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We show that the particular distribution of mass deposited on the surface of a nanomechanical resonator can
be estimated by tracking the evolution of the device’s resonance frequencies during the process of desorption.
The technique, which relies on analytical models we have developed for the multimodal response of the system,
enables mass sensing at much higher levels of accuracy than is typically achieved with a single frequency
shift measurement and no rigorous knowledge of the mass profile. We report on a series of demonstration
experiments, in which the explosive molecule 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) was vapor deposited
along the length of a silicon nitride nanostring to create a dense, random covering of RDX crystallites on the
surface. In some cases, the deposition was biased to produce distributions with a slight excess or deficit of mass
at the string midpoint. The added mass was then allowed to sublimate away under vacuum conditions, with the
device returning to its original state over about four hours (and the resonance frequencies, measured via optical
interferometry, relaxing back to their pre-mass-deposition values). Our claim is that the detailed time trace of
observed frequency shifts is rich in information—not only about the quantity of RDX initially deposited but also
about its spatial arrangement along the nanostring. The data also reveal that sublimation in this case follows a
nontrivial rate law, consistent with mass loss occurring at the exposed surface area of the RDX crystallites.

I. INTRODUCTION

Nanoscale mechanical resonators have proven to be use-
ful tools for chemical detection [1–3] thanks to their incred-
ibly high sensitivity to added mass [4–7] and the ease with
which their vibrational frequencies can be measured to great
accuracy. For a device of tens or hundreds of picograms,
molecules adsorbed onto the surface at the scale of fem-
tograms or smaller are detectable as shifts in the resonance
frequencies [8–10]. A serious limitation, however, is that the
linear relationship between the amount of mass added and
the change in the observed resonances involves a sometimes
difficult-to-determine constant of proportionality. This fact,
which goes unacknowledged in much of the literature, is a ma-
jor impediment to high-accuracy nanomechanical mass sens-
ing.

For a perfectly uniform distribution of added mass, the con-
stant of proportionality is straightforward to compute: it is a
simple geometric factor, given by the ratio of the resonator’s
mode-specific “effective mass” to its true inertial mass [11].
Even if the deposition is nonuniform, the situation is still
manageable so long as the mass distribution is well charac-
terized (and not too concentrated near the nodes of the detec-
tion mode). More typical of a sensing application, though, is
that the distribution is of arbitrary form and more or less un-
known. In that case, there is no reliable way to extract the
total adsorbed mass from frequency shift measurements [12],
except at the level of an order-of-magnitude estimate.

To avoid this problem, efforts have been made to concen-
trate mass adsorption to specific sites on a device through
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complex fabrication [13]. An alternative approach has been
to employ multimode measurements [14–20], which can pro-
vide some degree of spatial resolution (limited by the propaga-
tion of experimental uncertainties through the “inversion ker-
nel” [21]). The simplest example is that both the size and lo-
cation of a point mass—situated along a resonator with extent
primarily in one dimension—can be determined from a simul-
taneous measurement of two resonance frequency shifts [22–
25]. In a slightly different context, multimode measurements
have been shown to provide single-resonator discrimination
for the mass added along an array of strongly coupled de-
vices [26].

The work reported in this paper also takes advantage of a
multimode framework (described in Sec. III), and we find that
silicon nitride nanostrings [27, 28] are an excellent platform
for our technique. Indeed, although the original experiment
by Dohn and collaborators to determine the mass and loca-
tion of a point-like object was performed on cantilevers [22],
it was soon recognized that the sinusoidal mode shapes char-
acteristic of nanomechanical strings greatly simplify the anal-
ysis [23]. As an added benefit, for materials such as stoichio-
metric silicon nitride, the high internal tension that draws a
doubly clamped beam taut enough to become string-like leads
to correspondingly high mechanical quality factors. These
high values aid in detection [29–31] and are maintained even
in the presence of a metallic overlayer added to the device for
the purpose of functionalization [32, 33].

In a previous study on nanostrings, real-time mass sens-
ing was mimicked by carrying out sequential frequency shift
measurements of the first two harmonics in conjunction with
pick-and-place deposition of a single micro-particle [23]. In
our work, genuine real-time observations are made: we mea-
sure the first, third, and fifth harmonics simultaneously as a
function of time while mass sublimates from the device sur-
face. This is possible because we are able to resolve all three
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of these modes using optical interferometry at the midpoint
of the string with the device entirely under thermomechanical
actuation.

We show that measurements of any pair of modes reveal
not only the instantaneous total mass of molecules adsorbed
but also their distribution—at least in the regime where the
distribution is smooth, slowly varying, and roughly symmet-
ric about the resonator midpoint. We provide explicit formulas
(derived in Section III and presented in Table II) for the mass
coefficients of the uniform and nonuniform components of the
adsorbate distribution in terms of all combinations of the fre-
quency shifts measured in modes 1, 3, and 5—including the
pseudo-inverse result in which three measurements determine
the two coefficients in the least squares sense—and we show
that the variance amongst these estimates can be used as an
effective tool to judge the combined uncertainty due to mea-
surement error and analytical assumptions.

The multimode measurement technique also tells us about
the desorption characteristics of the added molecule, here the
explosive 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). In par-
ticular, our analytical model is able to discriminate between
two situations: (i) where RDX molecules are bound to the res-
onator surface and thus display first-order or Langmuir-like
rate kinetics; and (ii) where the RDX molecules are bound
to each other in crystalline formations (born from randomly
distributed nucleation sites), and sublimation occurs primarily
from the crystal interface. As we will discuss in Sec. IV, our
frequency shift data support the latter interpretation. This is in
keeping with our expectations, since atomic force microscopy
studies have already established that RDX forms nanoscale
crystallites on the silicon nitride surface (see the lower panel
of Fig. 1 in Ref. 34).

Our combined experimental and theoretical study of mass
distribution and sublimation may be useful not only in the de-
sign of future explosive sensors [35, 36] but also in a wide
range of nanomechanical mass sensing applications where ac-
curate determination of adsorbed molecular mass is relevant.

FIG. 1. Optical microscope image showing a 101.7 µm nanostring
with a large number of RDX crystallites physisorbed onto the device
surface.

We expect it to have particular importance for single molecule
mass spectroscopy [12].

II. EXPERIMENTAL METHOD

The nanomechanical devices under study are of a simple,
doubly clamped beam architecture: 250 nm thick ribbons, 2–
3 µm wide and 100–300 µm long. Their out-of-plane vibra-
tional modes oscillate in the MHz range and exhibit quality
factors exceeding 105. The resonators are fabricated from sto-
ichiometric silicon nitride grown on a sacrificial silicon diox-
ide layer on top of a silicon handle. They are patterned using
standard optical lithography and reactive ion etching through
the nitride and then released using a buffered oxide etch. (A
detailed description of the fabrication process is provided in
Refs. 26, 31, and 32.) The resulting geometry establishes high
tensile strain along the length of the beam; as a consequence,
the device acts as a classical string, with its sinusoidal mode
shapes [31] enabling the analytical treatments that appear in
Sec. III. Molecules are adsorbed onto the nanostrings by va-
por deposition of RDX that has been heated and carried to the
sample chip via a flow of nitrogen gas. It is observed that the
RDX preferentially adsorbs onto the silicon nitride and ag-
gregates in clusters, visible in Fig. 1. We employed various
masks to gently bias adsorption around the midpoint of the
string. The weak thermal actuation of the string has no effect
on where the RDX settles.

Measurements are performed using optical interferometry.
Light from a HeNe laser (632.8 nm wavelength) is focused
onto the nanostrings, with part of the light reflecting from
the surface of the nanostring and part from the silicon sub-
strate underneath the string. The interference of light there-
fore encodes information on the relative separation between
the nanostring and the substrate as a modulation of the optical
intensity. The laser power incident on the string is no more
than 120 µW, and we have shown elsewhere [31] that there is
no heating effect.

We focus the laser light halfway along the nanostring. The
even-numbered, out-of-plane vibrational modes have a node
there, and so our measurements are not sensitive to them [11].
But for the odd-numerbered harmonics that we can detect,
the string center is always the point of maximum amplitude;
hence we are able to position the laser spot to high accuracy,
and the signal-to-noise ratio of the measurement is at its local
maximum.

The nanostring chip is placed into an optical access vacuum
chamber, reducing the viscous damping on the resonators [28]
and enabling thermomechanical measurements of the nanos-
trings [11]. The resulting vacuum (∼ 10−4 torr) causes sub-
limation of the RDX from the nanostrings, which is not ob-
served under ambient conditions [35, 36]. The HeNe detec-
tion laser is not resonant with any of the internal levels of
RDX and therefore its light is not adsorbed by the molecule.

A high frequency Zurich lock-in amplifier (model HF2LI,
capable of demodulating as many as six independent frequen-
cies) is used to isolate up to three harmonics that have large
thermomechanical displacement at the device midpoint. We
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track these harmonics as a function of time in order to extract
useful information about the distribution of mass on the device
surface and about the characteristics of the RDX sublimation
process. In practice, the continuous time trace of the optical
interferometry measurement, z(t), is used to generate a power
spectral density (PSD),

S(ω; t) =
1
T

∫ T

0
dτ eiωτ

∫ t−τ

t−T

dτ′ z(τ′)z(τ′ + τ), (1)

computed over a sliding time window of duration T ≈ 0.85 s.
The “instantaneous” resonance frequency ωn (t) is obtained
at each time t by fitting the PSD in the vicinity of its nth
peak to the usual (nearly-Lorentzian) damped harmonic os-
cillator lineshape, S(ω; t) = Anωn (t)/

[
(ω2

n (t) − ω2)2 +

(ωωn (t)/Qn )2] , with the quality factor Qn and the overall
amplitude An also optimized as part of the fit [11, 31]. This
analysis is simple enough that it can be done concurrently with
the data acquisition.

III. FRAMEWORK FOR ANALYSIS

A. Frequency shift in response to added mass

We begin by considering the total mechanical energy (ki-
netic plus potential) of a string of length L vibrating in one of
its normal modes:

En =

∫ L

0
dx µ(x)ω2

nu2
n (x). (2)

Here, x measures the distance along the string; ωn and un (x)
are the angular frequency and displacement profile of mode
n; and µ(x) is the mass per unit length at position x. A small
mass perturbation, arising from deposition of a distribution
of molecules on the surface of the string, leads to a modified
mass distribution µ(x) → µ(x) + δµ(x) and a corresponding
frequency shift ωn → ωn + δωn . To leading order, the vari-
ations δµ(x) and δωn leave the energy stationary (dEn = 0);
hence

−2
δωn

ωn
=

∫ L

0 dx δµ(x)u2
n (x)∫ L

0 dx µ(x)u2
n (x)

. (3)

Equation (3) can be understood as a linear relationship
δωn/ωn ∝ m/M between the relative frequency shift and the
ratio of the mass added, m =

∫ L

0 dx δµ(x), to that of the orig-

inal device, M =
∫ L

0 dx µ(x). The constant of proportionality

−
1
2

( ∫ L

0 dx δµ(x)u2
n (x)∫ L

0 dx δµ(x)

) ( ∫ L

0 dx µ(x)∫ L

0 dx µ(x)u2
n (x)

)
(4)

is unique to each mode and depends on how the resonator’s
own mass and the mass adsorbed on the surface are arranged.

A variety of other effects can come into play when mass
impinges on a resonator [37]. In devices whose vibrational

modes are dominated by Young’s modulus terms, a molecular
covering can induce surface stresses that significantly alter the
bending stiffness [38] (which, in the case of cantilevers, can
itself be the basis of a detection scheme [39, 40]). Additional
mass can also provide a new pathway for energy dissipation,
so that shifts in the resonant frequencies come about indirectly
through changes in the mechanical quality factor. Neither of
these effects is relevant to the devices we are studying. Our
experiment exploits two properties of nanostrings: (i) they live
in a high-tension limit where the bending terms are negligible
and the vibrational modes are almost perfectly harmonic, and
(ii) they exhibit high mechanical Q that is quite robust to the
presence of any molecular overlayer.

For a high-tension string, the mode shape is a sinusoid
un (x) = (2/L)1/2 sin(nπx/L), and hence

−2
δωn

ωn
=

∫ L

0 dx δµ(x) sin2(nπx/L)∫ L

0 dx µ(x) sin2(nπx/L)
. (5)

[The reflection symmetry of u2
n imposes the fundamental lim-

itation that δµ(x) cannot be distinguished from δµ(L − x) us-
ing frequency shift measurements alone.] If the unperturbed
string has a uniform mass distribution µ(x) = M/L, then
Eq. (5) specializes to

−
δωn

ωn
=

1
M

∫ L

0
dx δµ(x) sin2

( nπx
L

)
. (6)

There are two limits worth emphasizing. In the case of a uni-
form mass deposition profile, with δµ(x) = m/L leading to

−
δωn

ωn
=

m
2M

, (7)

the mass added, m, can be determined from a single frequency
shift measurement in any mode. A strongly peaked profile
represents the extreme opposite case. A point mass m de-
posited at position xm leads to

−
δωn

ωn
=

m
M

sin2
( nπxm

L

)
, (8)

and hence the unknown values of m and xm must be deter-
mined from two frequency shift measurements in any pair of
modes: specifically,

−
m
M

=
δω1

ω1

(
1 −

1
4
δω2/ω2

δω1/ω1

)−1
, (9)

xm =
L
π

arcsin
(
1 −

1
4
δω2/ω2

δω1/ω1

)1/2
(10)

for modes 1 and 2 (first derived in Ref. 23); and

−
m
M

=
δω1

ω1

(3
4
±

1
4
δω3/ω3

δω1/ω1

)−1
, (11)

xm =
L
π

arcsin
(

3
4
±

1
4

√
δω3/ω3

δω1/ω1

)1/2

(12)
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for modes 1 and 3 (expressions that, as far as we know, have
not previously appeared in the literature).

The general mass-sensing problem, however, is much more
difficult than either of these two limits and has the character-
istics of an ill-posed inverse problem. The constant of propor-
tionality in the relationship δωn/ωn ∝ m/M is undetermined,
and there is no way to recover an arbitrary mass profile δµ(x),
except from an infinite number of error-free frequency shift
measurements (or, in practice, from knowledge of δωn/ωn to
sufficient accuracy for all n = 1,2,3, . . . up to a cutoff corre-
sponding to the desired spatial resolution).

We propose to extract the information from the time evo-
lution of the resonance frequencies in a handful of modes by
making some reasonable assumptions about δµ(x).

B. Two-parameter mass distribution ansatz

We suggest a simple, two-parameter form to represent the
distribution of mass deposited on the string:

δµ(x) =
m0

L
+
πm1

2L
sin

(
πx
L

)
. (13)

Equation (13) has been concocted so that m0 and m1 have
units of mass, and the total mass sitting on the string is∫ L

0
dx δµ(x) =

m0

L
L +

πm1

2L
2L
π

= m0 + m1 ≡ m. (14)

m0 is nonnegative, but m1 may be of either sign. m1 > 0 de-
scribes a convex mass distribution, whereas −2m0/π < m1 <
0 describes a concave one. The lower bound on m1, which
follows from δµ(L/2) ∼ m0 + πm1/2 > 0, ensures that the
mass distribution remains everywhere nonnegative.

The assumptions behind Eq. (13) are that (i) the distribution
is symmetric under reflection about the midpoint of the string
and (ii) the distribution is smooth and slowly varying enough
that it can be approximated by one component that is uniform
across the string and another that places mass preferentially
toward (or away from, when m1 < 0) its center.

Putting Eq. (13) into Eq. (5) gives an expression for the
frequency shifts in the various modes:

−
δωn

ωn
=

1
M

(m0

2
+

2n2m1

4n2 − 1

)
. (15)

Inverting the relationship, we find that the values of m0 and
m1 can be estimated from frequency-shift measurements on
any pair of modes. For instance, in the case of modes 1 and 2
and modes 1 and 3, we find that

m0

M
= 8

δω1

ω1
− 10

δω2

ω2
,

m1

M
=

15
2

(
δω2

ω2
−
δω1

ω1

)
; (16)

m0

M
=

27
4
δω1

ω1
−

35
4
δω3

ω3
,

m1

M
=

105
16

(
δω3

ω3
−
δω1

ω1

)
. (17)

According to Eq. (15), higher modes (larger n) exhibit de-
creasing differentiation in the m1 coefficient and so become

less useful for distinguishing the components of the mass dis-
tribution: −δωn/ωn → (m0 + m1)/2M , independent of n, as
n → ∞.

A revealing, preliminary application of this style of analysis
is provided in Table I, where Eq. (17) has been enlisted to
characterize the mass distributed on seven nanostrings of four
different lengths following various levels of RDX exposure. In
each instance, the resonant frequencies of modes 1 and 3 were
measured before and after RDX vapor deposition. We find
that the estimates for m1 exhibit both positive and negative
sign (meaning convex and concave mass profiles), and in some
cases show magnitude |m1 | comparable to m0 itself. This is
evidence for a quite substantial variation in how RDX settles
along the length of the string from one experiment to the next,
and it confirms that a mass distribution close to uniform is
only rarely the outcome of our sample preparation. The results
in Table I are fully consistent with our intentional biasing of
the vapor deposition process.

How confident should we be in this analysis? One issue
that arises is how to quantify the uncertainty arising from our
choice of ansatz. The coefficients appearing in Eqs. (16) and
(17) are specific to our choice of the sine function in Eq. (13).
As a test of the robustness of our assumption, it will be helpful
to check the results against an alternative functional form. We
therefore also try a symmetric polynomial

δµ(x) = m0 + 6m1
x
L

(
1 −

x
L

)
. (18)

Also important is to look for consistency between the results
achieved with measurements on different sets of modes. As
discussed in Sec. II, the laser in our optical detection system
is parked at the string midpoint, so only the odd-numbered
modes are measured. Table II lists all the possible mass
determinations using frequency shifts in modes 1, 3, and 5
(exact determinations with the three available pairs and one
over-determination with the full triplet of modes), under the
assumption of a mass profile following either Eq. (13) or
Eq. (18).

A reasonable final value of the fractional mass added comes
from averaging those eight estimates:

m
M

=
m0 + m1

M

= 0.108031
δω1

ω1
− 0.534596

δω3

ω3
− 1.573434

δω5

ω5
.

(19)

The total uncertainty,
(
∆e

[
m/M

]2
+ ∆a

[
m/M

]2)1/2, is taken
to be a combination of the experimental errors arising from
imperfect knowledge of the relative frequency shifts,

∆e

[ m
M

]2
= 0.0117∆e

[
δω1

ω1

]2
+ 0.2858∆e

[
δω3

ω3

]2

+ 2.4757∆e
[
δω5

ω5

]2
, (20)

and the uncertainty due to the choice of ansatz, which we ap-
proximate by the spread around the mean estimate given in
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Length Width M Trial f1 f3 δ f1 δ f3 m0/M m1/M m =m0+m1 mu mu/m
(µm) (µm) (pg) (MHz) (MHz) (kHz) (kHz) (pg) (pg)

101.07† 2.83 218.10 1 2.5823 7.7928 −71.083 −210.511 0.0506 0.003 40 11.8 12.0 1.02
172.60 2.05 269.80 1 1.4871 4.4745 −0.100 −0.237 9.56×10−6 93.7×10−6 0.0279 0.0363 1.30

2 1.4885 4.4785 −1.708 −11.103 0.0139 −0.008 74 1.41 0.619 0.441
3 1.4898 4.4821 −13.045 −48.873 0.0363 −0.0141 5.99 4.73 0.788
4 1.4934 4.4931 −2.115 −7.752 0.005 54 −0.002 03 0.947 0.764 0.807

216.34 2.56 422.30 1 1.2104 3.6304 −9.891 −26.318 0.008 27 0.006 05 6.05 6.90 1.14
309.49 2.72 641.88 1 0.8345 2.5067 −2.163 −5.641 0.002 19 0.002 24 2.85 3.33 1.17

TABLE I. Results of a sequence of RDX depositions onto nanostrings spanning four different geometries, organized by string length and
deposition trial. M is the total pre-deposition mass inferred from the material density and device volume. Experimentally determined frequency
values are reported in columns 5–8: viz., the initial mode frequencies of the first and third harmonics, f1 and f3, and the shifts in those
frequencies after the mass deposition, δ f1 and δ f3. The ratios m0/M and m1/M , are obtained from Eq. (17). Traditionally, one would use
the shift of the first harmonic alone in conjunction with Eq. (7) to determine the adsorbed mass; we label this quantity mu, since it is based
on the assumption of a uniform mass distribution. Comparison of mu with the corresponding value m = m0 + m1, coming from our improved
two-component analysis, reveals that the two estimates can differ quite substantially. Fluctuations in the ratio mu/m indicate that the traditional
approach routinely over- or under-estimates the adsorbed mass in the range of 10% to 50%. This quantitative comparison is, as far as we know,
the first of its kind, and it demonstrates the absolute importance of a multimode analysis for accurate mass sensing. The dagger (†) marks
the one experiment in which the RDX deposition process was completely unbiased; the others involved some degree of masking in order to
engineer a nonuniform mass distribution.

Eq. (19):

∆a

[ m
M

]2
= 0.00791

(
δω1

ω1

)2
+ 1.7344

(
δω3

ω3

)2

+ 1.5138
(
δω5

ω5

)2
− 0.2285

δω1

ω1

δω3

ω3

+ 0.2127
δω1

ω1

δω5

ω5
− 3.2403

δω3

ω3

δω5

ω5
. (21)

The notation ∆e[δωn/ωn] in Eq. (20) is meant to indicate the
error in the relative frequency shift, understood as the ratio of
two inexact quantities computed according to ∆e[δωn/ωn]2 =

(∆e[δωn]/ωn )2 + (∆e[ωn]δωn/ω
2
n )2.

C. Sublimation model

The preliminary results appearing in Table I were obtained
from two discrete measurements of the devices’ resonance fre-
quencies, before and after RDX exposure. We have the capa-
bility, however, to make ongoing measurements of the res-
onance frequencies; these change continuously in time as the
adsorbate molecules are removed from the nanostring because
of the vacuum environment. The main thrust of this paper is
to show how we can exploit this much richer data set.

Therefore it is useful to sketch out a model of how the mass
on the string evolves with time in our experimental setup. The
basic assumption is that the molecules are either residing on
the string (m) or existing as vapor in the chamber (mv). RDX
sublimates from the string surface at a uniform rate α, and
there is an incoming flux of molecules returning to the surface
due to intermolecular collisions, denoted by β. Finally, there
is γ, the rate at which the chamber is being evacuated. This
picture leads to a coupled pair of rate equations:

d
dt

(
m
mv

)
=

(
−α β
α −(β + γ)

) (
m
mv

)
. (22)

As a consequence, there are two rate constants, given by the
eigenvalues of the matrix. When γ = 0, the eigenvalues are
λ1 = 0 and λ2 = α+ β; hence, the system equilibrates at a rate
α + β to a steady state with mv/m = α/β. On the other hand,
when γ is a fast rate (i.e., larger than both α and β, which is
the experimentally relevant situation) we find that

λ1 = −α +
αβ

γ
+
αβ(α − β)

γ2 + O(γ−3),

λ2 = −γ − β −
αβ

γ
−
αβ(α − β)

γ2 + O(γ−3).
(23)

The full time dependence of m and mv is then given by(
m(t)
mv (t)

)
=
γm(0) + βmv (0)

γ2 + αβ

(
γ
α

)
e−(α−αβ/γ)t

+
γmv (0) − αm(0)

γ2 + αβ

(
−β
γ

)
e−(γ+β+αβ/γ)t . (24)

For times t � (γ+ β+αβ/γ)−1, the mass on the string decays
according to

m(t) =
m(0) + (β/γ)mv (0)

1 + αβ/γ2 e−α(1−β/γ)t . (25)

Moreover, if the chamber is being very aggressively evacu-
ated, then the behavior looks like

m(t) = m(0)e−αefft , (26)

with αeff = α − αβ/γ ≈ α close to the intrinsic sublimation
rate of the adsorbate, and we can safely proceed as if mv ≈ 0
at all times after the pump has been activated.

A refinement of this model is to consider the possibility that
the rate of mass loss goes as a fractional power of the current
mass load. This may be appropriate here since the RDX on
the surface is known to aggregate, rather than arranging in a
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Ansatz Modes m0/M m1/M

Eq. (13) 1, 3 27
4
δω1
ω1
− 35

4
δω3
ω3

105
16

(
−
δω1
ω1

+
δω3
ω3

)
1, 5 25

4
δω1
ω1
− 33

4
δω5
ω5

99
16

(
−
δω1
ω1

+
δω5
ω5

)
3, 5 875

8
δω3
ω3
− 891

8
δω5
ω5

3465
32

(
−
δω3
ω3

+
δω5
ω5

)
1, 3, 5 15007

2318
δω1
ω1
− 36365

37088
δω3
ω3
− 128205

37088
δω5
ω5

− 58905
9272

δω1
ω1

+ 107415
9272

δω3
ω3

+ 42207
9272

δω5
ω5

Eq. (18) 1, 3 1+3π2

4
δω1
ω1
− 9+3π2

4
δω3
ω3

3π2

4
(
−
δω1
ω1

+
δω3
ω3

)
1, 5 3+25π2

36
δω1
ω1
−

25(3+π2)
36

δω5
ω5

25π2

36
(
−
δω1
ω1

+
δω5
ω5

)
3, 5 9+75π2

8
δω3
ω3
−

25(1+3π2)
8

δω5
ω5

− 75π2

8
(
−
δω3
ω3

+
δω5
ω5

)
1, 3, 5 217+975π2

1358
δω1
ω1
− 5607+1725π2

5432
δω3
ω3
− 6125+2175π2

5432
δω5
ω5

75π2

5432
(
−

52δω1
ω1

+
23δω3
ω3

+
29δω5
ω5

)

TABLE II. Estimates of the uniform (m0) and non-uniform (m1) mass components as a function of the relative frequency shifts. A solution to
the system of equations is given for each pair of modes; also shown is the least-squares, pseudo-inverse solution involving all three modes.

smooth monolayer. Sublimation in that case is likely to be
at least partially controlled by loss from the surface area of
the RDX crystallites (A ∼ m2/3), which puts a lower bound
of 2/3 on the effective scaling exponent. If the distribution of
crystallites along the device is roughly uniform, then we can
account for this situation as follows:

dm
dt

= −αm?(m/m?)φ . (27)

This description requires that we introduce a new material-
specific mass scale m? and a phenomenological exponent φ.
We anticipate a value 2/3 ≤ φ ≤ 1, with conventional expo-
nential decay recovered at the upper end of that range. When
φ , 1, we find that

dm
mφ

=
1

1 − φ
d(m1−φ ) = −αm1−φ

? dt .

This leads to

m(t) = m(0)
[
1 −

t
tr

]1/(1−φ)
, (28)

where, tr = [m(0)/m?]1−φ/α(1− φ) is the finite removal time
after which all RDX has left the nanostring.

We now emphasize an important feature that distinguishes
between the two kinds of behavior. When φ = 1, the decay is
exponential at a constant rate

−
1
t

log
m(t)
m(0)

= α. (29)

For a nontrivial value of the exponent, however, the mass loss
is characterized by an apparent decay rate that increases over

time:

−
1
t

log
m(t)
m(0)

= −
1

(1 − φ)t
log

[
1 −

t
tr

]

=
1

(1 − φ)tr

[
1 +

t
2tr

+
t2

3t2
r

+ · · ·

]

= α
( m?

m(0)

)1−φ [
1 +

(1 − φ)αt
2

( m?

m(0)

)1−φ

+ · · ·

]
.

(30)

Finally, a more complete description must account for a
mass distribution that varies along the length of the string.
We treat the deposited mass δµ(x, t) as a space- and time-
dependent field subject to the governing equation

∂

∂t
δµ(x, t) = −αµ?

(
δµ(x, t)
µ?

)φ
. (31)

Here, µ? is a stand in for m?/L. In the previously considered
situations, where either φ = 1 or the initial mass distribution
is uniform, the mass distribution simply shrinks away while
preserving its overall shape. That is not generally true:

δµ(x, t) =
[
δµ(x,0)1−φ − (1 − φ)αµ1−φ

? t
]1/(1−φ)

. (32)

Equation (32) also makes clear that, unlike in Eq. (28), δµ
reaches zero at a removal time that is different at each point
along the string.

With Eq. (32) in hand, it is straightforward to obtain the
time-dependent total mass

m(t) =

∫ L

0
dx δµ(x, t) (33)

or any of the relative frequency shifts

−
δωn (t)
ωn

=
1
M

∫ L

0
dx δµ(x, t) sin2

( nπx
L

)
. (34)
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The latter is simply Eq. (6) with δµ(x) replaced by δµ(x, t).

IV. RESULTS

We now apply the models developed in Sec. III to our ex-
perimentally acquired frequency shifts. The results reported
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FIG. 2. Multimode frequency shifts as a function of elapsed time
and the resulting RDX mass extraction. In the upper panel, each
experimental data point represents a relative shift in the resonance
frequency of one of modes 1, 3, or 5, obtained from the finite-time-
window PSD [as per Eq. (1)]. (The time-window resolution is fine
enough that the experimental points bleed together into nearly con-
tinuous curves.) For visual clarity, the mode 3 and mode 5 data
sets are translated upward by 0.00025 and 0.0005, respectively. The
three solid lines are the result of matching our theoretical model [viz.
Eq. (34) in combination with Eqs. (32) and (35)] to the experimental
observations. The lower panel shows the corresponding mass. Two
estimates are presented: one is a discrete set of values calculated
at each instant according to Eqs. (19–21); the other is a continuous
curve [produced numerically with Eq. (33)] based on the global fit
achieved in the upper panel. The two estimates are found to be in
excellent agreement.

here are taken from measurements on a single device of length
310 µm and mass 641.88 pg. The device’s first, third, and fifth
modes were tracked over the course of four hours.

Our approach is to match Eq. (34), for the cases of n =

1,3,5, to our time traces of the resonance frequencies. The in-
tegrals are carried out numerically with Eq. (32) serving as the
model for δµ(x, t). In the spirit of our original two-component
ansatz, we choose to express the initial mass distribution in
this slightly more expressive form:

δµ(x,0) =
m0

L
+

m1

L
N (p)

[ x
L

(
1 −

x
L

)] p
. (35)

The exponent p adds some additional flexibility with regard
to the shape of the non-uniform contribution [and permits a
rough interpolation between Eqs. (13) and (18)]. The normal-
ization factor

N (p) =
21+2θ
√
π

Γ(3/2 + p)
Γ(1 + p)

is chosen to preserve the property that m =
∫

dx δµ(x,0) =

m0 + m1.
The set of independent variational parameters m0, m1, p,

φ, and C = (1 − φ)αµ1−φ
? is simultaneously optimized us-

ing the nonlinear least-squares Levenberg-Marquardt algo-
rithm [41, 42]. The number of degrees of freedom—only
five—is remarkably small relative to the large number (≈
3 × 7000) of data points. We find that the total mass on the
string is m0 + m1 = 2.871(2) pg and that the decay exponent
has a value φ = 0.826(6). The resulting high-quality fit is
displayed in the upper panel of Fig. 2. The lower panel of the
same figure shows the mass extracted at each instant from fre-
quency shift measurements according to Eq. (19), with error
bars on the data points obtained from the quadratic mean of
Eqs. (20) and (21). There are a handful of points in the plot
where the uncertainty estimate blows up, but this amounts to
just a few blips in the more than 7,000 data points. The solid
line superimposed on the data points is produced by integrat-
ing [via Eq. (33)] the evolving mass profile that emerges from
the fitting procedure [Eq. (32) with globally optimized param-
eters]. The consistency between these two approaches gives
us confidence that our estimate of the total adsorbed mass is
highly reliable.

Figure 3 shows snapshots of the mass profile at various
times in the experiment. Such a determination of the real-
time mass distribution may have important applications, such
as the study of diffusion of molecules along the surface [43],
or atomic layer reconstruction [44], of a nanomechanical res-
onator.

Figure 4 indicates the effective instantaneous decay rate,
calculated as per Eqs. (29) and (30). One can see clearly that
the rate is not constant in time—and hence it is incompati-
ble with pure exponential decay. Rather, it seems to increase
steadily. Moreover, between 8000 s and 11000 s, it turns up in
a way that is consistent with the fractional power of φ found
in our fit to the frequency shift measurements. It is worth
reiterating that this implies that sublimation occurs from the
surface of crystallites—and not uniformly from the surface of
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FIG. 3. Profiles of the mass distributed along the nanostring of
length 310 µm and mass 641.88 pg at representative moments in time.
Shown here are plots of Eq. (32) evaluated with optimized variational
parameters at the appropriate time t. Accompanying each distribu-
tion is a label giving the time of the snapshot and integrated weight
under the curve.
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FIG. 4. The instantaneous rate at which RDX desorbs from the
nanostring clearly increases over time. The data shown is a loga-
rithmic rescaling of the data appearing in the lower panel of Fig. 2.
A linear fit over the time interval [250 s, 7750 s] produces α(t) =

α0 +α1t = 0.00032865(6) +1.445(1)× t. Substantially better agree-
ment is achieved with a function having the form of Eq. (30) with
exponent φ = 0.8278 (fully consistent with the value φ = 0.826(6)
used in the upper panel of Fig. 2) and removal time tr = 17247 s.

the device—in agreement with optical (see Fig. 1) and atomic
force (see Ref. 34) microscopy.

Something further we have checked is whether the fitting
can be meaningfully improved by allowing α → α(x) to vary
along the length of the string. One might imagine, for in-
stance, that the sublimation rate has a uniform contribution

controlled by the partial pressure of RDX in the evacuated
chamber and a locally varying component that comes about
in some unspecified way from the influence of the mechanical
motion. We have carefully considered various ad hoc mod-
els, but we find consistently that allowing spatial variation in
α(x) does not improve the fit enough to justify the additional
variational degrees of freedom [45].

V. CONCLUSIONS

Taking advantage of the sinusoidal mode shape of silicon
nitride nanostrings under high tension, we have developed an-
alytical models for the multimode frequency shifts that oc-
cur as a result of mass deposited onto such devices. We
have applied those models to real resonators in the lab and
demonstrated our ability to make reliable estimates of the to-
tal amount and distribution of adsorbed molecules. This work
is the first experimental determination of a non-uniform and
non-point like mass distribution performed in the literature.

Our multimode technique produces reliable, time-evolving
estimates of the total mass adsorbed on the resonator with a
sensitivity on the order of a few femtograms, even in the ab-
sence of detailed knowledge of the initial mass distribution.
The time trace of frequency measurements in a handful of
low-lying normal modes is sufficient to reconstruct that miss-
ing information and thus fix the otherwise unknown constant
of proportionality [appearing as Eq. (4)].

Notably, the estimate of the mass added, as determined by
our analysis, was often found to disagree with the value ar-
rived at by the more traditional approach, which relies on a
frequency shift in a single mode and incorporates no under-
standing of the how the added mass is arranged on the device.
This reveals the extreme importance of such an analysis to ac-
curate mass sensing with nanomechanical resonators.

In addition, because the adsorbed molecules sublimate from
the surface of the nanostrings in our experimental system, we
have had an opportunity to analyze their desorption charac-
teristics. Real-time measurements allow for significantly im-
proved estimates of the mass distributions and reveal the evo-
lution of those distributions over time. This may prove a use-
ful tool in studying molecular diffusion [43] or the formation
of monolayers onto nanomechanical resonators [44].

Finally, multimode analysis also leads to insights into the
form in which the molecules are removed from the nanos-
tring surface by the vacuum. Specifically, we are able to de-
velop sublimation models that account for uniform-rate loss
from the surface and local-mass-dependent loss from the sur-
face area of a crystallite. Only the latter is consistent with the
observed frequency shifts and the microscopy of the devices.
This may have important applications in real-world sensing
of explosive molecules such as RDX, for example in airport
passenger and luggage screening.
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