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As quantum gates improve, it becomes increasingly difficult to characterize the remaining errors.
Here we describe a class of coherent non-Markovian errors – excitations due to an off-resonant drive –
that occur naturally in quantum devices that use time-dependent fields to generate gate operations.
We show how these errors are mischaracterized using standard Quantum Computer Verification
and Validation (QCVV) techniques that rely on Markovianity and are therefore often overlooked
or assumed to be incoherent. We first demonstrate off-resonant errors within a simple toy model of
Z-gates created by the AC Stark effect, then show how off-resonant errors manifest in all gates driven
on a fixed-frequency transmon architecture, a prominent example being incidental cross-resonance
interaction driven during single-qubit gates. Furthermore, the same methodology can access the
errors caused by two-level systems (TLS), showing evidence of coherent, off-resonant interactions
with subsystems that are not intentional qubits. While we explore these results and their impact
on gate error for fixed-frequency devices, we note that off-resonant excitations potentially limit any
architectures that use frequency selectivity.

I. INTRODUCTION

Quantum processing technologies have matured sub-
stantially enabling experiments on full sized logical
qubits [1–5] and bringing large distance codes with small
errors within reach. However, current capabilities fall
short of true fault-tolerance, even if approaching that
threshold. In reality, the practicalities of overhead and
scale necessitate quantum gate errors lower than cur-
rently realized, thereby requiring analysis of these errors
in previously untested limits. In general, improving per-
formance over generations of quantum devices requires
a real-time feedback loop between characterization, de-
sign, control, and fabrication in order to determine which
(potentially very small) errors dominate systems and re-
move them. Within this loop, the host of errors present
in realistic experiments sort conveniently into two broad
categories: coherent (over-rotation, detuning, etc.) and
incoherent (amplitude damping, dephasing, etc). If an
error preserves coherence, it may be fixable in the con-
trol layer by clever decoupling or pulse engineering [6–
9]. Outside of generic techniques such as shortening gate
times and improving circuit compilations (which are al-
most always already optimized with respect to the rest
of a complex control trade-space), correcting incoherent
errors lies in the realm of error correction or low-level
hardware redesign to mitigate root cause, such as dielec-
tric loss [10, 11].

In general, the total gate error, which we would like
to partition into coherent and incoherent contributions,
is measured using techniques such as randomized bench-
marking (RB) [12]. In RB, a random sequence of Clifford
gates is applied then inverted at the end of the sequence.
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When averaged over many sequences, the gate error
is simply related to the exponential decay of the the
ground state probability as a function of the sequence
length [13]. Several methodologies can be used to infer
coherent/incoherent contributions to that total gate
error. A zeroth-order estimate of the incoherent error –
the “coherence limit” (Eq. (A3) in Appendix A) – can be
calculated from the gate length and measured noise rates
of each qubit, in particular, amplitude damping (T1) and
dephasing (T2). Since this does not include any dynamic
reduction of coherence, the coherence limit typically
underestimates the error. A more robust procedure
“purity RB” measures the purity of the state after an
RB sequence [14, 15]; any difference between the RB
and purity RB error rates can be ascribed to coherent
errors, as discussed in Appendix B. A number of QCVV
techniques have been devised to measure coherent errors
via amplification, such as Gate Set Tomography (GST)
[16, 17], Hamiltonian Tomography [18] and Hamiltonian
Error Amplifying Tomography (HEAT) sequences [19].
The HEAT sequences we use are tailored to identify
small errors to the cross-resonance interaction (see, e.g.,
Ref [20]), which is the entangling mechanism utilized
by the quantum processors studied in this manuscript.
Originally used to amplify only those block-diagonal
errors correctable with standard control parameters,
here we expand HEAT to include all 15 two-qubit Pauli
errors (Appendix C).

We use the aforementioned RB technique to measure
a typical set of 2Q gate errors (measured individu-
ally) on a large quantum device – here the 27 qubit
ibm peekskill device – is presented in FIG. 1. While
the errors we observe are not well correlated with the
coherence limit, they track more closely with the purity
error; however, discrepancies remain. Importantly, those
discrepancies are not well accounted for from coherent
errors that are measured from the HEAT sequences,
i.e., they are not time-independent Pauli errors. Un-
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FIG. 1. A comparison of two qubit error rates across 27-qubit device ibm peekskill. Randomized benchmarking (RB) estimates
the total error rate per two-qubit gate (black circles) sorted by error rate. The qubit pair for the measured error is listed on
the x-axis where the control qubit is listed first. The gate errors are compared to the gate error from the coherence limit given
by Eq. (A3) (green triangles), the error rate from purity RB (red triangles), i.e., the incoherent gate error contribution, and
finally the error rates estimated by adding the purity error to the coherence error estimated by HEAT sequences (Appendix C)
(blue circles).

derstanding possible causes of these discrepancies is the
topic of this manuscript, and specifically, we focus on
off-resonant errors. We will show that these errors are
both coherent and invisible to our HEAT calibration
techniques leading, at least in part, to the discrepancy
in FIG. 1.

Off-resonant errors are both ubiquitous across many
platforms for quantum information and problematic
for standard, amplification-based characterization tech-
niques like HEAT and long-sequence GST. These errors
result from frequency selectivity, a common control
technique where pulses are driven at a frequency reso-
nant with one of the many transitions of the un-driven
Hamiltonian. However, due to always-on coupling
in the Hamiltonian, these pulses additionally drive a
number of transitions off-resonantly. While a pulse
of amplitude Ω detuned from an unwanted transition
(e.g. a higher transmon level or a spectator) by ∆
will be suppressed to ∼ (Ω/∆)2, there is still residual
excitation which is finite, coherent, and off-resonant
with the drive pulse [21]. Ideally Ω/∆ is engineered
so that off-resonance error rates fall below the rate of
known incoherent processes (e.g., amplitude damping or
dephasing) in our devices. Unlike incoherent processes,
coherent errors should be amplifiable, allowing us to
verify that off-resonant errors are indeed as small as
we desire and our system models are complete and
accurate. However, as we will show, off-resonant errors

are invisible to HEAT, and while not strictly invisible
to GST, they produce high amounts of model violation,
i.e., GST completely fails to fit an error model (see
Appendix D). The model failure of GST hints at the
underlying issue detecting off-resonant errors: most
methods in the QCVV toolbox rely on a common set of
assumptions we shorthand as Markovianity. Concisely
iterated in Ref. [22], these assumptions ensure that a
gate is described by a single quantum process of fixed
dimension, independent of how the gate is embedded in
a larger quantum circuit. Markovianity is often invoked
because it simplifies large-scale simulations and allows
for rigorous mathematical statements, particularly in
error correction. It is similarly a core assumption for
many experimental QCVV protocols, even though most
physical processes exhibit some level of non-Markvoian
behavior. When Markovianity is assumed erroneously,
coherent, non-Markovian errors can be mis-characterized
as incoherent, Markovian errors; this mistake prevents
us from pinpointing error mechanisms and engineering
solutions. For example, non-Markovianity caused by
drifts in device parameters, which may arise due to a
number of sources such as magnetic field drifts in neutral
atom and ion traps, and drifts of control electronics in
most quantum technologies, require different control
solutions [9, 23] than T1 decay due to dielectric loss.

Our paper is organized as follows. In § II, we describe
how off-resonant errors break the stationary assumption
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of Markovianity which states that gate errors must be in-
dependent of when the gate is performed. We show that
for off-resonant errors this assumption depends on the
choice of rotating frame, leading to the situation where
for any frame only some, but not all, of the gates in
a gate set may have Markovian descriptions. We then
propose a practical alternative to GST or HEAT for am-
plifying and detecting these errors. By carefully inter-
leaving frame changes into amplification sequences, off-
resonant errors can be made to add constructively. Next,
in § III, we investigate this concept experimentally with
a well-controlled version of an off-resonant error which
occurs when using a Stark tone to make a Z gate. Un-
less otherwise stated, the experiments in this paper were
performed on an internal IBM device with specifications
similar to ibm peekskill . In § IV we explore off-resonant
errors in two-qubit gates that are generated from the
cross-resonance interaction. These gates will necessarily
have some off-resonant error because the control qubit is
driven off-resonantly at the target qubit frequency [21].
We show how Derivative Removal by Adiabatic Gate
(DRAG) compensation pulses [21, 24] can be used to
mitigate these errors and achieve an error rate of 1.3e-3,
comparable to the lowest measured in similar CR sys-
tems [25, 26]. Finally, in § V we explore how spectator
qubits are driven off-resonantly during single qubits gates
due to always on coupling. We also observe that these
spectator “qubits” are sometimes described by spurious
TLS as opposed to the engineered systems in our proces-
sors. While a small effect, spectator errors will eventually
become bottlenecks as other error sources are improved,
revealing the rich physics in our devices.

II. OFF-RESONANT ERRORS AND
CONTINUOUS PHASE AMPLIFICATION

In this section we show that the stationary assumption
of Markovianity is frame-dependent, and we introduce an
amplification-based characterization technique sensitive
to non-stationary errors. To show how non-Markovian
errors manifest we start with a toy model of the Hamil-
tonian of a single qubit with two drives,

H(t) = −ωq

2
Z

+Ω0(t) cos([ωq +∆0]t)X

+Ω1(t) cos([ωq +∆1]t)X, (1)

with qubit frequency ωq, drive detunings ∆0,1, and en-
velope functions Ω0,1(t). Even with a single drive,
Ω1 = 0, this Hamiltonian exhibits non-stationary behav-
ior. Imagine a family of envelope functions displaced in
time by T0, i.e., Ω0(t; 0) = Ω0(t + T0, T0), The resulting

Hamiltonian,

H(t+ T0;T0)

= −ωq

2
Z +Ω0(t+ T0, T0) cos([ωq +∆0](t+ T0))X

= −ωq

2
Z +Ω0(t, 0) cos([ωq +∆0](t+ T0))X

̸= H(t; 0), (2)

is not stationary because the carrier does not share
the envelope’s symmetry. When we move to the frame
rotating at ωq + ∆0 and take the rotating wave ap-
proximation (RWA) dropping terms at ±2(ωq + ∆0),

H(t) → ∆0

2 Z + Ω0(t)
2 X, and the stationary property is

restored, i.e., it is only counter rotating terms that are
non-stationary in this frame. If counter-rotating terms
were the only source of non-stationary processes in our
gates it would be safe to make the stationary assumption;
however it is more complicated when we have multiple
drives at different frequencies. While possible to find
a rotating frame where any individual term is station-
ary, it may be impossible to find a single rotating frame
where the entire Hamiltonian exhibits stationary behav-
ior. Even if Ω0 and Ω1 describe non-overlapping pulses
starting at T0 and T1 respectively, the resulting unitary
evolutions integrated over the non-zero domains of the
envelopes, U0[T0] and U1[T1], cannot both be Marko-
vian unless the two drive frequencies are commensurate.
If we choose a frame where U0[T0] is independent of
T0, i.e., U0[T0] = U0 is stationary, then in that frame

U1[T1] = U†
rot[T1 + tg]U1Urot[T1], where U1 = U1[T1] in

its stationary frame, Urot[T ] = e−i
(∆1−∆0)T

2 Z transforms
the frame where U0 is stationary to the frame where
U1 is stationary at time T , and tg is the duration of
U1. Clearly this operator depends on T1 and therefore is
non-stationary unless U1 commutes with Urot, and while
sometimes ideal gates commute with frame transforma-
tions, their errors may not. Furthermore, Markovianity
does not appear to be a property of a given gate, since
either gate can be expressed as Markovian in the proper
frame, but is instead a holistic property of the gate set.
We can now express why non-stationary, off-resonant

errors can be tricky to quantify using calibration routines
for high-fidelity gates (e.g. HEAT) that amplify coher-
ent errors to fine-tune any free parameters in (1). In the
stationary case, repeated coherent errors grow quadrat-
ically, and we can design SPAM-free fitting routines. A
typical amplification experiment goes as follows: prepare
a superposition of eigenstates of the un-driven Hamilto-
nian, repeat application of a gate a number of times N ,
then measure some observable in the energy eigenbasis.
However, to amplify errors that anti-commute with U ,

it is neccesary to interleave some other interrogation gate,
V , constructing sequences of the form (UV )N . While U
might have a stationary description, V might not be sta-
tionary in the same frame, and in general, there may be
no single choice of rotating frame in which all relevant
gates are Markovian simultaneously. Consider amplify-
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ing errors in the gate U1 from above. We know there is
a stationary frame for U1, so we can amplify those gate
errors that commute with U1 by repeating it n times in
sequence. Since the frame is arbitrary, we can consider
this amplification sequence in any rotating frame,

U1[ntg] . . . U1[tg]U1[0]

= U†
rot[(n+ 1)tg]U1Urot[ntg] . . . U

†
rot[2tg]U1Urot[tg]U

†
rot[tg]U1

= U†
rot[(n+ 1)tg]U

n
1 , (3)

and note that there is still coherent amplification. How-
ever, if we try and amplify a mixed set of U0 and U1

gates, where for example we express the sequence in U0’s
stationary frame and define all gates to have duration tg,
we get

U0[(2n− 1)tg]U1[(2n− 2)tg] . . . U0[tg]U1[0]

= U0U
†
rot[(2n− 1)tg]U1Urot[(2n− 2)tg] . . . U0U

†
rot[tg]U1

=

n−1∏

j=0

U0U
†
rot[(2j + 1)tg]U1Urot[2jtg]. (4)

Assuming that Urot does not have a period commensu-
rate with tg, not only does this sequence not amplify
errors in U1, it instead suppresses them in an average
sense as the phase is essentially randomized from one
application to the next.

Fortunately, techniques like HEAT and GST can be
recovered for a scenario like Eq. (4) by absorbing the
rotating frame into an interleaved gates (i.e., by inter-
leaving a non-stationary gate); however this can be te-
dious. A simpler approach is to use an interleaved gate
that commutes with the rotating frame. Projected onto
a qubit, commuting interrogation gates are simply Z-
rotations which can be implemented a variety of ways
such as tuning the qubit energy, interleaving a delay, de-
composing a Z-rotation into the standard single-qubit
gates, or by performing Z-gates in software by updating
the phase of subsequent operations [27]. Phase updates
ϕd → ϕd + ϕ can be expressed as the transformation
U → e−iϕHphaseUeiϕHphase for some appropriate choice
of Hphase. Incrementing the phase ϕ between successive
applications of U results in the unitary

Uamp =
(
e−i(n−1)ϕHphaseUei(n−1)ϕHphase

)
. . .

×
(
e−iϕHphaseUeiϕHphase

)
U, (5)

which can be reordered to make apparent the typical form
of an amplification experiment interleaved with a diago-
nal interrogating gate:

Uamp = e−inϕHphase
(
eiϕHphaseU

)n
. (6)

We call sweeping the phase ϕ in Eq. (6) continuous
phase amplfication, a technique we find broadly useful

for identifying the off-resonant errors that can limit our
device’s performance. We will explore the use of this
technique in the following sections.

III. STARK Z-GATES

FIG. 2. (A) Continuous phase amplification of Stark Zπ/2

gate errors with an interrogation frame change (FC) of phase
increment, ϕ. (B). shows the excitation probability of Q0

(labeled as P0) as a function of the phase increment and
the number of repetitions with a total population inversion
around n = 100. (C) The measured phase of maximal error
amplification (expt) has good agreement with the model pre-
dictions from Eq. (10).

Now we consider perhaps the simplest example of off-
resonant error one can generate on a driven qubit (such as
the transmons considered here): the off-diagonal correc-
tions to a Zπ/2 gate generated by driving a two-level sys-
tem off-resonantly, that is, a diagonal gate implemented
by a Stark shift. The model Hamiltonian (1) becomes

H(t) = −ωq

2
Z +Ω(t) cos(ωdt− ϕd)X (7)

when projected onto a single qubit. To make H station-
ary we choose rotating frame Hrf = ωd

2 Z, which, after
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FIG. 3. (A) Drag correction to a Gaussian square pulse. (B) The continuous phase amplification sequence, at ϕpeak, shows a
clear minima for the excitation probability P0 for both n = 25 and n = 40 at the optimal DRAG amplitude. (C) For these
DRAG parameters the residual off-resonant excitation from FIG. 2 (B) vanishes in continuous phase amplification. (D) The
resulting error of the Stark Zπ/2 gate as measured by interleaved randomized benchmarking drops from 4.36e-4 to 2.52e-4 with
DRAG (details in main text).

the RWA, leads to the effective Hamiltonian

H ′(t) =
∆

2
Z +

Ω(t)

2

(
cosϕdX + sinϕdY

)
(8)

with detuning ∆ ≡ ωd−ωq. In the limit where Ω(t) ≪ ∆,
H ′ generates a rotation that is only slightly perturbed
from the Z-axis. To lowest order and in the square pulse
approximation, this perturbation changes the effective Z-

rotation from θZ = ∆tg → ∆tg +
Ω2tg
2∆ over gate dura-

tion tg; therefore in a frame rotating with the qubit en-
ergy, the resonant frame, we see an effective Z-rotation

of θStark = −Ω2tg
2∆ . In addition to the Z-rotation due

to Stark shift, there are non-Markovian errors since the
rotation axis for the off-resonant drive is slightly tilted
from Z. Rotation around the tilted Z-axis does not com-
mute with rotation around original Z. In the qubit’s reso-
nant frame the tilted Z-axis is also rotating, giving rise to
time-dependent errors that are difficult to detect in ex-
periments such as Rabi oscillations. In order to measure
them directly with Hamiltonian tomography (i.e. process
tomography as a function of tg) we need to resolve the
excitation rate

P10 ≡ |⟨1|Ueff(tg)|0⟩|2 =
Ω2

Ω2
r

sin2
(
Ωrtg
2

)
(9)

where Ueff(tg) = e−i(ΩX+∆Z)tg/2 and Ω2
r = Ω2 + ∆2.

The maximum contrast for this signal is ∼ (Ω/∆)
2
,

which has no tg dependence, requiring that our reso-
lution/shots scale with the expected bare error rate.
Repetition doesn’t amplify these excitation errors since
they anti-commute with the dominant Z-rotation. We
could try to amplify with interrogating X or Y gates,
but these resonantly-driven gates are stationary in
the resonant frame where off-resonant excitations are
non-stationary, destructively interfering on average. In
section IV, we will show that the off-resonant error in
Stark Z-gates is an important source of coherent error in
CNOT gates using cross-resonance drives. High fidelity
physical Z-gates, such as the Stark Z-gates described
in this section, will be important in quantum circuits
where virtual Z-gates cannot be moved across two-qubit
interactions such as the

√
ISWAP gate.

We have described a simple off-resonant error that is
both hard to amplify using standard methods of char-
acterization/calibration and treated as negligible under
the Markovian assumption – a dangerous combination
especially as error rates approach “the fault tolerant
threshold” requiring unprecedented levels of precision.
Fortunately, as is the case for any coherent error, there
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must be some choice of amplification sequence that
results in quadratic growth of off-resonant errors. Our
solution is to use the continuous phase amplification
technique described in the previous section. We demon-
strate this experimentally with the Stark Zπ/2 gate
generated by a tg = 96 ns Gaussian square pulse de-
tuned ∆ = −50 MHz below the qubit’s resonance (qubit
parameters given in TABLE I). This test case provides
a very clean, accessible demonstration of off-resonance
physics at gate times and detunings that are comparable
to the off-resonant driving of cross-resonance gates
discussed in the next sections.

Continuous phase amplification of the Stark Zπ/2

is performed by the pulse sequence shown in FIG. 2
(A). We perform a two-dimensional sweep over the to-
tal number of repetitions, N , and the phase incre-
mented in between repetitions, ϕ, as the interrogating
frame change (FC). The measured excited state proba-
bility inverts completely in less than 100 repetitions, as
shown in FIG. 2 (B). This non-negligible error would
be invisible to standard characterization techniques for
which ϕ = 0. The peak location is centered around
ϕpeak for which eiϕpeakHphaseU from (5) is purely equa-
torial, that is, the phase update – which acts like a
Z-rotation in the qubit subspace – completely cancels
the Z-component of the gate leaving only the small
X error. Repetition then amplifies this error giving a
large signal (albeit for only a narrow range of ϕ val-
ues). Zeroing the Z-component of eiϕpeakHphaseU , i.e., set-
ting Tr(ZeiϕpeakHphaseU) ∝ ∆

Ωr
cos(ϕpeak/2) sin(Ωrtg/2)−

cos(Ωrtg/2) sin(ϕpeak/2) = 0, then expanding with re-
spect to the small parameter Ω/∆ gives

ϕpeak ≃ sign(∆)Ωrtg = ∆tg + θStark, (10)

where we have used the definition of Stark shift
sign(∆)ωStark =

√
Ω2 +∆2 − |∆| and θStark = ωStarktg.

As shown in FIG. 2 (C), we see excellent agreement
between predicted and experimentally extracted peak
positions for different tg demonstrating the robustness
of Eq. (10). Note that for a few gate times we did not
observe a peak as mod(Ωrtg, 2π) ≃ 0 and excitation
errors vanish. Our understanding of this particular
error makes a 2D sweep to discover ϕpeak unnecessary;
however, in more complex examples, it’s not practical to
predict the phase of one (or more) peaks a priori.

Now that we have a tool to measure off-resonant errors
we can design control sequences to correct them. A small
Y -rotation will correct this off-resonant error which has
rotated a Zπ/2 gate only slightly in the X-Z plane. Cru-
cially, this Y -rotation has to be in phase with the Stark
gate. Instead of phase-matching a positive Y-pulse before
the gate and a negative Y-pulse after, we take advantage
of DRAG [8, 24], FIG.3 (A) – by definition a derivative
pulse that is in-phase with the Stark pulse up to a π/2
offset. DRAG doesn’t lengthen the gate’s duration and
only has one free parameter to calibrate, its relative am-

f01 (GHz) 5.165

α (MHz) −346

freadout (GHZ) 7.083

T1 (µs) 124(6)

T2echo (µs) 107(8)

Zπ/2 EPG 4.36e-4± 1.8e-5

Zπ/2DRAG EPG 2.52e-4± 9.3e-6

TABLE I. Summary of parameters describing the Stark Zπ/2

gate.

plitude. The amplified excitation at ϕpeak shows a clear
minima with respect to DRAG amplitude for different
numbers of repetition, as shown in FIG. 3 (B). Contin-
uous phase amplification of the Stark gate including an
optimized DRAG pulse shows a dramatic reduction of
off-resonant errors (FIG. 3 (C)), nearly halving the Zπ/2

error as measured by interleaved randomized benchmark-
ing (FIG. 3 (D)). The gate set used in the reference RB
is comprised of: X±π/2, Y±π/2, Z±π/2, and Z0,π; where
all Z gates are implemented via software frame changes
[28] and X/Y gates are Gaussian pulses with gate time
4σ and σ ≈ 7.11ns. The interleaved gates are Xπ/2, 96ns
Stark Zπ/2 with DRAG correction, and 96ns Stark Zπ/2

without DRAG correction. The Stark Z gates use flat-
topped Gaussian pulses where rise and fall are 2σ long
with σ ≈ 14.22ns.

IV. NON BLOCK-DIAGONAL CNOT ERRORS

Given the results of the previous section, can we apply
them to improve two-qubit gates? Fortunately, the
Stark example of the previous section relates directly
to the CNOT gate implemented by cross-resonance
(CR) where the control qubit is driven far off-resonance
at the target qubit’s dressed frequency. The control
qubit undergoes a Stark shift due to this drive [20],
and while the resulting Z-rotation is corrected either by
echo or with single-qubit gates, additional off-resonant
excitation errors are present and potentially undetected.

Expressed in the qubits’ dressed basis, the full CR
Hamiltonian is given by HCR = H0 + Ω(t) cos(ωtargett+
ϕ)Hdrive, where to leading order H0 = ωcontrolZI/2 +
ωtargetIZ/2 + ζZZ and Hdrive = XI + µZX + νIX.
Here µ and ν describe the cross-resonance and cross
talk-terms respectively [20, 29]. While ZZ-errors are a
topic of ongoing research at IBM [18, 26], we ignore the
ZZ-term in the following arguments as it is fairly small
and straightforward to detect by conventional techniques.
Because the drive Hamiltonian contains both anXI-term
and a ZX-term, the only choice of frame that preserves
Markovianity rotates both qubits at the drive (target)
frequency: HRF = ωtarget (ZI + IZ) /2. After perform-
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FIG. 4. State-selective frame spectroscopy amplifies CR errors using an interrogating frame change, tracking the eigenstates of
the frame-shifted CR pulse with a rotated X-pulse (A). We drive CR tones on the control qubit Q6 resonant with the target
qubit Q7 (B). For the two target eigenstates |+⟩ and |−⟩ we observe peaks in the excitation probability (P6) of the control
qubit, as shown in (C) and (D). The observed peak positions (expt) fit well to the expression in Eq. (13) (model) where there
is a dependence on both the length of the CNOT (E) and the length of the Xπ pulse following the CNOT (F).

ing the RWA,

HCR(t) = −∆

2
ZI

+
Ω(t)

2
cos(ϕd) (XI + µZX + νIX)

+
Ω(t)

2
sin(ϕd) (Y I + µZY + νIY ) (11)

where ∆ ≡ ωtarget − ωcontrol. We must transform the
control qubit to its resonant frame in order for the
resonantly-driven single-qubit gates to be stationary.
While this frame change commutes with the CNOT
gate itself, it will cause all errors that aren’t block-
diagonal with respect to the control qubit to become
non-stationary (and thus hard to detect with HEAT).

To construct a CNOT from the CR interaction we
typically set phase ϕd = 0, choose an envelope that
integrates a ZXπ/2, and correct the ZI and IX coef-
ficients with single qubit gates and/or active cancella-
tion. Gate calibration routines evolve, as thoroughly de-
scribed in [19, 25, 26, 30]; however, usually we neglect
the off-resonant XI contribution (similarly to the naive
treatment of the Stark gate) due to its small magnitude
at desirable detunings. Naively executing a continuous
phase amplification experiment as described in the pre-
vious section generates a strong signal of excitation from
the XI off-resonant term, but it can be more difficult to
interpret. Consider a unitary gate derived from a square
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FIG. 5. (A) Optimized control pulse including DRAG and target rotary tone. In (B) and (C) we see that once again the
off-resonant excitation in the control qubit (Q6) is suppressed for both target eigenstates |+⟩ and |−⟩. The DRAG correction
reduces the error as measured by interleaved RB from 1.8e-3 to 1.2e-3 ((D) and (E), details in main text); P6 and P7 are
excitation probabilities of Q6 and Q7 respectively.

pulse CR gate,

UCR = e−iHCRtg = U+ ⊗ |+⟩⟨+|+ U− ⊗ |−⟩⟨−|
= e−i[ΩX−(∆−µΩ)Z+ΩνI]tg/2 ⊗ |+⟩⟨+|
+ e−i[ΩX−(∆+µΩ)Z−ΩνI]tg/2 ⊗ |−⟩⟨−| (12)

where tg is now the CNOT gate time, and U± are the
control unitaries when the target qubit is in the |±⟩
states. The interrogating frame change rotates both the
control and the target qubits – which are defined to be
in the same frame for CR – rotating off-resonant errors
on the control qubit as desired, but also scrambling U+

and U− and leading to complicated dynamics. In or-
der to probe off-resonant errors in U+ and U− individu-
ally we need to undo the phase on the target qubit due
to the interrogating frame update. To do so we pre-
pare the target in |+⟩/|−⟩ states, which are eigenstates

parallel/anti-parallel to the very first CR pulse of the
amplification sequence. Then, before each repetition of
the CR pulse with incremented phase ϕ, we perform an
Xπ-pulse with its phase incremented by ϕ/2 from the
previous CR-pulse, rotating the eigenstates to those of
the next CR pulse. This amplification sequence, shown
in FIG. 4 (A), keeps the target qubit state parallel or
anti-parallel with the rotated CNOT gate, allowing the
control qubit to independently evolve according to U+

or U− and effectively decoupling the two sectors of off-
resonant errors. Adapting Eq. (10) for the CR gate we
expect peak positions

ϕ±peak = sign(∆∓ µΩ)Ω∓rtg = ∆tg − θ±Stark (13)

where Ω±r =
√
Ω2 + (∆± µΩ)2 are the Rabi rates and

θ±Stark are the rotations due to Stark shifts when the
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Parameters Q6 Q7

T1 (µs) 333(25) 324(22)

T2echo (µs) 313(45) 271(29)

f01 (GHz) 5.089 5.030

freadout (GHZ) 7.394 7.142

α (MHz) -343 -343

CNOT EPG 0.00191± 9.9e−5 0.00176± 9.8e−5

CNOTDRAG EPG 0.00125± 8.3e−5 0.00124± 9.3e−5

TABLE II. Parameters describing the two qubits used in the
off-resonant CNOT experiment as well as resulting error rates.

target is in the |±⟩ states, respectively. Experimentally
we observe one peak in the control qubit when the target
is in the |+⟩ state and another peak, separated by π,
when the target is in the |−⟩ state, as shown in FIG. 4 (C)
and (D). This π-separation is a signature of CNOT. We
refer to this particular application of continuous phase
amplification as state-selective frame spectroscopy.

One subtlety with this type of experiment is that the tg
variable in Eq. (13) should really denote the repetition
time of the CNOT plus the interrogating X-pulse. In
FIG. 4 (F), the peak positions extracted at a fixed num-
ber of repetitions n = 45 vary linearly with X-gate time
with slope ∆, as expected. We evaluate sin(ϕ±peaks) and
fit to sin(atX + ϕ0), taking ϕ0 is the ‘extrapolated’ peak
position if theX-pulse had no duration. In FIG. 4 (E) we
compare the extrapolated peak positions with Eq. (13)
for different CNOT gate times and observe good agree-
ment. The rotations due to Stark shifts θ±Stark are mea-
sured using Ramsey experiments on the control qubit
when the target is prepared in |±⟩ state. Like in the
previous section, we can optimize the DRAG parame-
ter to suppress the off-resonant excitation in the con-
trol qubit for the CNOT gate [21]. As shown in FIG. 5
(B) and (C), an optimized DRAG pulse eliminates both
off-resonant peaks apparent in state-selective frame spec-
troscopy. The optimized pulse shape is shown in FIG. 5
(A), and we observe an improvement in two-qubit error
obtained from interleaved randomized benchmarking for
the DRAG optimized CNOT, as shown in FIG. 5 (D)
and (E). The estimated error per gate (EPG) for CNOT
with DRAG correction is 1.2e-3, and for CNOT without
DRAG is 1.8e-3. We extract the EPGs from exponential
fits to the averages of 18 different RB sequences, shown
by the lines in FIG. 5 (D) and (E). The CNOT gates use
213.33ns long flat-topped Gaussian pulse where rise and
fall are 2σ with σ ≈ 14.22ns. We use the CNOT calibra-
tion procedure described in [25, 26], where different pulse
parameters are simultaneously calibrated. The reference
RB sequence uses the following gate set: X±π/2, Y±π/2,
Z±π/2, Z0,π, and DRAG corrected CNOT. The Z gates
are virtual frame changes, and X/Y gates are Gaussian
pulses 4σ long with σ ≈ 7.11ns. TABLE II summarizes

the qubit parameters and gate errors, the detuning for
this gate is |∆| ≈ 60 MHz.

V. SINGLE QUBIT SPECTATOR ERRORS

When neighboring qubits are subject to cross-talk, ei-
ther classically through the control lines or quantum
crosstalk through a fixed coupling, resonant drives can
generate off-resonant errors. While these errors will show
up in simultaneous RB [31], we would instead like to am-
plify and detect them directly. Here we use state-selective
frame spectroscopy to detect off-resonant errors in spec-
tator qubits resulting from single qubit gates. Consider
a simplified version of the full Hamiltonian from the pre-
vious section where we now drive at the frequency of the
control qubit (now labeled qubit 0), and treat the target
as a spectator. When we move to the frame where both
qubits oscillate at the drive frequency we obtain

Hsq =
Ω

2
(XI + µZX + νIX)− ∆

2
IZ

where ∆ = ωspectator − ωq. In the basis of | + 0⟩, | − 1⟩,
| − 0⟩, and |+ 1⟩

Hsq =
1

2




−∆+Ω µΩ 0 νΩ

µΩ ∆− Ω νΩ 0

0 νΩ −∆− Ω µΩ

νΩ 0 µΩ ∆+Ω


 (14)

is diagonally dominant so long as |∆ − Ω| >> µΩ, νΩ.
Entangling and classical cross-talk are generated between
the driven qubit and its spectator at rates determined by
µ and ν respectively, and both of these errors will be
off-resonant with the spectator qubit.
As an intuition building gedanken experiment, con-

sider a single qubitXπ/2 gate generated by a square pulse
where we further assume ν = 0. Like the CR case, the
Hamiltonian is block-diagonal, with |+ 0

〉
only interact-

ing with |−1
〉
, and |−0

〉
only interacting with |+1

〉
. The

pulse sequence is shown in FIG. 6 (A) will amplify entan-
glement errors due to µ ̸= 0 as the CR case, modified only
in that the rotating X-pulse preserves the eigenstates of
the primary driven qubit (instead of the target). Thanks
to the state-selective nature of our pulse sequence, by
preparing the initial state in either | + 0⟩ or | − 0⟩ we
probe the two off-resonant errors independently. Using
the same analysis as the two previous sections, we expect
correlated peaks in both the driven and spectator qubits
whose positions are given by

ϕ±peak = sign(∆∓ Ω)Ω∓rtg ≈ (∆∓ Ω)tg = ∆tg ∓
π

2
(15)

where the Rabi rates are Ω±r =
√

µ2Ω2 + (∆± Ω)2 ≈
|∆±Ω|, and we have neglected terms proportional to µ2

since µ is small. Experimentally we observe peaks near
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FIG. 6. State-selective frame spectroscopy of an Xπ/2 gate (A) on either qubit Q6 or Q7 with the other qubit treated as
a spectator. In (B) and (D), the excitation probabilities for the driven qubit Q6 (P6) and for spectator qubit Q7 (P7) are
measured when Q6 is in put in the |+⟩ state. In (C) and (E), the excitation probabilities are measured when Q6 is in put
in the |−⟩ state. In (B) and (D), there is a common peak in Q6 and Q7 appearing at the same location which is separated
from the common peak in (C) and (E) by π, as expected from Eq. (15). The lone peak in (D) and (E) is the IX peak. The
dependence of the common peak position on the length of the Xπ pulse are shown in (G) and (F) respectively for Q6 and Q7.
The dependence of the IX peak on Xπ length is shown in (H).

Qubits ϕ±peak(t
∗
X = 0) ∆tg ± π

2
ϕIX
±peak(t

∗
X = 0) ∆tg

Q6 (Driven qubit) 0.662,−2.480 0.640,−2.502

Q7 (Spectator qubit) 0.662,−2.480 0.640,−2.502 −0.969,−0.887 −0.931

TABLE III. Correlated peaks ϕ±peak, extrapolated to zero duration X-pulse t∗X = 0, on the driven and spectator qubit
separated by a comma for the two different preparations: | + 0

〉
, | − 0

〉
. This agrees well with the prediction from Eq. (15)

(2nd column). Similarly, a spectator qubit peak varies only slightly with state preparation, its observed mean (extrapolated)
position ϕIX

±peak(t
∗
X = 0) agrees well with ∆tg.

these predicted value (ϕ = −0.42) in both the driven
qubit Q6 and spectator qubit Q7 when the initial state
is in |Q6Q7⟩ = | + 0⟩, as shown in FIG. 6 (B) and (D),
and π away (ϕ = 2.72) when prepared in |−0⟩, as shown
in FIG. 6 (C) and (E).

In addition to peaks found on both the driven and

spectator qubits, another peak appears only on the
spectator qubit (at ϕ = −1.99) regardless of the initial
state of the driven qubit. This results from νIX ̸= 0,
which leaves the Hamiltonian non-block-diagonal. In-
cluding this term makes calculating the peak positions
analytically more difficult; however, since µ and ν are
relatively small, the peak positions can be estimated
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independently. Since the IX peak is due to an off-
resonant error only on the spectator qubit, its peak
position is given simply by ∆tg. The positions of the
common peaks depend linearly on X-gate duration with
slope given by ∆, as shown in FIG. 6 (F) and (G),
as does the position of the peak only appearing in the
spectator qubit Q7, as shown in FIG. 6 (H). Using the
same technique as in the CNOT section, we extrapolate
the peak positions ϕ±peak in the limit of a zero-duration
X-pulse and compare with our model Eq. (15). The
results are summarized in TABLE III.

Next we repeat the experiments driving Q7 so that Q6

is the spectator. For the initial state |Q7Q6⟩ = | + 0⟩,
we observe a peak (at ϕ = −2.7) on both Q7 and Q6

and a IX peak (at ϕ = 1.99) on Q6. The 2D sweep for
Q6 is shown in FIG. 7 (B). Notice that the peaks in Q6

and the peaks in Q7 in FIG. 6 (E) are reflections of each
other with respect to ϕ = 0. This makes sense since in
our model exchanging the driven and spectator qubit
amounts to changing ∆ → −∆. However the amplitudes
of the peaks are less for |Q7Q6⟩ than |Q6Q7⟩. For the
driven qubit Q7, in addition to the peak shared by Q6,
there is another peak (at ϕ = −2.2) shared with another
spectator qubit Q4 shown in FIG. 7 (C). Indeed Q7

has three spectator qubits with Q6 being the closest
in detuning (60 MHz), followed by Q4 (107 MHz) and
Q10 (241 MHz). We did not observe any spectator
excitation on Q10, as shown in FIG. 7 (D). The qubit
connectivity and frequencies are shown in FIG. 4 (B).
In addition to obtaining the peak positions based on
extracting the tX → 0 limit, one can also keep tX as it
is and modify Eq. (15) as ϕ±peak = ∆(tg + tX)∓ π

2 . We
use this method to analyze the peak positions observed
for the case where Q7 is the driven qubits. As shown
in TABLE IV, we again see good agreement between
experiments and model.

The Xπ/2 pulses used in this section are Gaussian
pulses with length tX90 = 4σ and σ = 3.55ns. We used
much longer pulses, 64ns, for the X gate in the sequence
to minimize spectator off-resonant errors during that
pulse since we are focusing on spectator errors due to the
Xπ/2 gate. Our analysis in this section indicates that one
need not drive at an amplitude comparable to detuning
to induce appreciable spectator errors; in fact, an excited
qubit may exchange or swap excitation with a spectator
of small detuning even in the absence of drive [32]. These
errors are off-resonant and therefore easy to overlook.
Here the Xπ/2 pulses had an average drive amplitude
of 17 MHz, which is less than 1/3 of the frequency
difference between Q6 and Q7. Yet remarkably, the
spectator error after 30 Xπ/2 pulses on Q6 is enough to
put the driven and spectator qubits into a Bell state. We
also point out that the entangling interaction is similar
to the FLICFORQ gate described in Ref. [33]. More
worryingly our experiments show that single qubit gates
can introduce entangling errors with multiple specta-

tor qubits, even if they are detuned by 100 MHz or more.

We point out the key observation in section IV and V
is that by preparing in specific initial states and keeping
track of the phase of the interleaved Xπ pulse (see FIG.
4A and 6A), the off-resonant errors in cross-resonance
and spectator can be reduced to analyzing the dynamics
of two independent single-qubit systems, instead of
one two-qubit system. This simplification allows us to
directly obtain Eq. (13) and Eq. (15) by reading off the
Hamiltonian (Eq. (12) and Eq. (14)) using the same
reasoning leading to Eq. (10) for the Stark Z gates.
We want to emphasize that section III, IV, and V are
closely related, and we are essentially analyzing the
same problem in slightly different settings.

Unfortunately there is no simple fix to these off-
resonant spectator errors using known pulse optimiza-
tions such as DRAG. For current devices and fidelity
goals, we are able to work in regimes of large enough
detuning to mostly ignore these off-resonant errors on
single qubit gates. Designing pulse sequences to correct
these errors is out of the scope of this current manuscript,
but could prove an important future area of research if
we find we need to relax constraints on detuning or lower
single qubit gate errors way below the current 10−4 lev-
els. For the remainder of this section we will explore two
additional examples of off-resonant errors in single qubit
gates.

A. Off-resonant errors and CPMG

Instead of continuous phase sweeps, it is possible to
observe off-resonant errors in the more standard frame-
work of dynamical decoupling (DD) sequences. Consider
the pulse sequences shown in FIG. (8) (B,C), where the
driven qubit is initially prepared in |+⟩ state, followed
by a periodic application of either an Xπ/2 or Xπ in-
terleaved by a delay τ . In the case of an Xπ-pulse this
is the well-known CPMG sequence. As shown in FIG.
(8), we observe excitation in both the driven and spec-
tator qubits at regular intervals separated by 2π/|∆|.
These peaks are actually the same as those observed
before in frame spectroscopy experiments. We can use
ϕpeak = ∆τpeak and directly obtain the peak positions
as τpeak = −tg − θg + 2mπ/|∆|, where m is an inte-
ger and θg = π/2 for Xπ/2 pulses and θg = π for Xπ

pulses. On the spectator qubit we see another set of
peaks. These are the IX peaks, and their positions are
given by τpeak = −tg +2mπ/|∆|. Observing off-resonant
excitation peaks in DD is limited by the sampling reso-
lution in the delay τ . With a large repetition number n
the peak width can be quite small, one can easily lose the
peaks if the resolution in τ is not small enough. For this
set of data we used a different device ibmq cairo where
the electronics allowed us to sweep τ in increments of
0.222ns (a 16× shorter increment than available on the
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FIG. 7. State-selective frame spectroscopy of an Xπ/2 gate performed on the driven qubit Q7 with Q4, Q6, and Q10 as spectator
qubits as seen in FIG. 4(B). In all cases Q7 is prepared in |+⟩ and we measure the excitation probabilities P6 (A), P7 (B), P4

(C) and P10 (B). In (A) and (B) there is a common peak in Q6 and Q7 appearing at the same location, and a lone IX peak in
Q6. In (B) and (C) there is a different common peak in Q7 and Q4, and no IX peak in Q4. Lastly in (D) there are no peaks
at all, since Q10 is far detuned from the driven qubit Q7.

Qubits ϕ+peak(tX = 64ns) ∆(tg + tX) + π
2

ϕIX
+peak(tX = 64ns) ∆(tg + tX)

Q7 (Driven qubit) −2.723,−2.304 −2.732,−2.328

Q6 (Spectator qubit) −2.723 −2.732 1.990 1.980

Q4 (Spectator qubit) −2.356 −2.328

TABLE IV. Correlated peaks ϕ±peak on the driven and spectator qubit separated by a comma for the two different preparations:
|+ 0

〉
, | − 0

〉
. This agrees well with the prediction from Eq. (15) with tg → tg + tX (2nd column). Similarly, a spectator qubit

peak varies only slightly with state preparation agreeing well with ∆(tg + tX).

other two devices used). The qubit parameters are shown
in FIG. 8 (A). Here both Xπ/2 and X gates are Gaus-
sian pulses 4σ long with σ = 5.33ns; the repetition num-
bers are n = 16 for X and n = 32 for Xπ/2. We point
out that compared to τ , the minimum phase increment
on IBM deployed hardware is almost infinitesimal. Re-
solving these errors for any but the smallest detunings
is much more practical using phase sweeps. We note a
recent work describing non-Markovian effects in single
qubit gates in a transmon processor [34].

B. Evidence of TLS in continuous phase sweeps

So far we have used continuous phase sweeps to ascer-
tain parameters in otherwise extremely well-understood
Hamiltonian models. However, in superconducting
qubits loss of coherence is typically described by coupling
to other, less well-understood two-level systems (TLS)
typically thought to be due to microscopic irregularities
in the device. The dynamics of TLS near the qubit can
be probed via Stark spectroscopy [35], spin-lock spec-
troscopy [36, 37], and careful study of Ramsey sequences
[38].
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FIG. 8. Amplifying spectator errors with CPMG sequences for Xπ/2 (B) and Xπ (C) gates on Q6 in (A). We measure
excitation probability P6 in (D, E) and P7 in (F, G) for a Xπ/2 gate (D, F) and Xπ gate (E, G). The red vertical lines show
the expected positions of the entangling peaks, and the blue vertical lines show the expected positions of spectator (IX) peaks.
The entangling peaks appear at the same location in both qubits. These pulse sequences are also used in Quantum noise
spectroscopy (QNS) and dynamical decoupling magnetometry. The key difference is that we are not using the pulse sequence
to probe noise or field during the delay, instead we are using the delay to probe and amplify the spectator error in the pulse.

Here we point out that frame spectroscopy developed
for observing off-resonant errors can also reveal TLS dy-
namics. We treat the TLS exactly as we do spectator
qubits, although they are typically lower coherence. In
FIG. 9(A) we apply the Xπ/2 amplification sequence
shown in FIG. 6(A) for a large number of repetition
number (n = 1000), then compare to Stark TLS spec-
troscopy described in [35] where excited state popula-
tion is measured after 20 µs of off-resonant drive 80MHz
above/below the qubit frequency FIG.9(F/G). The re-
sulting spectra are monitored every 15 minutes for over
40 hours. The qubit used is far detuned (∼ 260 MHz)
from its only neighbor to minimize the effects of specta-
tor errors described in the previous section. As shown in
FIG. 9, both Stark TLS and frame spectroscopy display
peaks which can move with time. While some peaks from
Stark spectroscopy can be associated with peaks in the
phase plots, it is clear that the phase plot reveal a much
richer structure than one gets from T1 and T2 measure-
ments alone.

VI. CONCLUSION

In this manuscript we demonstrated a broad category
of “off-resonant excitation errors” that can show up in
common gates utilized on quantum processors and are
difficult to quantify with standard QCVV techniques.
The main issue is that the assumptions of Markovianity
(the stationary assumption in particular) are violated
when the gates in a gate set (and their errors) are
stationary only in incommensurate rotating frames.
This recasts Markovianity not as an intrinsic property
of a single gate, but rather as a statement about an
entire quantum processor. We developed an alternative
method for characterizing these errors by using interro-
gation gates (described as phase updates, Z-rotations,
or frame changes) that are co-Markovian with the gate
being measured. This allows us to detect, and in many
cases mitigate, off-resonant excitations on multiple
gates of a standard fixed-frequency IBM device. In the
cases studied here, the magnitude of these errors are
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(A)

(B) (C)

(D)

(F)

FIG. 9. We compare the features in a continuous phase sweep (A,C) to those observed in Stark spectroscopy (D) for an 80MHz
drive tuned above (E) and below (F) the qubits resonance frequency. This data was take on ibm whiplash and the observed
lines in the phase plot are not predicted by spectator interactions as the neighboring qubit (B) is far detuned. Several of the
features in the phase sweep are observed in the Stark spectroscopy (highlighted by the colored boxes as a guide to the eye),
and so both experiments are probing TLS physics.

just on the cusp of becoming performance bottlenecks
[34], which is perhaps not surprising if we consider the
long-term efforts of optimizing device parameters with
respect to metrics such as randomized benchmarking and
quantum volume [30, 39]. Without an understanding
of the physical mechanism of the errors that affect
large-scale metrics they can only be mitigated through
the slow process of trial and error in device design and
fabrication, or by decreasing drive amplitudes (increas-
ing gate times) until their rates become comparable to
those of the background incoherent processes. With new
protocols, as described here, we hope that we can begin
to better understand this wide variety of off-resonant
errors and begin the process of engineering corrections
so that they are never the limiter of performance. While

DRAG worked for certain scenarios in this manuscript,
the most ubiquitous – spectator errors during single
qubit gates – remains uncorrected and an open question
going forward. Also, as the field pushes on techniques
to reduce errors algorithmically, such as error mitigation
[40, 41] and quantum error correction, understanding
the strength of these off-resonant errors and how they
impact these protocols is of the utmost importance. Our
study should be of immediate interest to quantum noise
spectroscopy (QNS) [42, 43], quantum signal processing
[44], and dynamical decoupling based magnetometry
[45], where off-resonant errors, if not account for, could
lead to spurious results. Furthermore, the experimental
techniques developed here could be applied to study
many-body resonances in many-body localized systems
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(MBL) [46, 47], potentially shedding light to the stability
of MBL systems.
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Appendix A: Coherence Limit

A common technique used to estimate the minimum
error of a gate is to construct an amplitude and dephas-
ing error channel for the duration of the gate and then
calculate the average gate error. This can be done by
representing those error channels in the Pauli superop-
erator form (Pauli Transfer Matrix, PTM, R) and then
applying the formula described in Ref. [31]

ϵ =
d

d+ 1

(
1− Tr[R]

d2

)
(A1)

where d = 2n. Applying this formula for the 1 qubit gate
we obtain

ϵ1Q =
1

6

(
3− 2e−tg/T2 − e−tg/T1

)
, (A2)

where tg is the length of the gate and T1 and T2 are the
amplitude damping decay time and Ramsey decay time,
respectively. For the two-qubit gate we take the tensor
product of the superoperators for the qubits since the
error channels are independent and obtain,

ϵ2Q =
1

20

(
15−

∑

i=0,1

[
2e−tg/T2,Qi + e−tg/T1,Qi

]

− e−tg(1/T1,Q0+1/T1,Q1) − 4e−tg(1/T2,Q0+1/T2,Q1)

− 2e−tg(1/T1,Q0+1/T2,Q1) − 2e−tg(1/T2,Q0+1/T1,Q1)

)
.

(A3)

Appendix B: Purity RB

The version of purity RB we use here is discussed in
Ref. [49] and implemented in Qiskit-Ignis [48]. For each

Clifford sequences we append 3n post-rotations to mea-
sure all 4n Pauli expectation values required to calculate
the purity of the state Tr[ρ2]. This can be seen from

Tr[ρ2] = Tr[
∑

i,j

aiajPiPj ]

=
∑

i

da2i , (B1)

since Tr[PiPj ] is 0 if i ̸= j and d otherwise (where Pi is
a Pauli operator). Also note,

⟨Pi⟩ = Tr[ρPi]

=
∑

i

dai, (B2)

so

Tr[ρ2] =
∑

i

⟨Pi⟩2

d
(B3)

If we assume depolarizing error then fitting Tr[ρ2] vs Clif-
ford length (n) to Aγ2n + B we get that the incoherent
error per gate is,

ϵ =
3

4
(1− λ1/n2), (B4)

where n2 is the number of 2Q gates per Clifford. We show
some simulations of purity RB in FIG. 10 illustrating how
coherent errors degrade standard RB, but do not affect
purity RB.

Appendix C: Standard techniques to characterize
coherent errors

In [19], sequences were given to amplify ZX, ZY , ZZ,
IY , and IZ errors to the cross-resonance gate, as these
errors are directly addressed during calibration of the am-
plitudes and phases of the cross resonance and target ro-
tary pulse. These sequences assume only that the unitary
being amplified is nearly a ZXπ/2-rotation, and all other
terms in the amplified unitary’s effective Hamiltonian are
relatively small. We can extend the sequences given in
[19] to include all other two-qubit Pauli errors by choos-
ing pre, post, and echoing rotations from TABLE V. The
magnitude of Pauli error ϵij can be obtained from fitting
⟨Z⟩C/T following the appropriate HEAT sequences HN

k

of the form in FIG. 11 to a line in N of slope α. We
choose numbers of repetitions N such that N = 0 mod 4.
So for example,

〈
HN

1

〉
C
≃ α1(ϵxi + ϵxx)N/2, or equiva-

lently, ϵxi ≃ (
〈
HN

1

〉
C
+
〈
HN

2

〉
C
)/2α1N . We assume that

all ϵij are small compared to π/2 so that the resultant
HEAT sequences fit to a line for up to N ≃ 20. In prac-
tice this assumption is nearly always reasonable after the
execution of other standard calibration routines.
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FIG. 10. Simulation of purity RB (b),(d) versus standard RB (a),(c) done in Qiskit [48]. Here we choose T1=T2=40µs and
for just the CX gate to be finite width of 300ns, there is also a 3% measurement error. This has a coherence limit error of
1.35×10−2 per Clifford. For (a) and (b) there is only the T1 and T2 decohering errors. For (c) and (d) we add a coherent
X rotation error after each CX gate which degrades standard RB but does not change purity. Red lines are the average and
standard deviation of the RB sequences, and blue lines are fits to the average.

Control PrepC
ZX90

EchoC
N

PostC

Target PrepT EchoT PostT


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
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FIG. 11. The kth heat sequence HN
k

Appendix D: Gate Set Tomography for a Stark Zπ/2

In this appendix we use the pyGSTi implementation
of long-sequence GST [17, 50] to show model violation
for a simulation of the Stark Zπ/2 gate described in
§ III. Starting from Eq. (8), we assume a detuning of
∆/2π = −50MHz, a phase ϕ = 0, and apply a square
pulse of amplitude Ω and duration tg = 96ns. We then
optimize Ω to perform a Zπ/2 gate, which results in
Ω/2π ≈ 16.25MHz. Integrating this Hamiltonian from
t = 0 . . . tg yields the unitary operator, in the resonant
frame, of

U ≈ 0.717I − i(0.037X + 0.027Y + 0.695Z), (D1)

which has an average gate error of 1.5×10−3. We assume
theXπ/2 and Yπ/2 gates to be perfect gates with duration
35.55ns.
We now simulate a GST experiment using this gate set,

being careful to track the phase in the resonant frame,
and obtain the results in FIG. 12. GST uses a loglike-
lihood ratio test to determine to determine how plausi-
ble the raw data is based on the optimally fitted model.
Here the only model constraints are that each gate is de-
scribed by a physical quantum operation, and that the
simulation is Markovian. For this experiment, GST has
an extremely hard time finding a Markovian model to fit
this data, even for very small numbers of pulses.
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FIG. 12. Model violation in GST as reported by the loglikelihood ratio of the fit (red denotes experiments that are poorly
described by the best fit Markovian model). Each row describes a different germ sequence, a small sequence Xπ/2,Yπ/2, and
Zπ/2 gates. These are then raised the power L. columns. The 36 smaller squares inside each larger block denote different
choices of the prep and measure operations.

Sequence PrepC PrepT EchoC EchoT PostC PostT Measure α Paulis

1 I Y90 X I X90 Y−90 C π2

16
1
2
(XI +XX)

2 I Y−90 X I X90 Y90 C π2

16
1
2
(XX −XI)

3 I Y90 I Z I I T π2

16
1
2
(ZZ + IZ)

4 X Y−90 I Z X X−90 T π2

16
1
2
(ZZ − IZ)

5 I Y90 I Y I I T π2

16
1
2
(ZY + IY )

6 X Y90 I Y X X90 T π2

16
1
2
(ZY − IY )

7 I X90 I X I I T 1 1
2
(ZX + IX)

8 X X90 I X X I T 1 1
2
(ZX − IX)

9 I Y90 Y I X−90 Y−90 C π2

16
1
2
(Y I + Y X)

10 I Y−90 Y I X90 Y90 C π2

16
1
2
(Y I − Y X)

11 I Y90 Y Y Y−90 X−90 C 1
2

1
2
(Y Y −XZ)

12 I Y−90 X Z Y90 X−90 T 1
2

1
2
(Y Y +XZ)

13 I Y90 X Y X90 X−90 C 1
2

1
2
(XY −XZ)

14 I Y−90 Y Z X−90 X−90 T 1
2

1
2
(XY +XZ)

15 Y90 I Z I X90 I C 1 ZI

TABLE V. Summary table of generalized HEAT sequences to amplify coherent errors.
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[31] J. M. Gambetta, A. D. Córcoles, S. T. Merkel, B. R.
Johnson, J. A. Smolin, J. M. Chow, C. A. Ryan,
C. Rigetti, S. Poletto, T. A. Ohki, M. B. Ketchen, and
M. Steffen, Characterization of addressability by simulta-
neous randomized benchmarking, Phys. Rev. Lett. 109,
240504 (2012).

[32] D. M. Zajac, J. Stehlik, D. L. Underwood, T. Phung,
J. Blair, S. Carnevale, D. Klaus, G. A. Keefe, A. Carniol,
M. Kumph, M. Steffen, and O. E. Dial, Spectator errors
in tunable coupling architectures (2021).

[33] C. Rigetti, A. Blais, and M. Devoret, Protocol for uni-
versal gates in optimally biased superconducting qubits,
Phys. Rev. Lett. 94, 240502 (2005).

[34] Z. Li, P. Liu, P. Zhao, Z. Mi, H. Xu, X. Liang, T. Su,
W. Sun, G. Xue, J.-N. Zhang, W. Liu, Y. Jin, and H. Yu,
Error per single-qubit gate below 10−4 in a superconduct-
ing qubit (2023).

[35] M. Carroll, S. Rosenblatt, P. Jurcevic, I. Lauer, and
A. Kandala, Dynamics of superconducting qubit relax-
ation times, npj Quantum Information 8, 132 (2022).

[36] L. V. Abdurakhimov, I. Mahboob, H. Toida,
K. Kakuyanagi, Y. Matsuzaki, and S. Saito, Driven-

state relaxation of a coupled qubit-defect system in
spin-locking measurements, Phys. Rev. B 102, 100502
(2020).

[37] L. V. Abdurakhimov, I. Mahboob, H. Toida,
K. Kakuyanagi, Y. Matsuzaki, and S. Saito, Iden-
tification of different types of high-frequency defects
in superconducting qubits, PRX Quantum 3, 040332
(2022).
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