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The thermal conductivity (κ) of graphene dramatically decreases once supported on a substrate, 

hindering its use for thermal management.  To clarify the underlying mechanisms, we investigate 

the κ of graphene on amorphous SiO2 using molecular dynamics with particular attention to the 

graphene-substrate topography.  Our analysis reveals that the suppression in κ increases with the 

non-uniformity of the forces acting on graphene, which tends to increase as the substrate surface 

roughness and graphene conformity increase.  Our findings highlight the importance of the 

interfacial morphology on κ and can provide new guidance on the design of substrates to 

improve thermal transport through graphene.   
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I. INTRODUCTION 

Current state-of-the-art techniques have demonstrated that the thermal conductivity (κ) of 

free-standing graphene can be as large as 1500−5000 Wm-1K-1 [1−5], an order of magnitude 

larger κ than copper, but is reduced to around 600 Wm-1K-1 when supported on amorphous SiO2 

(a-SiO2) at room temperature [6].  Yet while it is well-known that the κ of graphene is 

suppressed when supported on a substrate, the underlying mechanisms remains a subject of 

contention.  Such an understanding will be critical to fully utilize graphene for thermal 

management of electronics [1].     

In general, it has been thought that κ is principally influenced by the strength of the van 

der Waals (vdW) coupling at the graphene-substrate interface.  Several previous theoretical 

investigations have suggested that the decrease in κ can be attributed to the dampening of the 

flexural acoustic (ZA) phonon modes which is tuned by the graphene-substrate interaction [7−9].  

However there is some debate as to whether the strengthening of the vdW coupling at the 

interface either enhances [9] or diminishes [7] thermal transport.   

Beyond the vdW coupling strength, it could be important to consider additional factors 

that vary according to the morphological differences at the graphene-substrate interface.  As 

depicted in Figure 1, the topography of graphene may evolve due to contributions from internal 

and external forces.  For instance, greater conformity can result from larger vdW interaction (i.e., 

more contact area), which can yield larger internal strain (i.e., more corrugation) depending on 

the surface roughness of the underlying substrate.  As such, one possible source of the previously 

reported inconsistencies [7,9] could stem from the study of dissimilar graphene-substrate 

morphologies.  We therefore postulate that the key to understanding the nature of phonon 
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scattering at the interface could lie in the careful portrayal of the relationship between the 

interfacial topography and κ. 

 

 
Figure 1.  Schematic demonstrating the evolution of the topography of graphene due to internal 
and external forces.  Thermal perturbation of perfectly flat graphene induces local internal strain 
and thereby yields corrugated graphene; the internal strain can be described by the strain energy 
(Est) and strain force (fst).  The presence of a substrate introduces van der Waals (vdW) 
interactions at the interface which further influences the graphene morphology; the vdW 
coupling can be described by the vdW energy (EvdW) and vdW force (fvdW).  The grey sheet 
represents graphene while the yellow and red balls represent Si and O atoms, respectively, in 
amorphous SiO2 (a-SiO2).  
  

In this manuscript, the variation in κ of supported graphene is comprehensively studied 

using classical molecular dynamics (MD) with variable SiO2 surface roughness and graphene 

conformity.  With particular attention to the interfacial energetics and forces, our analysis reveals 

that κ reduction scales directly with the non-uniformity of the forces acting on graphene, which 

we highlight as the “local dampening disorder.”  These findings underscore the importance of the 

careful characterization of substrate surface conditions and may prove useful in superior control 

over thermal transport through low-dimensional materials supported on a substrate (or embedded 

in matrices of dissimilar materials). 
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II. COMPUTATIONAL METHODS 

Gr/a-SiO2 sample preparation – Four defect-free a-SiO2 slabs were constructed using 

Continuous Random Network Metropolis Monte Carlo (CRN-MMC) simulations following the 

method described in Ref. 10; each slab contained 3600 SiO2 units with lateral thickness 7.77 × 

7.98 nm2, yielding a slab thickness of around 2 nm.  A single graphene sheet was then placed on 

the top and bottom surfaces of the a-SiO2 slab.  The graphene/a-SiO2 structures were relaxed 

using MD under periodic boundary conditions by the LAMMPS package [11].  For each system, 

we considered the non-conformed cases, which were composed of 18×32 rectangular supercells 

(2304 atoms), and the optimally-conformed configurations of graphene, which were determined 

by varying its lateral size up to a 19×33 rectangular supercell (2508 atoms) as described in the 

Supplementary Information and Table S1 [12].  The C-C interactions were described by an 

optimized Tersoff potential [4].  Additional simulation details, including the Si-O potential and 

C-Si and C-O Lennard-Jones parameters, can be found in Ref. 10.     

Thermal conductivity of free-standing graphene – To estimate reliable values for κ at 300 

K, we calculated the κ for free-standing graphene with four different lengths (L = 62.1, 124.3, 

248.7 and 373.0 nm) and width 7.97 nm corresponding to a (144, 288, 576, 864)×32 rectangular 

supercell; periodic boundary conditions were employed in all three directions with 10 nm of 

vacuum space included in the vertical direction to remove interactions with the periodic image.  

The κ at infinite length was then extrapolated from 1/L vs 1/κ [13] in which the thickness of 

graphene is assumed to be 0.335 nm; such a treatment is necessary as the phonon mean free path 

of graphene is estimated to be ~775 nm, which is much larger than the simulation domain [1].  

To obtain the κ at each L, we performed 10 independent reverse non-equilibrium MD (RNEMD) 
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simulations [14] with different initial velocity distributions for statistical accuracy.  Each system 

was equilibrated for 100 ps within the canonical (NVT) ensemble with a Nosé-Hoover 

thermostat [15] and followed by 1 ns within the microcanonical (NVE) ensemble while imposing 

a heat flux within graphene with a velocity swap interval of 50 fs; here, all MD simulations 

adopted a 0.5 fs timestep.  The temperature profile was extracted every 5 ps and the κ was 

computed from the average gradient of the linear region of the profile between the heat source 

and sink.  Since the Debye temperature of graphene is above 2000 K [16], we included the 

quantum correction factor according to the procedure shown in Ref. 17.   

Thermal conductivity of graphene on α-Quartz and a-SiO2 – We used a similar approach 

to calculate the κ of supported graphene.  Here, we replicated each graphene/a-SiO2 and 

graphene/α-Quartz sample to increase the length L to 62.1, 77.7, 93.2, and 124.3 nm, and follow 

the same RNEMD methodology to calculate κ.  In addition, the κ of the top and bottom graphene 

sheets were computed separately and considered independently.   
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III. RESULTS AND DISCUSSION 

First, the κ of free-standing graphene at 300 K was calculated in order to establish a 

baseline for comparisons with supported graphene.  Our predicted κ = 2715 ± 60 Wm-1K-1 is 

within the range of values previously reported from both experiments and simulations 

(1500−5000 Wm-1K-1) [1−5].  The thermally induced corrugations of graphene, which were 

quantified based on the standard deviation of the equilibrium atomic height distribution (σz,Gr), is 

found to be 0.8 Å at 300 K.  However, we should point out that κ tends to decrease with 

increasing σz,Gr, which follows from compressive strain [12], as demonstrated in Fig. 2; the 

sensitivity of κ to corrugation may be partially responsible for the scattered κ values reported in 

prior experiments [1−3].  As discussed below, σz,Gr can also vary as the substrate roughness 

(σz,sub) and the subsequent conformity of graphene changes. 

Table I.  Calculated thermal conductivity (κ), strain/vdW energy (Est/EvdW), and standard 
deviation/mean of the vdW and strain force per graphene atom (σ(|fvdW,z|)/µ(|fvdW,z|) and 
σ(|fst|)/µ(|fst|)) for graphene supported on α-Quartz and a-SiO2 with the corresponding graphene 
(σz,Gr) and substrate (σz,sub) roughness. 
 

Model 
(σz,Gr /σz,sub) 

 

κ 
 

(Wm-1K-1) 

EvdW / 
Est 

(eVnm-2) 

σ(|fvdW,z|) / 
µ(|fvdW,z|) 
(eVÅ-1) 

σ(|fst|) / 
µ(|fst|) 

(eVÅ-1) 
Gr/Quartz 
(0.14/0.00) 1642 ± 102 0.6514 /  

0.0311 
0.0016 / 
0.0126 

0.0093 /  
0.0214 

NC-Gr/a-SiO2 
(1.1/3.8) 923 ± 86 0.6231 /  

0.1833 
0.0252 / 
0.0114 

0.0159 /  
0.0243 

C-Gr/a-SiO2 
(3.4/3.8) 713 ± 99 1.3577 /  

0.6973 
0.0354 / 
0.0274 

0.0377 /  
0.0331 

 
 Next, the κ of graphene on atomically smooth α-Quartz (Gr/Quartz) as compared to 

atomically rough a-SiO2 were investigated; a Monte Carlo scheme [10] was used to generate an 

a-SiO2 slab with σz,sub = 3.8 Å.  In addition, we considered the two scenarios when graphene is 

non-conformed (NC-Gr/a-SiO2) and optimally-conformed (C-Gr/a-SiO2) to a-SiO2, the latter of 
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which was obtained after graphene was compressed bi-axially by around 5% (3%) in the x- (y-) 

directions.  As seen in Table I, the predicted κ of the C-Gr/a-SiO2 case is found to be 713 ± 99 

Wm-1K-1, a dramatic decrease of nearly 75% from that of free-standing graphene, which is 

reasonably close to experimentally measured values [6].  On the other hand, the suppression is 

greatly mitigated in the Gr/Quartz case (κ = 1642 ± 86 Wm-1K-1). 

 Comparing the aforementioned three cases, the κ reduction of graphene is observed to 

increase with the following trend: Gr/Quartz < NC-Gr/a-SiO2 < C-Gr/a-SiO2.  A few interesting 

features can be found from an analysis of the interfacial energetics and forces, which are 

summarized in Table I.  First, note that the vdW interaction energy (Evdw) is comparable in the 

Gr/Quartz and NC-Gr/a-SiO2 cases although κ significantly decreases by around 700 Wm-1K-1.  

On the other hand, the internal strain energy (Est) exhibits a noticeable increase due to the 

increasing σz,Gr that follows from the partial conformity of graphene to the rough surface of a-

SiO2.   

Looking beyond the energetics, a substantial increase in the standard deviation of the 

vdW force [σ(|fvdW,z|)] [18] and internal strain force [(σ(|fst|)] is predicted in the NC-Gr/a-SiO2 

case as compared to the Gr/Quartz case.  Meanwhile, the mean magnitude of the vdW force 

[µ(|fvdW,z|)] and strain force [µ(|fst|)] expectedly exhibit trends similar to the Evdw and Est, 

respectively.  These results clearly demonstrate that κ should not be determined solely by the 

strength of the vdW coupling but also by the uniformity of forces (that depends upon the 

graphene-substrate morphology), herein called as the local dampening disorder.   

A comparison of the C-Gr/a-SiO2 case to the NC-Gr/a-SiO2 case further reveals that both 

EvdW/st and σ(|fvdW,z/st|) tend to increase with κ reduction, which supports that κ is not directly 
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related to the magnitude of EvdW.  To examine the relationship between κ and the local 

dampening disorder in depth, we have performed subsequent calculations for NC-Gr and C-Gr 

supported on a-SiO2 substrates with varying σz,sub. 

 

 
Figure 2.  Thermal conductivity (κ) as a function of surface roughness (σz); for free-standing 
graphene (red squares), σz refers to the corrugation of graphene (σz,Gr) while for supported 
graphene (green triangles and blue circles), σz refers to the substrate surface roughness (σz,sub).  
The inset compares σz,Gr to that of σz,sub for each supported graphene case; points far below the 
black diagonal line indicate poor conformity. 
 

 Figure 2 shows the predicted κ of graphene on a-SiO2 as a function of σz,sub.  As σz,sub for 

different C-Gr/a-SiO2 samples (blue circles) increases from 2.00 to 4.09 Å, the predicted κ tends 

to decrease from 935 ± 101 to 562 ± 68 Wm-1K-1, which is a reasonable range given the scattered 

values reported in both experiments [3,6] and simulations [19].  The κ of NC-Gr/a-SiO2 (green 

triangles) is similarly repressed from 1096 ± 101 to 923 ± 86 Wm-1K-1, although to a lesser 

extent than the C-Gr/a-SiO2 cases.  When compared to free-standing graphene (red squares), it is 

evident that the presence of the substrate suppresses κ by more than a factor of two.  Furthermore, 

these results illustrate that the surface roughness of a-SiO2 and the conformity of graphene can 
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strongly influence κ; specifically, we find that κ decreases as σz,sub increases, and more so when 

graphene is well-conformed to a-SiO2.   

 

 
Figure 3.  Relationship between the standard deviation of the applied vdW and strain force (σforce) 
and the thermal conductivity (κ).   
 

 We next examine the relationship between the local dampening disorder induced on 

supported graphene and κ in Figure 3, in which the relative importance of σ(|fvdW,z|) and σ(|fst|) 

were considered.  Figure 3 depicts σ(|fvdW,z|) and σ(|fst|) as a function of κ for both C-Gr/a-SiO2 

and NC-Gr/a-SiO2.  Remarkably, we observe that the decrease in κ distinctly follows an increase 

in both σ(|fvdW,z|) and σ(|fst|), although the dependence on σ(|fvdW,z|) seemingly dominates in these 

cases; on the other hand, κ is revealed to be insensitive to both µ(|fvdW,z|)/µ(|fst|) and EvdW/Est [12].  

Recall that the optimal conformation of graphene tends to be less coarse than the underlying 

substrate surface [10], which can result in irregularities in the contact force distribution while the 

strain force distribution is comparatively smoother.  However, we may conceive a situation in 

which graphene and the underlying substrate are corrugated with uniform separation, in which 
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case it is possible that σ(|fst|) is comparatively larger than σ(|fvdW,z|).  Nonetheless, these results 

demonstrate that when graphene is supported on a substrate, κ strongly depends on the degree of 

uniformity of the force distribution along the graphene sheet, which in turn suggest that the broad 

range of experimental values for the κ of supported graphene may be attributed to differences in 

the morphology of the graphene-substrate interface.  

 

 
 
Figure 4.  Spatial distribution of eigenmodes with phonon participation ratio < 0.3 (|Φz|) for the 
(a) Gr/Quartz, (b) NC-Gr/a-SiO2, and (c) C-Gr/a-SiO2 cases.  Color maps of the spatially-
resolved distance between graphene and the substrate for the (d) Gr/Quartz, (e) NC-Gr/a-SiO2, 
and (f) C-Gr/a-SiO2 cases. 
 
 An analysis of the spatially-resolved vibrational eigenmodes (λ) can further reveal the 

nature of κ suppression in the presence of different substrate/conformity conditions.  The phonon 

participation ratio [20] (pλ) for each λ was first calculated for the three cases (of Gr/Quartz, NC-

Gr/a-SiO2, C-Gr/a-SiO2 from Table 1) as follows: 
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where εij,λ is the vibrational eigenvector component for atom i in direction j over all atoms N; pλ 

corresponds to the fraction of atoms participating in the λth mode and varies between unity and 

zero for completely delocalized and localized phonon states, respectively. We find that the 

calculated suppression in κ, which varies as Gr/Quartz < NC-Gr/a-SiO2 < C-Gr/a-SiO2, 

coincides with the apparent localization of low-energy acoustic (< 400 cm-1) and high-energy 

optical (> 1200 cm-1) phonon modes [12].   

The fractional distribution (per atom) of localized λ (denoted as Φij,Γ) within the range Γ 

= {λ : pλ < 0.3} can be computed from [21] 

Φ!",! =
𝜖!",!∗ 𝜖!",!�∈!

𝜖!!!,!
∗ 𝜖!!!,!!∈!!!

 

and indicates the relative concentration (or contribution) of atom i to the λ modes in Γ.  The Φij,Γ 

(j = z) throughout the graphene lattice is depicted in Fig. 4(a)−(c).  It is evident that in the 

Gr/Quartz case [Fig. 4(a)], Φij,Γ is uniformly distributed across the lattice, showing that all atoms 

are nearly equally involved as an extended mode; according to our previous analysis, this is 

related to the flat and homogeneous nature of the graphene-substrate topography, as depicted by 

a color map of the spatially-resolved distance between graphene and the substrate in Fig. 4(d).  

The NC-Gr/a-SiO2 case [Fig. 4(b)] contrastingly displays a distinct discontinuity in which the 

central atoms [dark yellow to red] are seen to contribute significantly more to these phonon 

modes than the outer atoms [light yellow to white] and indicate a clear departure from an 

extended state.  The corresponding separation distance color map [Fig. 4(e)] demonstrates that 

these regions with localized modes are confined by the contact between graphene and the 
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substrate surrounding a void space due to poor conformation; we note, however, that these 

modes remain fairly diffuse over the pocket region likely due to the smoothness of the local 

contact force distribution.  In the C-Gr/a-SiO2 case [Fig. 4(c)], the majority contributors to the λ 

modes in Γ are further confined spatially (i.e., hot spots).  As the conformity between graphene 

and a-SiO2 has increased, the length scale of morphological mismatch subsequently becomes 

smaller (i.e., sharper and more confined regions of mismatch can occur) [Fig. 4(f)] and can 

contribute to the formation of these so-called hot spots.  We can therefore hypothesize that the 

local variance (and specifically, the frequency) of the vdW interaction acting on graphene, which 

is driven by these morphological differences, serves as a type of disorder that localizes 

vibrational eigenstates and correspondingly suppresses thermal transport and κ.   

 

IV. CONCLUSIONS 

 In summary, we demonstrate the importance of the local dampening disorder induced by 

morphological differences on the suppression of thermal transport in supported graphene.  The 

thermal conductivity of supported graphene is found to be sensitive to both the a-SiO2 substrate 

surface roughness and graphene conformity with modulation within 500 Wm-1K-1.  Our analysis 

attributes this suppression to increasing non-uniformity of the contact force distribution, which is 

also independent of the van der Waals coupling strength and internal strain energy.  These 

findings suggest that the thermal conductivity of graphene (and other low-dimensional materials) 

can be influenced by factors such as lattice mismatch, isotope/chemical doping, or surface 

functionalization by affecting the uniformity of the force distribution, which will require careful 

consideration in the future.  
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