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ABSTRACT 
The new generation of X-ray free-electron lasers opens up unique avenues for exploring 

matter under exotic and extreme conditions. Extensive spatial characterization of focused, 

typically (sub)micron-sized, laser beams is indispensable, nevertheless difficult to be 

accomplished due to excessive radiation intensities. Methods exist allowing indirect or semi-

direct focus characterization from a safe distance far from the focal point. Here we present a 

direct method of in-focus numerical phase recovery exploiting multi-shot desorption imprints 

in poly(methyl methacrylate). Shapes of the imprints serve as input data for the newly 

developed code PhaRe (Phase Recovery), inspired by the iterative Gerchberg-Saxton 

algorithm. New procedure of dynamic input-output mixing guarantees that the algorithm 

always converges to a self-consistent paraxial Helmholtz equation solution which is thereafter 

optimized for transverse spatial coherence. Very good agreement with single-shot ablation 

imprints in lead tungstate (PbWO4) was found. The experiment was carried out at the Linac 

Coherent Light Source (LCLS) with a focused beam monochromatized at 800 eV. Results of 

the coherence optimization indicate that the act of monochromatization may have an effect on 

otherwise very good transverse coherence of free-electron laser beams. 
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I. INTRODUCTION 
In the soft and hard X-ray spectral domain, being routinely accessible by X-ray free-electron 

lasers (FELs) [1-5], the diffraction-limited spot size is intrinsically reduced due to very short 

wavelengths. This makes it possible to compress X-ray beams to (sub)micron foci [6,7] whilst 

achieving very high intensities. Therefore, direct focused beam characterization is not an easy 

task. Methods exist allowing remote focus characterization performed in-situ in an indirect 

[8,9] or semi-direct [10-12] manner. However, placement of the sensing element (e.g., an X-

ray CCD, luminescence screen) directly at the focus is not safe due to excessive radiation 

intensities. Furthermore, very high transverse spatial resolution is required to sample the focal 

spot properly. Both requirements are usually met by placing the sensing element out of the 

high-intensity region where the spot size is sufficiently large. The intensity distribution and 

phase profile of the focal spot can be recovered numerically with use of sophisticated back-

propagation or phase recovery algorithms. Semi-direct methods [10-12], introducing a well-

defined mask in the focal region, represent an important step towards directness of such 

measurements. Nevertheless, making these measurements entirely direct would require 

placing the sensing element at the focus which is hardly achievable with standard detectors.  

A few ex-situ [13-16] and in-situ [17] ablation imprint techniques have been proposed 

to overcome constraints connected with excessive intensities and resolution requirements at 

the focal point. Single-shot ablation imprints in various solid-state materials were exploited 

for direct ex-situ characterization of focused soft X-ray laser beams. Ablation imprints in 

PMMA have been utilized to align a super-polished off-axis parabolic mirror and sub-micron 

focus [6] was achieved at the Free-electron Laser in Hamburg (FLASH). Consequently, a 

record peak intensity of ~1017 W/cm2 was attained which enabled measurement of saturable 

absorption in aluminium at 13.5 nm [18] and spectroscopic investigation of warm dense 

aluminium plasma [19,20]. During the SXR (Soft X-ray Materials Research) instrument 

commissioning, ablation imprints in lead tungstate (PbWO4) served as a diagnostic tool for 

characterization of 800-eV and 1600-eV LCLS beams [15]. Also, for a non-ideal (non-

Gaussian) beam, it has been experimentally proven that exact knowledge of the focused beam 

profile can markedly help with interpretation of laser-matter experimental results [21,22].  

The original method of ablation imprints was first reported by Liu [23]. Silicon targets 

were used to characterize focused Gaussian beams in the visible and ultraviolet spectral range. 

This method was further extended to extreme ultraviolet and soft X-ray spectral domain 

[13,15] and to focused non-Gaussian beams [14,16]. Recently it was experimentally 
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demonstrated, but not yet published, that some targets can be used to characterize focused 

laser beams in the hard X-ray domain. Methods of ablation imprints were successfully utilized 

at the LCLS facility [4] tuned at 7.6-keV and SACLA (SPring-8 Angstrom Compact Free 

Electron Laser) facility [5] tuned at 12-keV. In the latter case the beam characterization was 

performed for the purposes of interaction experiments aimed at radiation damage to X-ray 

optics induced by intense hard X-rays [24]. Techniques of ablative imprints find applications 

not only in the short-wavelength spectral domain, e.g, in testing of new focusing optics 

[25,26] and measurements of coherence properties of FEL beams [27], but also in the long-

wavelength spectral region [28]. 

 
FIG. 1. A multi-shot (500 shots) desorption imprint in PMMA created by focused LCLS beam monochromatized 

at 800 eV. The imprint was recorded out of focus (z = 182 mm) and the image was ex-situ acquired by an atomic 

force microscope (AFM) operated in the tapping mode. Owing to a high degree of spatial coherence in the 

horizontal direction (x), vertically oriented interference fringes, originating at the beamline X-ray optics, occur. 

  

Initially, PMMA targets were solely used to characterize laser beams in the softer X-

ray domain [13,14,16] (ħω < 100 eV) as the roughness of the ablated surface is significantly 

enhanced in the harder energy range. Nevertheless, it has been proposed that the so called 

sub-threshold desorption regime could be used for multi-shot beam imprinting [29,30]. As 

shown in Fig. 1, multi-shot desorption imprints in PMMA are usually smooth and do not 

indicate any threshold behavior; hence desorption imprints are not truncated, which is typical 

for ablation imprints. The above phenomena allow us to discern fine structures of the focused 

beam over an extended wavelength range provided that the beam pointing stability is 

satisfactory. In accord with the phenomenological model [29], the desorbed crater profile is 
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proportional to the incident fluence profile and thereby to the square of the electrical field 

modulus. Consequently, fluence profiles are measurable, for example, by means of atomic 

force microscopy with ultra-high spatial resolution. The “measured” field moduli serve as 

input data for the phase recovery algorithm reported in this paper. Utilization of desorption 

imprints represents an approach which enables full and direct spatial characterization of 

focused laser beams. Therefore, it considerably extends capabilities of current (ablative) 

imprinting methods. 

The paper is organized as follows: In Section II we describe the experimental layout, 

the procedure of target irradiation, and the technique of microscopy analysis. Section III 

details the phase recovery algorithm, especially pre-processing methods and the procedure of 

iterative phase retrieval. Section IV deals with the post-processing procedure of coherence 

optimization which evaluates and incorporates partial coherence into the phase recovery 

result. Section V is devoted to discussion of results and comparison with single-shot ablation 

imprints in lead tungstate. Furthermore, an effect of monochromatization on otherwise very 

good transverse coherence of FEL sources is discussed here. Section VI concludes the paper. 

Appendices A, B, and C summarize the mathematical background of the coherence 

optimization technique employed in the PhaRe code. 

II. EXPERIMENT 
All experimental data was collected during the commissioning phase of the SXR/LCLS 

instrument [31-33] with use of a varied-line-spacing (VLS) grating monochromator [31]. The 

FEL beam is first focused in the vertical direction with use of a grazing incidence spherical 

mirror (M1) to an exit slit of variable width. The role of the exit slit is to spectrally select a 

desired part of otherwise much broader FEL spectrum which is vertically projected onto the 

slit plane by the VLS grating and the spherical mirror. The reflective VLS grating and the exit 

slit are located 0.3 m and 7.8 m downstream from the spherical mirror, respectively. Vertical 

(M2) and horizontal (M3) focusing mirrors of an adaptive Kirkpatrick-Baez (KB) optical 

system are positioned 4.5 m and 5 m downstream from the monochromator’s exit slit, 

respectively. This optical system allows for independent and adjustable focusing in both the 

horizontal and vertical direction. Position of the focus is changeable, however, its default 

location is 1.5 m downstream from the last (horizontal) KB mirror. All optical surfaces are 

thin B4C layers coated on super-polished substrates [34]. 

A VLS grating with center line density of 1/100 mm was used to monochromatize the 

LCLS beam to 800 eV and to eliminate higher harmonics. The LCLS beam was incident upon 
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the grating under a grazing angle of 19.5 mrad and the first negative diffraction order was 

used. Vertical opening of the exit slit was 30 μm which was approximately twice less than the 

vertical SCM (second central moment) width of the dispersed spectrum at this location and 

photon energy. PMMA samples were positioned approximately 150 cm downstream from the 

last horizontal KB mirror (at the expected focus location) and oriented perpendicularly to the 

incident laser beam. All irradiated samples were mounted on a target holder which was 

actuated by a 3-axis translational manipulator. Exposures were conducted in a vacuum 

chamber allowing longitudinal translation over a range of 240 mm.  

During the experiment several multi-shot desorption imprints at different longitudinal 

positions were recorded on the PMMA surface in order to probe the focus and its 

surroundings. Hundreds of shots (100, 300, and 500) were accumulated at the same spot to 

attain a reasonable imprint contrast. Since the damage mechanism must remain in the linear 

desorption regime (i.e., the peak fluence must not overshoot the single-shot ablation 

threshold), a nitrogen-filled gas attenuator was used to reduce the pulse energy down to 0.1% 

of the maximum available pulse energy. Through-focus scans were repeated at several 

different attenuation levels (full power, 10%, 1%, and 0.1%) in order to stay below the single-

shot ablation threshold at all longitudinal positions, i.e., at the focus and in out-of-focus 

regions. Shapes of the imprints were ex-situ investigated by atomic force microscopy (AFM). 

Ablated imprints and imprints evincing a non-linear response due to excessive accumulated 

dose were excluded from further analysis.  

All measurements were carried out in the tapping mode with use of Dimension 3100 

scanning probe microscope (SPM) driven by a NanoScope IV controller (Veeco, USA). 

Acquisition of each image with use of this particular device requires approx. 30 minutes. 

However, capabilities of new microscopy devices, especially of white-light interferometers, 

continuously improve. This makes it possible to acquire high-resolution three-dimensional 

images within a few seconds. Utilization of such devices has a prospective in-situ application 

in future beam characterization methods exploiting ablation and desorption imprints.   

III. PHASE RECOVERY ALGORITHM 
Our phase recovery code (PhaRe) was written using the IDL development software and 

comprises of three major parts. In the first pre-processing part, beam profile (AFM) data is 

loaded and appropriately refined by filters. It follows from the momentum conservation law 

that the centroid of transverse intensity distribution must follow a straight line as the laser 

pulse propagates in free space. Therefore, centroids of all measured intensity profiles must be 
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shifted to the center of each image, i.e., positioned at the longitudinal z-axis (optical axis). It 

should be also noted that all AFM data need to be acquired under the same sample-to-

microscope orientation otherwise the coordinate system becomes undefined. The modified 

intensity data are normalized in the sense of the L2-norm. This requirement arises from the 

energy conservation law which must be met as the laser pulse propagates in free space. From 

here it follows that the integral (volume) below the normalized intensity profile is constant 

with longitudinal z-position. Finally, electrical field amplitudes |En
M| are calculated as a 

square root of normalized intensity distributions. Figure 2(a) depicts the electrical field 

profiles assigned to their corresponding z-positions, which serve as input data for the main 

processor. 

 
FIG. 2. A visualization of input and output data generated by the PhaRe code. Row (a) depicts measured 

electrical field moduli, rows (b) and (c) show recovered (fully coherent and self-consistent) field amplitudes and 

phases modulo 2π, rows (d) and (e) visualize the recovered gS(κ,zn) function and the fit of the astigmatic 

Gaussian Schell model, and row (f) displays coherence optimized field amplitudes. All images, except for rows 
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(d) and (e), are in the same scale and each column is assigned a corresponding z-position. Images in rows (d) and 

(e) are in the reciprocal space and in the same scale. Both color scales for amplitude and phase are linear. 

The main body of the code solves the phase problem in the Fresnel (paraxial) 

approximation. The code works similarly to the Gerchberg-Saxton (GS) [35-37] and related 

algorithms [38] but, unlike the GS algorithm, PhaRe is naturally constrained by the measured 

data and Fresnel propagation is used to retrieve the complex field curvature. To illustrate this, 

a schematic layout of the phase recovery algorithm, applied to a sequence of three intensity 

measurements, is shown in Fig. 3(a). The field propagation between two neighboring 

positions n and m = n ± 1 is realized by a convolution of the initial field 

En = |En|exp(iφn) = E(ρ, zn) with the Fresnel propagation kernel exp[ik|ρ|2/(2ζnm)]. Here ρ 

denotes the transverse coordinate vector, ζnm = zm - zn is the mutual longitudinal distance 

between the initial (zn) and final (zm) position, k is the angular wavenumber, and |En| and φn is 

an updated (recovered) modulus and phase at the initial position zn. The Fresnel propagation 

can be more conveniently performed in the Fourier domain as the convolution changes to a 

simple multiplication: 

 ( ) ( )T 2ˆ ˆ, , exp
2

nm
m n

iE z E z
k

ζ⎛ ⎞= −⎜ ⎟
⎝ ⎠

κ κ κ , (1) 

where κ is the transverse coordinate vector in the k-space and the wedge symbol ^ stands for 

the Fourier transform. From the inverse Fourier transform, a temporary complex electrical 

field is obtained and split into the modulus and phase: Em
T = |Em

T|exp(iφm).  
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FIG. 3. (Color) A sketch of basic operations performed by the PhaRe code. (a) An illustrative flow chart 

depicting j-th iteration loop of the phase retrieval algorithm applied to three consecutive intensity measurements. 

This layout can be extended to an arbitrary number of positions. Green circles stand for the measured field 

moduli |En
M|, yellow rectangles represent temporary electrical fields |En

T|exp(iφn), and blue rectangles contain the 

recovered electrical fields |En|exp(iφn) consisting of the modulus |En| and phase φn. The recovered field modulus 

is constructed as a linear combination of the corresponding measured and temporary modulus αj|En
M|+ βj|En

T|. 

This combination is dynamically scaled by factors αj, βj plotted in (b) with respect to the iteration loop number. 

Figure (b) also shows the progress of the total χ-squared and clearly displays the particular phases of the 

algorithm, i.e., no I/O mixing (drop in χ2 followed by stagnation), dynamic I/O mixing (local χ2 increase 

followed by a drop), self-consistent solution (no change in χ2), and coherence optimization (drop in χ2).  

 

In early iteration loops the input fields, which are subject to propagation, are 

constructed from the corresponding measured field moduli and updated (recovered) phases. 

Nevertheless, due to possible inaccuracies in the measurement, the resultant electrical field 

may still deviate from the self-consistent paraxial Helmholtz equation solution despite the 

algorithmic convergence tends to a stagnation point [see Fig. 3(b)]. Hence in latter iteration 

loops a dynamic input-output mixing sub-routine is implemented in order to remove the 

measured field moduli from the recovery process and to replace them smoothly by the 

recovered ones.  For this purpose the electrical fields En, entering the j-th phase retrieval loop, 

are always constructed as a linear combination of the measured (M) and temporary (T) field 

modulus: En = (αj|En
M|+βj|En

T|)exp(iφn). Here αj, βj are dynamic scaling factors dependent on 

the iteration loop number j, as plotted in Fig. 3(b). These scaling factors obey a condition 

αj + βj = 1 for all iteration loops. As depicted in Fig. 3(b), no input-output mixing is imposed 

in the first 40 iterations and the convergence quickly tends to a stagnation point in terms of 

the total χ-squared (total sum of squared differences between corresponding measured and 

recovered field moduli). Within the next 40 iterations, the α-factor linearly drops from 1 to 0 
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whereas the β-factor rises from 0 to 1, which leads to a dynamic input-output mixing. 

Consequently, the measured field amplitudes are entirely and smoothly removed from the 

calculation. No change in the total χ-squared within the last 20 iterations confirms a self-

consistent propagation of the resultant field, whence it follows that a solution of the paraxial 

Helmholtz equation was found. Recovered field moduli and phases are depicted in Figs. 2(b), 

2(c) and a complete recorded code run is shown in Video 1. 

 
VIDEO 1. A complete recorded run of the PhaRe code. 

IV. COHERENCE OPTIMIZATION 
Since the retrieved electrical field must be considered as fully transversally coherent, some 

additional features may appear in the recovered beam profiles and the divergence may be 

lower than expected. Evidently, by comparing Figs. 2(a) and 2(b), it can be seen that the 

recovered beam divergence is noticeably reduced in the vertical direction which indicates 

possible coherence issues. Therefore, the resultant data need to be optimized for the partial 

coherence which is carried out in the third post-processing part of the code. For this purpose 

the so called Schell model [39-42] is employed.  It is a beneficial property of this model that 

the modulus of the complex degree of transverse coherence (at equal time) can be revealed 

numerically from the measured and recovered intensity data. As shown in Appendices A and 

B, the Fourier transform of the partially coherent intensity profile at an arbitrary z-position 

can be expressed as:  

 ( ) ( ) ( ) ( ) ( )PC FC FC
S S S

ˆ ˆ ˆ, , , , ,I z I z g z z z I z g z
k

⎡ ⎤= − =⎢ ⎥⎣ ⎦
κκ κ κ κ , (2) 
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where Î PC(κ, z) and Î FC(κ, z) are the respective Fourier-transformed partially and fully 

coherent intensities and g(•, zS) is the Schell’s approach to the complex degree of coherence at 

the secondary Schell-model source position zS. Provided that the recovered and measured 

electrical fields correspond respectively to the fully coherent and partially coherent case of the 

studied beam, i.e., IFC(ρ,zn) ~ |E(ρ,zn)|2 and IPC(ρ,zn) ~ |EM(ρ,zn)|2, we can recover the modulus 

of the gS(κ,zn) function to some reasonable accuracy, as justified in Appendix C and depicted 

in Fig. 2(d).  

In the present study an astigmatic Gaussian Schell model of the following form (see 

Appendix C):  

 ( ) ( ) ( )22
SS 2 2

S 2 2 2 2
S S

, exp
2 2

yx
x y

x y

z zz z
g z

k k
κ κ

σ σ

⎡ ⎤−−⎢ ⎥= − −
⎢ ⎥
⎣ ⎦

κ , (3) 

was globally fitted to the coherence data [see Fig. 2(e)] in order to determine the coherence 

widths σSx and σSy at the positions zSx and zSy of the respective horizontal (x) and vertical (y) 

Schell-model sources. Based on the aforementioned results, coherence optimized intensity 

profiles can be retrieved at any longitudinal position with use of Eqs. (1), (2), and (3). This is 

illustrated by Video 2 which shows the coherence optimized field modulus, fully coherent 

field modulus, and phase of the beam as it propagates in the measurement range. Evidently, 

the Schell model can be very helpful in solving the coherence phenomena being in general 

enormously computationally difficult. However, it should be kept in mind that the Schell 

model and its astigmatic Gaussian approximation still represents a two-dimensional approach 

to otherwise four-dimensional complex degree of coherence. This indispensably brings certain 

limitations on accuracy. 

 
VIDEO 2. A simulation of the recovered beam showing the partially coherent field modulus, fully coherent field 

modulus, and phase as the beam propagates in the measurement range. 

 

In contrary to the fully coherent results in Fig. 2(b), coherence optimized results in 

Fig. 2(f) closely resemble the measured data displayed in Fig. 2(a). Legitimacy of these 

results is also indicated by a significant reduction of the total χ-squared, as shown in Fig. 3(b). 



11 
 

In accord with Eq. (C6), applicable to Gaussian Schell-model beams, the degree of transverse 

coherence in the horizontal direction was found to be ξx = 84%. This result is in very good 

agreement with double slit measurements [43] performed at the same LCLS instrument. 

Nevertheless, the degree of transverse coherence in the vertical direction is as low as 

ξy = 38%, albeit similar value as in the horizontal direction is expected. For this result there 

are at least two possible explanations, both connected with the presence of the 

monochromator having its dispersion axis oriented vertically. Firstly, due to the central 

wavelength jitter, the beam pointing instability in the vertical direction may be increased. 

Consequently, the accumulated imprint may appear broader. The second explanation resides 

in the poor temporal (spectral) coherence of FEL sources which, upon monochromatization, 

may negatively influence otherwise very good transverse coherence in the direction of 

dispersion. This is in more details discussed in the next section. 

V. DISCUSSION 
For the purposes of comparison, several single-shot ablation imprints were recorded in lead 

tungstate (PbWO4) under the same beam conditions as in PMMA. Despite the different nature 

of the damage process in ionic crystals and different irradiation regimes (single-shot ablation 

vs. multi-shot desorption), the shapes of these ablative imprints, their orientation, and the 

appearance of fringes show an excellent consistency with the coherence optimized field 

profiles numerically recovered at the corresponding positions (see Fig. 4).  

 
FIG. 4. A comparison between the recovered coherence optimized field amplitudes and single-shot ablative 

imprints in lead tungstate. The recovered electrical field (a) was propagated to the corresponding z-positions with 

use of the Fresnel propagation and thereafter optimized for the partial coherence. PbWO4 imprints (b) were 

examined using a Nomarski DIC (differential interference contrast) microscope. Apparent difference in sizes, but 

not in shapes, is caused by the threshold nature of the ablation process leading to truncation of the imprinted 

beam profile at a certain threshold fluence level. All images are in the same scale. 
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Consistency of the results partly disproves the first argument for the reduced degree of 

transverse coherence in the vertical direction since single-shot imprints are not sensitive to the 

pointing jitter. In this particular case, the shot-to-shot variation of laser beam parameters 

appears to have a minor effect on the phase recovery result obtained from averaged electrical 

field profiles. Consistency of both results could be ascribed to a very good beam stability and 

to the self-consistency of the numerical solution substantially reducing its possible ambiguity.  

From the ablative imprints in PbWO4 (z-scan), basic beam propagation parameters can 

be estimated if an astigmatic Gaussian beam is assumed [15]. Figure 5 compares effective 

caustic curves [14] generated by PhaRe with PbWO4 results. Despite the beam was aberrated 

and non-Gaussian, these two distinct methods show a very good agreement in their results and 

mutually confirm their correctness. 

 
FIG. 5. (Color) A plot depicting the z-dependence of the effective area of the beam. Plotted values represent the 

measured data (black open circles), recovered fully coherent data (green squares), and coherence optimized data 

(red triangles). The solid green and red line stand for the simulated fully coherent and coherence optimized 

beam, respectively, whereas the dashed blue line represents the effective caustic curve evaluated from the 

PbWO4 z-scan in an astigmatic Gaussian beam approach. 

 

 The transverse coherence issue, raised by the coherence optimized results of the PhaRe 

code, has to be discussed in a broader context. Coherence properties of FEL beams generated 

in undulators largely follow from the nature of the SASE (self-amplified spontaneous 

emission) process starting from the shot noise. The degree of transverse coherence can reach 

very high values close to unity, whereas temporal coherence is obviously low. A coherence 

time of 0.55 fs (SCM – second central moment) was measured at the Linac Coherent Light 

Source tuned at 780 eV [43]. Comparing the coherence time with the pulse duration of 127 fs 

(SCM), one may expect very low temporal coherence which is a consequence of very 
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complex modal structure of the FEL wavefield. A typical power spectrum of single FEL 

pulses reveals many narrow and separate peaks representing mutually incoherent longitudinal 

modes. These modes originate in the shot noise and are independently amplified at slightly 

different frequencies. We can illustrate their presence by a demagnified image of the exit slit 

formed by KB optics. Figure 6(a) depicts an exit slit image (transverse intensity profile) 

recovered with use of the PhaRe code and Fig. 6(b) shows the corresponding single-shot 

ablative imprint in lead tungstate (PbWO4). Three separate modes are clearly discernible in 

both images; the remaining part of the spectrum was clipped off by the exit slit. 

 
FIG. 6. An image of monochromator’s exit slit projected by the Kirkpatrick-Baez focusing optics. (a) Coherence 

optimized intensity profile recovered by the PhaRe code at the longitudinal position z = 124 mm. (b) A single-

shot ablative imprint in lead tungstate (PbWO4) created at the same longitudinal position.  

 

Monochromatized FEL wavefield may considerably differ from the original one in 

many aspects, including the beam shape and transverse coherence. The wavefield in the 

horizontal direction (perpendicular to the dispersion direction) remains almost unaffected by 

the act of monochromatization, which indicates an invariability of the degree of transverse 

coherence in this direction. This was verified by the phase recovery measurement since the 

determined value of the degree of transverse coherence (ξx = 84%) is in a very good 

agreement with the double-slit measurement (75%) done with the non-monochromatized 

beam of comparable photon energy [43]. However, quite different situation occurs in the 

vertical direction, i.e., in the direction of dispersion. The vertical beam profile at the exit slit 

position represents the power spectrum of the corresponding FEL pulse. Hence fluctuations 

and correlations in the FEL spectrum should have an effect on statistical properties of the 

wavefield in the vertical direction. In other words, being transposed by the monochromator 

from the spectral to the spatial domain, the power spectrum and complex degree of spectral 

coherence should correspond to the intensity profile and complex degree of transverse 

coherence at the exit slit, respectively. Since the coherence time is much shorter than pulse 

duration, we can treat this FEL radiation nearly as a stationary random process. Therefore, we 
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can claim that the spectral width, being inversely proportional to the coherence time [44], is 

much greater than the spectral coherence width, being inversely proportional to the pulse 

duration. Upon monochromatization, the spectral width and spectral coherence width is, via 

the grating equation, transformed to the transverse (vertical) beam width and coherence width 

at the position of the exit slit, respectively. If we compare the resultant SCM coherence width 

(~ 0.3 μm) with the SCM slit width (~ 8.7 μm for uniform illumination), then, according to 

Eq. (C6), we must conclude that the degree of transverse coherence is very small (ξy ~ 2%). 

This is, however, what we observe neither in PhaRe simulations nor in PbWO4 measurements. 

Origin of this discrepancy resides in the resolving power of the monochromator, which was 

not taken into account. Resolving power of 3000 was measured at the SXR instrument [31]; 

hence the SCM width of the resolution function at the exit slit is ~ 6.3 μm for 800-eV photons 

and the first negative diffraction order. The power spectrum (or the transverse beam profile in 

the vertical direction) as well as the complex degree of spectral coherence (or the complex 

degree of coherence in the vertical direction) must be convolved with monochromator’s 

resolution function (typically of a Gaussian shape) in order to get the real profiles. The 

transverse coherence width of the convolved complex degree of coherence then 

approximately equals to the width of the resolution function (~ 6.3 μm) since its “non-

convolved” value (~ 0.3 μm) is negligibly small. Inserting this value and the SCM slit width 

into Eq. (C6), we get ξy ~ 34% which is in a very good agreement with the degree of 

transverse coherence evaluated by the PhaRe code (ξy = 38%).  

VI. CONCLUSIONS 
In summary, a focused soft X-ray laser beam, monochromatized at 800 eV, was characterized 

directly at the focal point and its surroundings with use of multi-shot desorption imprints in 

PMMA. Shapes of the imprints served as input data for the newly developed PhaRe code 

which recovers a self-consistent solution of the paraxial Helmholtz equation. Schell model 

was used to optimize the fully coherent result for partial coherence. Coherence optimized 

results show a very good agreement with single-shot ablation imprints in lead tungstate 

created under the same beam conditions. It was also found that the act of monochromatization 

may have a negative effect on otherwise very good transverse coherence of FEL beams. The 

imprinting methods, discussed here, show the capability to explore focused X-ray laser beams 

directly and, therefore, to add to the ensemble of tools available for rigorous focused X-ray 

laser beam characterization, a critical step for the future of novel types of X-ray sources such 

as FELs.  
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APPENDIX A: FRESNEL PROPAGATION OF PARTIALLY 

COHERENT WAVEFIELDS 
Propagation of monochromatic partially coherent beams can be conveniently described in 

terms of the mutual optical intensity J(r1,r2) [41], which is sometimes referred to as “equal-

time correlation function” [40]. It can be defined as: 

 ( ) ( ) ( ) ( )1 2 1 2 1 2, , ,0 , ,
ensemble

J E t E t∗= Γ =r r r r r r , (A1) 

where Γ(r1,r2,0) is the equal-time mutual coherence function, E is the scalar electrical field, 

and the angular brackets denote ensemble averaging. In fact, the mutual optical intensity 

(MOI) describes binary correlations of the electrical field at two different positions r1 and r2 

and at equal time t. In the Fresnel approximation the mutual optical intensity can be 

propagated along the optical axis of the beam by solving the following integral:  

( ) ( )
2 2

2
2 2 2 2

1 2 1 2 1 1 2 2 1 22 2, , , , exp exp
4 2 2R R

k ik ikJ z J z d dρ ρ
π ζ ζ ζ

⎡ ⎤ ⎡ ⎤′ ′ ′ ′ ′ ′ ′= − − −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∫∫ ∫∫ρ ρ ρ ρ ρ ρ ρ ρ . (A2) 

Here ρ1, ρ2, ρ1’, and ρ2’ denote transverse coordinates at the final (non-primed) and initial 

(primed) transverse plane and k is the angular wavenumber. The planes are mutually 
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separated by ζ = z - z’. The intensity profile at the final plane is given by MOI at one point 

ρ1 = ρ2 = ρ; hence it can be expressed as: 

( ) ( ) ( ) ( )
2 2

2
2 2

1 2 1 2 1 22 2, , , , , exp
4 R R

k ikI z J z J z d dζ ρ ρ
π ζ ζ

⎡ ⎤′ ′ ′ ′ ′ ′ ′∝ = ⋅ −⎢ ⎥
⎣ ⎦

∫∫ ∫∫ρ ρ ρ ρ ρ ρ ρ ρ% , (A3) 

where the MOI with tilde is for the purposes of further facilitation defined as: 

 ( ) ( ) ( )2 2
1 2 1 2 2 1, , , , exp

2
ikJ z J zζ ζ

⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′= −⎢ ⎥
⎣ ⎦

ρ ρ ρ ρ ρ ρ% . (A4) 

The Fourier-transformed intensity then reads: 

 ( ) ( ) ( )
2

2ˆ , , exp
R

I z I z i d ρ= − ⋅ ∝∫∫κ ρ κ ρ  

 ( )
2 2 2

2
2 2 2

1 2 2 1 1 22 2 , , exp
4 R R R

k ikJ z d d d
kζ
ζ ρ ρ ρ

π ζ ζ
⎡ ⎤⎛ ⎞′ ′ ′ ′ ′ ′ ′∝ − ⋅ + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫∫ ∫∫ ∫∫ ρ ρ ρ κ ρ ρ% . (A5) 

The integral of the exponential function results in delta-function: 

 
2

2 2
2

2 1 2 12

4exp
R

ik d
k k k
ζ π ζ ζρ δ

ζ
⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′ ′ ′− ⋅ + − = + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫∫ ρ κ ρ ρ κ ρ ρ , (A6) 

whence it follows that the Fourier-transformed intensity obtains a very simple form: 

 ( )
2

2ˆ , , ,
R

I z J z d
kζ
ζ ρ⎛ ⎞′ ′ ′ ′∝ −⎜ ⎟

⎝ ⎠∫∫κ ρ ρ κ% . (A7) 

APPENDIX B: THE SCHELL MODEL 
The generalized Schell model [39-42] describes to a good approximation coherence properties 

of many laser sources. In the frame of this model, the transverse intensity distribution at the 

position z’ = zS of the secondary Schell-model source has always the same shape irrespective 

of the coherence state. In other words, the beam profile of the secondary Schell-model source 

is independent of the degree of transverse coherence, whether it be full, partial, or none 

(incoherent). Therefore, partially coherent Schell-model beams are usually propagated from 

the source position where the initial mutual optical intensity can be factorized as: 

 ( ) ( ) ( )PC FC
S S S, , , , ,J z J z g zζ ζ′ ′ ′ ′ ′ ′= −1 2 1 2 1 2ρ ρ ρ ρ ρ ρ% % . (B1) 
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Here Jζ PC and Jζ FC with tildes are partially and fully coherent mutual optical intensities, 

respectively, and g(ρ1’-ρ2’, zS) is the Schell’s approach to the complex degree of coherence at 

the secondary Schell-model source position. By substituting the partially coherent MOI from 

Eq. (B1) to Eq. (A7), we obtain a factorized expression for the Fourier-transformed partially 

coherent intensity at an arbitrary z-position: 

 ( ) ( ) ( ) ( ) ( )PC FC FC
S S S

ˆ ˆ ˆ, , , , ,I z I z g z z z I z g z
k

⎡ ⎤= − =⎢ ⎥⎣ ⎦
κκ κ κ κ , (B2) 

where the Fourier-transformed fully coherent intensity reads: 

 ( ) ( )
2

FC FC 2
S S

ˆ , , ,
R

I z J z z z d
kζ ρ⎡ ⎤′ ′ ′∝ − −⎢ ⎥⎣ ⎦∫∫
κκ ρ ρ% . (B3) 

Equation (B2) means that for any point z the partially coherent intensity distribution 

IPC(ρ,z) is given by a convolution of the fully coherent intensity distribution IFC(ρ,z) with an 

inverse Fourier image of the function gS(κ,z). It naturally follows from Eq. (B2) that fully and 

partially coherent intensity profiles must be identical at the secondary Schell-model source 

position since gS(κ,zS) = 1. In compliance with our expectations of a fully coherent laser 

beam, the intensity profiles IPC(ρ,z) and IFC(ρ,z) will be identical in the whole space since 

gS(κ,z) = 1 for all z-positions. In case of a fully coherent beam, the inverse Fourier image of 

gS(κ,z) is the δ-function acting as identity in the convolution, whereas, in case of a partially 

coherent beam, the inverse Fourier image of gS(κ,z) has nonzero width which is a cause of 

increased beam divergence.  

APPENDIX C: EVALUATION OF COHERENCE PARAMETERS 
In fact, if the Fourier-transformed intensities Î PC(κ,z) and Î FC(κ,z) were known, the modulus 

of the gS(κ,z) function could be evaluated as:  

 ( )
( )
( )

PC

S FC

ˆ ,
, ˆ ,

I z
g z

I z
=

κ
κ

κ
. (C1) 

Let us assume that the recovered intensity profiles |E(ρ,zn)|2, generated by the PhaRe code, 

represent a fully coherent case of the studied beam IFC(ρ,zn). Furthermore, provided that the 

measured intensity profiles |EM(ρ,zn)|2, obtained by means of PMMA desorption imprints, 

depict the actual partially coherent state of the studied beam IPC(ρ,zn), we can claim that: 
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 ( )
( ) ( )

( ) ( )

2M

S 2

F.T. ,
,

F.T. ,

n

n

n

E z
g z

E z

⎡ ⎤
⎢ ⎥⎣ ⎦=
⎡ ⎤
⎣ ⎦

ρ κ
κ

ρ κ
. (C2)  

Here the operator F.T.[•](κ) stands for the Fourier transform.  

Such an analysis may seem straightforward, however, severe numerical issues arise 

when we attempt to express |gS(κ,zn)| by imposing a simple division. Therefore, Taylor 

expansion was used in order to overcome problems connected with small numbers in the 

denominator. For the purposes of calculations, all the functions are represented as finite two-

dimensional matrices. It can be proven that “element-by-element” inversion of a matrix A, 

i.e., Bij = 1/Aij, can be conveniently expressed as:  

 
0max max

1 1 1
kN

ij
ij

kij

A
B

A A A=

⎛ ⎞
= ≅ −⎜ ⎟

⎝ ⎠
∑ , (C3) 

provided that all matrix elements are positive (Aij ≥ 0 for all indices i, j). Here Amax is the 

maximum matrix element and N is the maximum order of expansion.  

By expanding the denominator in Eq. (C2) to an appropriate order (in our case 

N = 40), the modulus of the gS(κ,zn) function can be determined to a reasonable accuracy. 

However, presence of non-physical features and artefacts of the aforementioned mathematical 

approach cannot be entirely excluded. Hence, in order to model the coherence correctly, an 

astigmatic Gaussian Schell model is used in the following factorized form:  

 ( ) ( ) ( )2 2
1 2 1 2

S S 2 2
S S

;  , exp exp
2 2x y

x y

x x y y
g z z

σ σ
⎡ ⎤ ⎡ ⎤′ ′ ′ ′− −

′ ′− = − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1 2ρ ρ , (C4) 

where σSx and σSy represent coherence widths at the positions zSx and zSy of the respective 

horizontal (x) and vertical (y) Schell-model sources. The gS(κ,z) function then reads: 

 ( ) ( ) ( )22
SS 2 2

S 2 2 2 2
S S

, exp
2 2

yx
x y

x y

z zz z
g z

k k
κ κ

σ σ

⎡ ⎤−−⎢ ⎥= − −
⎢ ⎥
⎣ ⎦

κ . (C5) 

In order to obtain the coherence parameters σSx, σSy, zSx, and zSy, the above presented model 

function is to be fitted to the coherence data retrieved by means of Eq. (C2) with the aid of 

Eq. (C3). The fitting is done globally, i.e., simultaneously to all data at all measurement 

positions zn.  
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One of the most important quantities enumerating the “quality” of transverse 

coherence is the so called degree of transverse coherence which is supposed to be invariant 

for paraxial optical beams propagating in free space. In the simplest Gaussian Schell model 

approach (a Gaussian beam with a Gaussian complex degree of coherence), the degree of 

transverse coherence reads [45]: 

 S
2 2
S4

σ σξ
σ σ

=
+

, (C6) 

where σS is the aforementioned transverse coherence width and σ is the beam width in the 

same transverse direction. Both values are measured in terms of the central 2nd order statistical 

moment (SCM) at the position of the secondary Schell-model source. The degree of 

coherence ranges from 0 to 1. Boundaries of this interval represent hardly achievable 

incoherent and fully coherent states of the wavefield, respectively, whereas intermediate 

values stand for physically common partially coherent states. 

Once a fully coherent wavefield (a self-consistent output of the phase retrieval 

algorithm) and coherence parameters are known, propagation of the partially coherent beam 

to an arbitrary z-position can be done numerically with use of Eqs. (B2), (B3), and (C5). 

However, it is not necessary to solve the integral in Eq. (B3) since the propagated mutual 

optical intensity represents a fully coherent wavefield and thus can be factorized as a product 

of the electrical field and its complex conjugate. Instead of Eq. (B3), the Fresnel diffraction 

integral, e.g., in the form of Eq. (1), can be used to propagate the fully coherent electrical 

wavefield and Î FC(κ,z) can be simply calculated as the Fourier transform of its squared 

modulus. 
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