOCOL TO GENERATE RANDOM
BITS

Suppose we have a coin which is not fair in the sense
that probability P to get the head differs from 0.5. More-
over the probability varies very slowly with time. Obvi-
ously a game played with such a coin is not fair. How-
ever we can make it fair introducing following assump-
tion: we flip the coin twice one flip after another. If in
the first flip we get the head and in the second the tail,
player A wins (logical one). If in the first flip we get the
tail and in the second the head, player B wins (logical
zero). If two successive trials give the same result, the
drawing is discarded. Since we assumed probability for
flipping the head to vary slowly with time such a game
can be considered fair, for it gives the same probabil-
ity P (1− P ) for both players to win after coin has been
flipped twice. The procedure outlined above was first
proposed by von Neuman [24] and is considered as a one

of the most straightforward ways to unbias the random
sequence i.e. to convert random sequence of zero and
ones with unequal probabilities for both into random se-
quence for which probability to get bit 0 is the same as
for bit 1, and equal 0.5. JJ is such an unfair coin. It
is difficult to set switching probability exactly equal to
0.5. But whatever this probability is, the response to
2 successive testing pulses encodes logical zero or one,
provided JJ switched for one testing pulse and did not
switch for another. The idea of generating 4-bit random
number is explained in Fig. 2.

IV. EXPERIMENTAL

We fabricated Dayem nanobridge by standard e-beam
lithography followed by thermal evaporation of 30 nm
thick Aluminum (Fig. 3). The circuit employing the
bridge as a random number generator is schematically
drawn in Fig. 4a. Details of the circuit are described in
Methods [25]. The principle of operation is the follow-
ing. We record IV of the JJ by applying a triangular
voltage sweep (Fig. 4b) and find current pulse amplitude
for which JJ switches with probability of 0.5. It is eas-
ily accomplished by collecting a so-called S-curve (Fig. 4c
and Fig. 4d). The train of N0 current pulses is sent down
the JJ and number of switchings n is recorded. It gives
switching probability P = n/N0 for a given current am-
plitude. Then current pulse amplitude is increased and
the procedure is repeated. Having found the current am-
plitude IA (cf. Fig. 4c) for which JJ switches with prob-
ability P ≈ 0.5 we have sent to JJ train of N0 = 4× 106.
We have recorded response of JJ with digitizer, collecting
a point each 500ns. We can use such a low acquisition
rate because the sustaining part of the pulse holds the
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FIG. 4. (a) The circuit employing a JJ for random number generation. (b) The Dayem nanobridge current-voltage characteristic
revealing switching behavior at a threshold current. (c) Complex pulse used for JJ testing. Its amplitude IA defines probability
for JJ to switch and lower plateau (sustaining part) allows for read-out with low-pass twisted pairs. Timing, amplitude and
repetition rate are controlled by arbitrary waveform generator. (d) Experimentally obtained S-curve. Each point is the estimator
for switching probability at given current amplitude IA measured with train of N0=10 000 pulses. The line is a guide for the
eye.

memory of switching event over 5µs. We have performed
post-processing of the data in the spirit of idea explained
in the Fig. 2. On converting the data into sequence of
zeros and ones we are ready to check its randomness.

V. ARE GENERATED BITS RANDOM?

We have generated a stream of N = 106 bits [26]. For
non-biased sequence we expect to obtain NP = 0.5 · 106

ones with standard deviation of
√
NP (1− P ) = 500. We

have obtained 500 142 ones. It allows us to proceed with
more involved tests. There are many statistical tests for
random sequences, but none quarantees 100% certainty
for lack of clear criteria of randomness and finite number
of samples [27]. Nevertheless we present a few statisti-
cal tests which seem to confirm the randomness of our

stream. First test starts with division of the sequence of
N = n · m samples (zeros and ones) into m bins, each
consisting of n samples. Probability to obtain k times
one in a single bin of a length n is given with binomial
distribution:

pk =

(
n

k

)
P k(1− P )n−k P=0.5

=

(
n

k

)
1

2n
(1)

Its mean value is < k >= n · P and standard deviation
is σ =

√
(1− P )P · n. Similarly probability to obtain qk

bins within m each with k ones is:

p(qk) =

(
m

qk

)
pqkk (1− pk)m−qk (2)

The expected number of bins with k ones is < qk >=
pk ·m. We expect the experimentally determined number
of bins with k ones, qexpk to deviate on average from qk by
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FIG. 5. Probability map for getting qk bins with k ones with
imposed experimentally determined distribution qexpk – solid
line. Dashed line represents < qk > distribution. The inter-
pretation of the probability map is explained for point A. It
tells that probability for obtaining 60 bins in the total number
of 2 000 bins, each with 240 ones is 0.02. We notice that ex-
perimentally determined distribution falls within the expected
range of probabilities.

standard deviation ∆qk =
√
pk(1− pk)m. In Fig. 5 we

plot theoretical p(qk) distribution subject to statistical
broadening expected for the finite number of m bins. In
the same Figure experimentally determined distribution
qexpk is plotted. We conclude that the test does not negate
the randomness of the sequence, for qexpk has probability
significantly different from zero for all k–values and fluc-
tuates around the mean value < qk >.

The second test utilizes the concept of random
walk. We divide the stream of N bits into m bins.
Each bin defines one random walk with bit 1 meaning
one step forward and bit 0 meaning one step backward.
Such a walk, if really random, should obey Einstein-
Smoluchowski law: < l2 >= i, where l is a distance
traveled from the origin after i steps. The movement
corresponds to 1D diffusion of a particle. The distance
traveled by the particle after i steps is described with
Gaussian distribution with mean value 0 and variance
< l2 >. We present trajectories of numerous walks in
Fig. 6a. On imposing all walks on each other (Fig. 6b)
we obtain a distribution of final positions of the parti-
cle after 1, 2, ..., i, ..., n steps. In Fig. 6c we compare
average deflection for walks < l2 > after i steps against
Einstein-Smoluchowski law. We conclude that the walks
are indeed random.

In the third test stream of random bits
{θ1, θ2, ..., θi, ..., θi+j , ..., θN} is analyzed for temporal
correlations. We define discrete autocorrelation function

in the form:

ac(j) =
1

n

n∑

i=1

θ(i) · θ(i+ j) (3)

The product in the sum should give for true random
number sequence either 1 (with probability P=1/4) or
0 (with probability P=3/4). The expected value of the
autocorrelation function is < ac >= 1/4. Autocorrela-
tion with mean value fluctuating around 0.25 calculated
for n=730 000 pairs is presented in Fig. 7. It shows no
obvious evidence of frequency components. Randomness
of our data is also confirmed by NIST Test Suite [25].

VI. DISCUSSION AND POSSIBLE
IMPROVEMENTS

We have conducted analogous experiment on su-
perconducting Aluminum nanowire (30 nm thickness,
600 nm cross-section). Sequences obtained for the
nanowire also pass tests for randomness. However, since
switching current for our nanowire is higher than for
Dayem nanobridge, it takes longer time for the nanowire
to recover after switching to dissipative state. Switch-
ing produces a number of quasiparticles [18]. It accounts
for rising the temperature and increases the switching
probability in the next trial. It is possible to tackle this
problem by using a tunnel JJ that switches to a finite
voltage with almost zero current (multiple Andreev re-
flections [28] produce negligible transmission for tunnel
JJ), and consequently a small power dissipated in the
JJ. Another approach is to use prepulse, preceding ac-
tual measuring pulse. Due to larger amplitude (say 1.3
of that of the measuring pulse) it makes the JJ switch
(so called forced switching) and nulls a memory of the
JJ. One can say that on average after forced switching
the JJ is left with the same number of quasiparticles. The
forced switching removes a possible correlation between
two successive trials – the obligatory requirement for a
good random number generator.

Switching probability is extremely sensitive to the
biasing current. It changes according to current noise
fed to the junction [29]. It follows junction can be used
as a digitizer of the noise with Nyquist frequency lim-
ited by the probing period. The frequency components
of the noise may be revealed in the time correlation of
the switching events. The unbiasing protocol applied to
our bits removes correlations due to the random spacing
between not rejected pairs of the initial bit stream (Fig.7)
(although correlations performed on initial stream may
show the 50Hz parasitic current component from power
supplies).

One can envisage generation of random bits with
magnetic clusters. Magnetization reversal in ferromag-
netic nanoclusters, if thermally excited, is described with
the Neel-Brown model [30]. The picture of magnetization
reversal in the model remains in the complete analogy to
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the JJ escape out of the metastable state. It follows one
can test stochastic character of magnetization reversal
by the same measuring protocol we have presented, but
rather than pulses of current, magnetic field pulses should
be used to give the magnetization a chance to reverse.

VII. OUTLOOK

One straightforward application of our RNG is to
use it as an on-chip source of random bits in supercon-
ducting circuits. However, there are other fields where
our study may be used, involving magnetic flux mea-
surements [31], noise measurements (as briefly pointed
out in the Discussion) and mesoscopic thermometry [32].
Switching probability of JJ is very sensitive to biasing
current, temperature and magnetic field (if two JJs are
connected in parallel to form a SQUID). Conventional
measuring protocol for SQUID magnetometry requires
use of non-hysteretic SQUIDs [33], although reducing
sizes of studied objects towards single spin detection may
make hysteretic SQUIDs an interesting alternative for ex-
periments [34, 35]. For such SQUIDs a small change in
the switching probability to normal state can be a sig-
nature of a spin flip. It is important to stress here that
small magnetization change can slightly alter the switch-
ing probability, and hence be detectable, in contrast to
a threshold detection when magnetization reversal drives
the SQUID (initialized in superconducting state with bias

just below switching threshold) to the normal state. Of
course, the first method requires to launch the same ex-
periment many times (for probability to be measured)
and the second is a single shot detection, though if one
can afford many repetitions, the enhancement in the sen-
sitivity in the former case is obvious. Our study pro-
vides an interesting background for a new type of meso-
scopic thermometry and calorimetry [18, 36]. Relaxation
of switching probability of JJ initially driven to normal
state has allowed us to study heat transport in supercon-
ducting nanowires, particularly get access to temporal
dynamics of temperature in mesoscopic wires with reso-
lution approaching 10ns. In future we will study thermal
properties of mesoscopic islands coupled to JJ.

VIII. CONCLUSIONS

We have demonstrated the operation of the new
true nanoscale RNG exploiting inherent randomness of
the switching from a superconducting to a non-zero volt-
age state in Josephson junctions and superconducting
nanowires. Our experiments have shown that Cooper
pairs in these systems exhibit collective response to a
random external stimulus, which allows to treat them as
a single archetypal Brownian particle. We have achieved
random number generation rates of 10-100 kb/s. How-
ever, owing to very fast intrinsic dynamics of JJ (ps re-
sponse), we anticipate the rate could significantly exceed
a few Gb/s in the optimized device. Successful operation
of the presented generator has direct implications for ap-
plied science. It creates a necessary background for using
JJ as a tool in stochastic measurements of physical pa-
rameters such as current, magnetic flux and temperature.
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Video 1. Fluctuations of the particle (phase) in the tilted washboard potential leading occasionally to phase slip.

Video 2. Fluctuating phase across nanobridge.
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