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We report the experimental observation of an elastic bound mode in the continuum (BIC) in
a compact region of an architected beam. We consider a long slender beam with rigid masses
attached at periodic intervals, with a compact segment bounded by four protruding side beams.
The key idea is to seek a mode where the side beams move out-of-phase with the compact region,
thereby nullifying the forces and moments outside this region and resulting in a bound mode. The
structure is modeled using Euler-Bernoulli beam theory and the side beams are designed by imposing
equilibrium constraints required for a BIC. Multiple BICs are found in the compact region, and for
each BIC, we find a one-parameter family of BIC supporting side beam designs. The predictions are
verified by three-dimensional finite element simulations, followed by their experimental observation
using laser Doppler vibrometry in a macro-scale structure. Our approach allows to achieve BICs
in an arbitrary sized compact region of the architected beam. Our findings may open avenues for
confining elastic wave energy in compact regions for applications in sensors and resonators.

I. INTRODUCTION

Bound modes in the continuum (BICs) are a unique
class of localized modes with two key properties: their
wave amplitude diminishes to zero outside a compact re-
gion and their frequency is in the continuous spectrum
(pass band) of bulk propagating modes [1]. In contrast,
conventional bound modes reside within bandgaps, and
the localized modes encountered in the passband typi-
cally exhibit leakage, with the wave amplitude gradu-
ally decreasing from the center of the wave [2–4]. The
concept of BICs originated in quantum mechanics, intro-
duced by von Neumann and Wigner in 1929, who uti-
lized a complex artificial potential [5]. It was regarded
as a mathematical anomaly, as such complex potentials
were not possible in real materials. BICs were subse-
quently predicted and observed in several classical wave
systems [6, 7]. Notably, in 1966, BICs were experimen-
tally observed in acoustics through the ‘wake shedding
experiment’ [8]. Today, BICs have become an active area
of research across various scientific disciplines due to their
leak free energy storing capacity with very high qual-
ity factor (Q factor) [9]. Potential applications of BICs
encompass lasing [10–12], sensing [13], filtering [14, 15],
supersonic surface acoustic device [16, 17], vibration ab-
sorption [18], and wave guiding [19–21].
Recent advancements in manufacturing techniques

have opened up new possibilities for exploring BICs
in complex structures, particularly in the domains of
photonic metamaterials. Two major types of BICs
are symmetry-protected and accidental. Symmetry-
protected BICs arise from the mismatch between the
spatial symmetry of a localized mode and the symme-
try of the propagating modes. Experimental observa-
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tions of such symmetry-protected BICs have been re-
ported in various systems, such as dielectric slabs with
square arrays of cylinders [22], periodic chains of dielec-
tric disks [23], and optical waveguides [24]. On the other
hand, accidental BICs can be achieved through precise
system parameter tuning to cancel their coupling with
bulk propagating waves. Examples of this category is
the Fabry-Perot BIC [25, 26], where the BIC is formed
through the destructive interference of waves. In addition
to these two types of BICs, recent research has explored
quasi-BICs (QBICs) which have high Q factors [27, 28].
As true BIC-supporting structures are limited, quasi-
BICs are emerging as an alternative.

In contrast to photonics, a major challenge in achiev-
ing elastic BICs is the simultaneous presence of trans-
verse and longitudinal waves with distinct dispersion re-
lations. BICs should not couple or hybridize with any
propagating modes present in an elastic body. Haq and
Shabanov first theoretically predicted Fabry-Pérot BICs
for in-plane wave with scatterers [29], using distinct den-
sities but same Lamé constants for the background ma-
terial and scatterers. Cao et.al. [18, 30] experimentally
demonstrated wave confinement at the boundary of an
elastic plate for transverse waves incident at a specific
angle. Their design uses an array of resonators em-
bedded at the plate boundary. Fan et.al [31] observed
BIC in a non-Hermitian system by exploiting damp-
ing and boundary conditions. BICs have also been ob-
served in multi-physics domains, including in chip scale
ring-shaped optomechanical microresonators [32], slab-
on-substrate phononic crystals [33], elastic bar with air-
encapsulated cavity [34]. All these BICs require specific
material properties, boundary conditions, geometric fea-
tures or properties like damping and multi-physics inter-
actions. For practical applications, it is desirable to have
a general framework that can translate across material
properties and generate BICs in arbitrary sized compact
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regions.
This work builds on our prior work [21], where we pre-

dicted how a family of BICs can be achieved in an arbi-
trary compact region of a spring-mass system by exploit-
ing symmetry constraints. Here, we extend this concept
to realize BICs in a compact region of an architected
beam. In contrast to spring-mass chains, beams are con-
tinuous structures with multiple degrees of freedom at
each point, namely transverse displacements and rota-
tions. These degrees of freedom impose additional condi-
tions for BICs. Here, we consider a periodic architected
beam having an array of rigid masses. To achieve BICs
in a compact region, four side beams are added, and the
key idea is that they move out-of-phase with the periodic
beam to nullify forces and moments at their joints. Com-
pared to previous works, our concept provides a frame-
work to confine an elastic wave at an arbitrary location
in a beam structure. The frequency and length of con-
fined region can be independently varied using the size
and location of the rigid masses. In addition, the concept
translates across material properties and length scales.
The outline of the paper is as follows: section II

presents the design and modeling approach. The struc-
ture is modeled using 1D Euler-Bernoulli beam theory.
Section III presents the BIC mode shapes determined us-
ing 1D finite element analysis and reports a 1-parameter
family of BIC supporting side beam designs. In sec-
tion IV, 3D finite element simulations and laser Doppler
vibrometry based experimental measurements are pre-
sented, that verify and validate the existence of a BIC
in the architected structure. The simulations are done
using the beam theory-based design as a starting point
to finalize a structure that simplifies fabrication. Finally,
the conclusions, along with various sources of error and
possible future extensions are presented in section V.

II. PROPOSED CONCEPT AND MODELING

APPROACH TO DESIGN COMPACT REGION

We first introduce the proposed architected beam and
discuss the key idea of achieving BICs in a compact re-
gion by adding side beams. These side beams are de-
signed by modeling the structure using a one-dimensional
(1D) Euler Bernoulli beam theory. A description of this
modeling approach is presented, followed by its numerical
discretization procedure.

A. Architected beams with side segments and

symmetry consideration

Let us consider a homogeneous beam with rigid masses
attached at periodic intervals of distance l. An example
is shown in the central beam in Fig. 1(a). We call this
periodic architected beam as the main beam. Figure 1(b)
displays a unit cell of the main beam with the key geo-
metric variables labeled. It is a slender beam with rect-

angular cross-section and has two identical rigid cylinders
at its center, one each at the top and bottom. Note that
rigid masses in the main beam allows independent con-
trol over the length of region in which a BIC mode is
confined and its frequency.
Our objective is to achieve a BIC in an arbitrary com-

pact region, for example between the cross-sections la-
beled A and B in Fig. 1(a). We will model this archi-
tected structure using one-dimensional (1D) beam the-
ory, which assumes that the beam deforms such that each
cross-section remains rigid. Under this assumption, the
degrees of freedom are the 3 translations and 3 rota-
tions of each cross-section along the beam’s axis. We
restrict attention to long wavelengths, compared to the
beam thickness and low frequencies, i.e., in the first pass
band of the beam. The lower frequency band has flexu-
ral modes with displacement along z. For such modes, it
suffices to consider two degrees of freedom at each cross
section: transverse displacement u along z and rotation
θ about y-axis, with the latter accounting for bending.
The presence of side beams couples the torsional (rota-
tion about x) and flexural modes near the compact re-
gion. However, as we discuss below, for BIC modes, the
rotation about x is cancelled due to symmetry and thus,
the number of relevant degrees of freedom at each point
along the beam cross-section is two.
A BIC between sections A and B will be a mode con-

fined in this region and with zero displacement and ro-
tation at all points outside, i.e., in the segments AP and
BQ. Our approach is to add side beams, as displayed
in Fig. 1(a), that cancel the motion outside the com-
pact region. Let us first present the conditions that en-
sure a bound mode in the compact region. We enforce
zero displacement, rotation, net force and moment at the
boundaries of the compact region, i.e., at sections A and
B. These conditions at section A may be written as

∑

FzA = 0,
∑

MxA =
∑

MyA = 0, uA = 0, θA = 0.

(1)
Note that only the contributions from the compact re-
gion and the side beams are considered in the forces and
moments in Eqn. (1).
To see why the above conditions imply that segment

AP in Fig. 1(a) is at rest, we consider an initial boundary
value problem on the segment AP when Eqn. (1) is satis-
fied. This segment has no external forces and its bound-
aries have zero displacement. The zero displacement field
(u = [ux uy uz]

T = 0) throughout the segment AP is
a valid solution since it satisfies the equilibrium condi-
tions at each point as well as all the boundary conditions.
Since the governing equations, namely the Cauchy equa-
tions for elastodynamics, or the one-dimensional Euler-
Bernoulli beam theory, are linear, the solution (u = 0) is
unique. Thus the conditions in Eqn. (1) ensure zero dis-
placement in the segment AP , regardless of its size or the
boundary type at P . Similar conditions to Eqn. (1) at
section B ensure that the segment BQ is at rest, thereby
implying a BIC confined in the segment AB, along with
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FIG. 1. (a) Schematic of proposed architected beam: rigid masses attached at periodic intervals along a homogeneous beam.
Four side beams are added to get a BIC between A and B. (b) A unit cell of the periodic beam with the key geometric variables
labeled.

their side beams.
Let us discuss how the side beams in Fig. 1(a) induce

BICs. The key idea is to have a mode where the side
beams move out of phase, i.e., in opposite direction to
the main beam, thereby cancelling the net force and mo-
ment at sections A and B. In addition, as we explained
above, enforcing zero displacement and rotations at these
sections results in the far field being at rest. Finally, let
us remark on the reason for having two side beams, one
on either side, at sections A and B. A single side beam
will induce torsional rotation about the main beam axis
due to the moment component Mx. To cancel this mo-
ment, a second side beam is added. The two side beams
on either side at A thus move in-phase with each other,
but out-of-phase with the main beam. We will show later
in Sec. III a family of side beams that can satisfy Eqn. (1),
i.e., cancel displacement, rotation, force and moment at
A and B.
We choose all the side beams to be identical and ar-

range them so that the center of the compact region be-
tween sections A and B has reflection symmetry about
both x and y axes. Note that BICs do not require these
symmetries and they are chosen to simplify the side beam
design. Indeed, the only requirement to ensure zero dis-
placement and rotation outside the compact region is to
satisfy the conditions of Eqn. (1) at sections A and B.
We remark here that the full design space of distinct side
beams is sufficiently large, with multi-parameter families
of solutions that satisfy these conditions. Imposing the
constraints arising for symmetry, the problem of induc-
ing BICs reduces to determining suitable side beams. As
we are considering that the side beams’ arrangement is
reflection symmetric about the x and y axis, determining

one side beam’s design will suffice to complete the beam
structure that can support BIC at a particular frequency.
Let us discuss how these reflection symmetries and

equilibrium conditions impose restrictions on resulting
bound mode shapes in the compact region. Each sym-
metry can be represented by a linear transformation op-
erator. This operator maps the position vectors of each
point in the structure to its corresponding reflected point.
In addition, the mode shapes are eigenvectors of this op-
erator [35]. The reflection symmetry operator has two
eigenvalues: λ = ±1 and the bound mode shapes are
thus even (λ = 1) or odd (λ = −1) in the compact region
about the symmetry axis. Let us analyze the consequence
of reflection symmetry about x axis. An odd mode shape
about the x axis will induce a moment and thus rotation
about x at sections A and B as the side arms move in
opposite directions. The sections to the left of A and
right of B will thus not be at rest and a bound mode is
thus not possible with an odd mode shape about the x
axis. In summary, a bound mode shapes in the compact
region will be either even or odd about the y axis and
even about the x axis.

B. Modeling with Euler-Bernoulli beam theory

and numerical procedure

Let us derive the governing equations for free vibra-
tions of the structure based on 1D beam theory and dis-
cuss the finite element based procedure to solve them.
Let u(x, t) and up(x, t) denote the transverse displace-
ments of the main beam and side beam p, respectively.
The action functional for this structure is given by
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S =

∫ T

0

∫ L

0

[

ρAu̇2

2
−

EI (u′′)
2

2
+

N
∑

p=1

(

mu̇2

2
+

Ir θ̇
2

2

)

δ(x− pl)

]

dxdt

+
4
∑

p=1

1

cosϕp

∫ T

0

∫ Lp

0

[

ρAu̇2

p

2
−

cos4 ϕpEI
(

u′′

p

)2

2
+

(

mpu̇
2

p

2
+

cos2 ϕpIrpθ̇
2

p

2

)

δ(x − Lp)

]

dxdt (2)

Here u′ and u̇ denote partial derivatives of u with respect
to x and t, respectively, θ = u′ is the rotation of the sec-
tion and Lp/ cosϕp is the length of side beam p. E, I,
ρ and A are the Young’s modulus, bending moment of
inertia, density and cross-section area, respectively. The
attached cylinders are assumed to be rigid with diameter
d. The bending moment of inertia is I = wt3/12 for a

beam with width w and thickness t. ϕp is angle of side
beam p with respect to the x-axis. We seek harmonic
solutions at frequency ω and impose a displacement field
of the form u(x, t) = u(x)eiωt to replace the time deriva-
tives by iω. The displacement field satisfies the Euler
Lagrange equations, obtained by setting variation of S
to zero. This condition gives

δS =

∫ L

0

[

−ω2

(

ρAuδu+

N
∑

p=1

(muδu+ Iru
′δu′)δ(x− pl)

)

− EIu′′δu′′

]

dx

+

4
∑

p=1

1

cosϕp

∫ Lp

0

[

−ω2
(

ρAupδup +
(

mpupδup + cos2 ϕpIrpu
′

pδu
′

p

)

δ(x− Lp)
)

− cos4 ϕpEIu′′

pδu
′′

p

]

dx = 0. (3)

Now, let us discuss the numerical procedure to discretize
and solve the above equation. We use a finite element
approximation, where unknown degrees of freedom are
restricted to be the displacements u and rotations u′ at
the locations of attached masses. We express u and u′ at
a point in the structure as a weighted sum of piecewise cu-
bic polynomials, i.e., having continuous first derivatives,
and the weights being the degrees of freedom. We seek
a solution that satisfies the governing equation (3) for
any perturbation fields δu and δu′ that lies in the same
space spanned by the degrees of freedom. Explicit ex-
pressions for the polynomials and the resulting equations
are presented in the appendix. The resulting discretized
eigenvalue problem for the structure may be written in
the matrix form as

ω2
Mu = Ku. (4)

Here u is the vector of unknown degrees of freedom, i.e.,
displacements and rotations at masses, and M , K are
the discretized mass and stiffness matrices, respectively.

III. NUMERICAL SOLUTION OF

ARCHITECTED BEAMS SUPPORTING BICS

In this section, the mode shapes of BICs and a family
of side beams that support these BICs are determined

for a given main beam. Although our studies are pre-
sented for a specific choice of compact region, the con-
cept and approach can be extended to an arbitrary sized
compact region and material properties. A two step pro-
cess is used to design BIC supporting structures using the
beam model introduced above in Sec. II B. The first step
is to determine the bound mode frequencies by imposing
zero displacement and rotation at sections A and B in
the main beam. The next step is to determine the side
beam dimensions that satisfy the equilibrium conditions
required to keep sections A and B at rest. Finally, we
verify if these modes are indeed BICs, i.e., if their fre-
quency lie in a pass band. This is done by performing
a dispersion analysis that yields the pass and stop band
frequencies.

A. Bound mode frequencies and design of side

beams

Having derived the governing equations for the pro-
posed structure, let us now solve them numerically to de-
termine BICs. The first step is to determine the bound
modes by considering the compact region of the main
beam only and explicitly enforcing zero displacement and
rotation at sections A and B in Fig. 1(a). The resulting
modes will, in general, not satisfy equilibrium conditions
at sections A and B. The second step is to determine the
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FIG. 2. (a) Frequencies of bound modes in the compact region
of Fig. 1(a). (b) Mode shapes of first 3 modes, u is transverse
displacement along the main beam. Markers indicate rigid
mass locations, with similar marker in (a) for their frequency.
(c) Dispersion diagram of the main beam from 1D beam the-
ory and 3D elasticity. The first three mode frequencies lie on
the lowest flexural band and are thus BICs.

side beam dimensions so that the total structure (main
and side beams together) satisfy the equilibrium condi-
tions at sections A and B. In these mode shapes, sections
A and B will thus be at rest and have zero net force and
moment, thereby ensuring that parts outside the com-
pact region will be at rest. Thus, this procedure ensures
bound modes in the structure.
In the first step, to determine the natural frequency

and mode shape of BICs, we use material proper-
ties of Aluminum 6061 with Young’s modulus (E =
68.9 GPa, Poisson’s ratio ν = 0.3 and density ρ =
2700 kg/m

3
) for the beam and Neodymium Magnet N35

(cylinder density, ρc = 7537.6 kg/m
3
) for the cylinders

considering ease of fabrication. The key geometric vari-
ables (l, w, t, d, h) in the unit cell, see Fig. 1(b) are cho-
sen to be (27.5 mm, 5 mm, 2.032mm, 5mm, 4.6mm).
The bound mode shapes and frequencies are determined
by solving the eigenvalue problem (4) in the compact re-
gion with zero displacement and rotation boundary con-
ditions. Figure 2(a) displays the six bound mode fre-
quencies.
Next, we need to determine the side beam dimensions

so that the structure supports BIC in the compact re-
gion. There are several geometric variables for the side
beams as shown in Fig. 1(b) for a unit cell as well as the
angle between the main the beam and side beam AC,
ϕ1 as shown in Fig. 1(a). Different sets of the geometric
variables for side beams can give BICs in the compact re-
gion. We fix ϕ as 45◦ to simplify the problem. Also, for
ease of fabrication, the beam thickness and the cylinder
diameters in the side beams are chosen to be the same
as that in the main beam. Thus the design reduces to
determining three geometric variables: length (ls), width
(ws) of the side beams, and the cylinder height (hC) at
section C in Fig. 1(a).
Let us summarize the conditions on a side beam dis-

placement field up needed to get a BIC. These conditions
ensure that section A and the region to the left of it will
be at rest. Recall the key idea that the two identical side
beams at section A, as in Fig. 1(a) move out of phase with
the main beam, thereby canceling the force and moment
at A. Its displacement field has to satisfy the governing
equations (3) at the bound mode frequency ω under fixed
boundary conditions at A (up = 0 and u′

p = 0). In addi-
tion, the resulting forces and moments from the side and
main beams should add to zero so that section A is in
equilibrium. Under the considered 1D beam theory, the
force and moment at section A are given by

F = EIu′′′ +
2
∑

p=1

cos3 ϕp u′′′

p ,

M = EIu′′ +

2
∑

p=1

cos2 ϕp EIpu
′′

p .

Now, we derive the discrete approximations of the above
conditions for the side beam having section C in Fig. 1(a).
A side beam is modeled using a single finite element and
the degrees of freedom are the displacements and rota-
tions at the two ends (A and C). Since we seek solutions
with section A fixed, the displacement field simplifies to
up(x) = N3(x/ls)θC + N4(x/ls)uC . Explicit expressions
for N3, N4 are presented in appendix. Under this ap-
proximation, the governing equations of side beams and
the equilibrium conditions at A then reduce to

δθC = 0 =⇒

(

4EIs
ls

−
ω2ms

420
(4l2s + IC)

)

θC+

(

11ω2ms

210
ls −

6EIs
l2s

)

uC = 0, (5a)
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δuC = 0 =⇒

(

11ω2ms

210
ls −

6EIs
l2s

)

θC+

(

12EI

l3s
−

ω2ms

420
(156 +mC)

)

uC = 0, (5b)

FA = 0 =⇒
4EIs
ls

θC −
12EIs
l2s

uC

−
2EI

le
θG +

6EI

l2e
uG = 0, (5c)

MA = 0 =⇒
12EIs
l2s

θC −
24EIs
l3s

uC−

6EI

l2e
θG +

12EI

l3e
uG = 0. (5d)

Here ms = ρlswst and Is = wst
3/12 are mass and bend-

ing moment of inertia of the side beam, respectively,
while mC = πρcd

2hC/4 and IC = mC/12(3d
2/4 + h2

C)
are mass and mass moment of inertia of the cylindrical
mass at section C. uG and θG are the displacement and
rotation at section G, corresponding to the mode shape
of the compact region at frequency ω (see Fig. 2(a,b)).
The force and moment balance constraints assume that
the two side beams at A move in phase. Indeed, as dis-
cussed earlier, a BIC mode shape is symmetric about the
x-axis.
The conditions for getting a BIC mode lead to a sys-

tem of four nonlinear equations (5) with five unknown
variables (uC , θC , ls, ws, hC) related to the side beams.
To determine them, ls is set to different fixed values
in a wide range and the remaining variables are deter-
mined using the Newton-Raphson method. We deter-
mined side beam dimensions that support the lowest
frequency bound mode at 713 Hz, denoted by a black
marker in Fig. 2(a). Figure 3 displays a 1-parameter
family of solutions that we obtained as ls is varied. Side
beams for every solution in Fig. 3 induce the bound mode
shown by the black curve in Fig. 2(b). For the chosen
main beam, we are unable to find any valid solutions for

side beams with rigid masses removed (corresponding to
rigid cylinder height hC = 0). Similarly for the frequen-
cies marked by blue triangle and red square, we find fam-
ilies of design parameters which support the correspond-
ing bound modes in Fig. 2(b). These design parameter
are displayed in the appendix, Fig. 10.

B. Dispersion analysis of the architected beams

To confirm if the bound modes in Fig. 2(b) are in-
deed BICs, i.e., if their frequency lies in the pass band,
we do a dispersion analysis of the main beam, which is
periodic with unit cell in Fig. 1(b). We work with the
discrete approximation, where the degrees of freedom are
(un, θn) at a section having rigid mass labeled n. We seek

FIG. 3. A 1-parameter family of side beams support the
lowest frequency BIC (black marker in Fig. 2(b)). The dia-
mond marked geometric dimensions are used for experimental
demonstration in Sec. IV.

traveling wave solutions of the form un = ũeiκn, where
κ is the non-dimensional wave-number, un = [θn, un]

T

and ũ = [θ u]T . The discretized governing equations (4)
for this section then reduce to an eigenvalue problem
ω2

Mn(κ)ũ = Kn(κ)ũ with

Mn(κ) =
mb

420

[

2l2e(4− 3 cosκ) + Iyn 26le sinκ
−26ile sinκ 312 + 108 cosκ+mn

]

, (6a)

Kn(κ) =
EI

l2e

[

4le(2 + cosκ) −12i sinκ
12i sinκ 24/le(1− cosκ)

]

. (6b)

Solving the eigenvalue problem for each κ in the interval
[0, π] gives two dispersion branches denoted by red curves
in the Fig. 2(c). The first three bound mode frequencies
in Fig. 2(a) lie on the lower red branch, implying that
these are BICs.

IV. 3D NUMERICAL SIMULATIONS AND

EXPERIMENTAL RESULTS

This section presents the verification of our predictions
based on the 1D beam model using 3D elasticity theory.
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The simulations are performed using a commercial finite
element analysis software COMSOL. Finally, we report
on the experimental observation of a BIC under dynamic
excitation with a shaker.

A. Verification using 3D elasticity theory

We model the finite beam structure shown in Fig. 4(b)
using 3D elasticity theory. Here, the motion at every
point in a structure made of a linear elastic isotropic solid
is governed by [36] ρü − [(λ + µ)∇(∇·u) + µ∇2

u] = 0,
with u = [ux uy uz]

T being the vector of displacement
components, µ and λ the Lamé constants of the solid.
A finite element analysis is performed using COMSOL
Multiphysics software and the domain is discretized using
quadratic elements with tetrahedral geometry.
Let us first verify if the 1D beam model is accurate by

comparing their corresponding dispersion surfaces for the
unit cell of Fig. 1(b). Figure 2(c) displays this compari-
son, with the blue and red curves determined using the
3D and 1D models, respectively. The lower frequency
flexural branch is quite close for the two models, which
demonstrates the effectiveness of the 1D beam model in
predicting flexural modes based BICs. In addition, the
3D analysis also shows a quadratic bending along the
y-direction, linear longitudinal and torsional dispersion
branches.
Let us now determine the final design using 3D finite

element analysis. All cylinders attached to the main and
side beams are taken to be identical to simplify fabri-
cation. Our starting design point is indicated by the
diamond marker in Fig. 3, with side beam dimensions
(ls, ws, hC) = (28 mm, 5.81 mm, 5.37 mm). We do
a detailed 3D analysis and make minor changes to the
design predicted using the 1D beam theory. There are
two reasons for requiring modifications to the design pre-
dicted using the 1D model. First, the rigid masses are
assumed to be a point mass and the space occupied due
to the finite diameter d is neglected in the 1D model.
The second reason is to simplify assembly of masses in
the side beams, the side beam is made longer to 40 mm
and masses are attached at a distance ls, as shown in
Fig. 4(b). This design is distinct from the 1D beam
model, where the cylindrical mass on the side beams are
attached at their ends.
We search for suitable ls and ws by doing a parametric

sweep over these variables near the starting design point
using 3D finite element simulations. This choice is guided
by the existence of 1-parameter family of valid design so-
lutions of Eqn. (5), see Fig. 3. The sweep search yields
(ls, ws) = (28 mm, 8.23 mm) when the height and diam-
eter of all the attached cylinders are set to h = 4.6 mm
and d = 5 mm, respectively. Figure 5(a) displays the BIC
mode shape confined to the compact region for these side
beam dimensions. Note that, the frequency determined
with the 3D model (682.5 Hz) is close to that predicted
by the 1D model (713 Hz). To verify that the mode in

Fig.5(a) is indeed a BIC, the conventional approach is to
determine the transmittance into the far-field near the
BIC frequencies [37]. Since we work with a finite struc-
ture, we instead determine the ratio of kinetic energies
at sections inside (A) and outside (D) the compact re-
gion at the steady state. This computation is done using
3D finite element analysis. Figure 7 shows that the ra-
tio (vD/vA)

2 goes to zero at the mode’s frequency, thus
verifying its BIC property. Our bound modes lie in the
category of Fabry-Pérot BICs, where a wave is confined
between two resonators [25, 26].
We demonstrate the effect of violating reflection sym-

metry in the proposed design. To this end, we performed
3D finite element analysis on a design that breaks reflec-
tion symmetry about the y axis, as shown in the fig. 9(a).
We change the rigid cylinder locations on the right side
beams. The mode shape localized in the compact region
now has a different frequency (756 Hz) than the BIC fre-
quency (682.5 Hz). The out-of-plane displacement of this
mode is illustrated in Fig. 9(b). We observe that the re-
gion to the left of the compact region experiences a lower
leakage than the right side.
We remark that a BIC can in principle be supported

on asymmetric side beams, in which case, the left and
right side beams will have to be designed separately. In
particular, they need to satisfy the constrains for force
and moment equilibrium and conditions of zero degrees
of freedom, as discussed in Sec. III.

B. Experimental observation of a BIC

Finally, we report on the experimental observation of
the BIC shown in Fig. 5(a) using the dimensions deter-
mined from the 3D analysis. The experimental setup is
shown in Fig. 4(a). The structure in Fig. 4(b) is fabri-
cated from a 0.08 inch thick Aluminum 6061 sheet using
water-jet cutting. Cylindrical Neodymium magnets N35
of 5mm diameter and 4.6mm height are placed at the top
and bottom in the main and side beams. These dimen-
sions are chosen since they are commercially available.
The sample is clamped at both ends and a permanent
magnet shaker (LDS V203) is used to apply sinusoidal
displacement at the center of the compact region. The ex-
citation point is denoted here by A, as shown in Fig. 5(a).
A force sensor (PCB 208C01) is attached to the shaker to
measure the applied force. The velocity at various points
along the main beam is measured using a laser Doppler
vibrometer (Polytec VFX-I-110).
Let us summarize the experimental procedure. We ex-

cite the structure at different frequencies in the interval
[650, 750] Hz and determine the frequency response func-
tion. The excitation frequencies are indicated by markers
in the response plot in Fig. 5(a). The velocity of a cylin-
der and the force applied by the shaker are measured by
applying the excitation at a frequency for 15 seconds. To
allow transients to die down, the force and velocity data
are recorded in the last 6 seconds of excitation. Then
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FIG. 4. (a) Experimental set-up. The beam is exited at the center of the compact region using a shaker. A force sensor is
attached to the shaker. The velocity at various points along the beam is measured using a laser vibrometer. (b) Zoomed-in
view, indicating the dimensions ls and ws in a 40 mm side beam length.
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FIG. 5. (a) BIC mode shape at 682.5 Hz determined using 3D FEA. (b) Measured frequency response at cylinders. A resonant
peak occurs at 695 Hz corresponding to the BIC. (c) Comparison of frequency response at excitation point A: lossless simulation
and experiments.

the beam is kept at rest for 10 seconds before exciting it
at next frequency. This process is repeated for measur-
ing velocity of each cylinder. The maximum velocity, v
and maximum force, F at a frequency are calculated by
a FFT of the measured velocity and force. Then, nor-
malized energy of every point is determined as |v/F |2.

Figure 5(b) displays the measured response at cylin-
ders on the right side of excitation point. We observe a
peak in the frequency response of the excitation point A
at 695 Hz. At this frequency, the response at points C

and D, lying at the boundary and outside the compact
region, are significantly lower (1 unit) compared to the
excitation point A (about 93 units). This observation
confirms the existence of a BIC in the structure at 695
Hz. We also measured the frequency response at other
cylinders left of the excitation point. Note that due to
reflection symmetry, the corresponding symmetric points
on the left should have identical response. We quantified
the difference in response at points B, C, D and the side
beams with their corresponding symmetric points to the



9

left at the BIC frequency. Our experiments showed a
3% difference point B and at the side beams, and a 10%
difference at points C and D with their corresponding
symmetric points to the left.
Figure 5(c) displays a comparison between experiments

and lossless simulations for the frequency response at the
excitation point. The simulation has a response peak
(around 1000 units) at 682.5 Hz, which is the frequency
of the mode shape in Fig. 5(a). Let us remark on the var-
ious sources of error that result in deviation from a true
BIC. We conducted additional simulations to identify the
source of discrepancy between simulations and experi-
ments. In particular, we conducted simulations consid-
ering material loss and perturbed geometry. Details are
presented in Appendix C. The discrepancy between ex-
periments and simulations is attributed to imperfections
in manufacturing, with the fabricated beam width being
around 4.8 mm instead of the designed 5mm, and pre-
cision in placing cylinders at the exact locations. Since
our numerical simulation with 3D finite element analysis
predicts high quality factors, we believe the mismatch be-
tween simulation and experiments arise due to limitations
of our fabrication and assembly process. However, this
is not a fundamental limitation of the proposed frame-
work and it is one that can be addressed in principle.
Indeed, with recent advances in precision machining at
the micro- and nano-scales, we believe that the quality
factor can approach that predicted by numerical simula-
tions.
Finally, we note that the frequency response point C

is 0.137 units in simulations, compared to 1000 for point
A. Although significantly lower than the experimental
value, it is not zero, in contrast to the prediction of the
1D beam model. To understand this discrepancy, note
that the Euler Bernoulli beam theory, which is used to
predict a true BIC, assumes that each cross-section is
non-deformable, and undergoes translations and rigid ro-
tations [38]. Although an excellent approximation at low
frequencies, small deviations arise when full 3D effects
are considered. The resulting displacement at C is thus
a measure of the deviation of the exact 3D solution from
the 1D beam theory. Notably, we do not attempt to
satisfy the zero displacement condition point-wise, but
instead do it in an average sense over the entire cross-
section.

V. CONCLUSION

We introduce the architected structure that comprises
of a main beam with periodically attached masses, and
has a compact region with protruding side beams. Sym-
metry and equilibrium constraints are used to determine
the conditions required for a BIC in this compact region.
A 1D beam model is derived using Euler Bernoulli the-
ory and a finite element method is used to determine
bound modes in the structure. The conditions on main
and side beams required to support a BIC are derived

and a Newton Raphson method is used to solve the re-
sulting nonlinear equations. For each BIC, we find a 1-
parameter family of side beam designs that supports it.
A dispersion analysis is conducted to confirm that their
frequencies lie in passband and they are thus BICs.
We verify the predictions of BIC based on the 1D beam

model using finite element analysis (FEA) based on 3D
elasticity. The 1D model is found to be in good agree-
ment for the low frequency flexural modes under con-
sideration. For ease of fabrication and assembly, and to
account for the mismatch with 3D elasticity, minor mod-
ifications to the side beam design determined using the
1D model are made by doing a parametric sweep over the
width and length of side beams using 3D FEA. The de-
signed structure is fabricated and excited over a range of
frequencies around the BIC frequency. The experimen-
tal results of frequency response at the excitation point
shows a resonant peak close to the frequency predicted
by FEA. At the resonant frequency, the fraction of en-
ergy leaking to surrounding reduced to minimum, which
demonstrates the existence of a BIC in the compact re-
gion. The experimental results are compared with FEA
results and the possible reasons for discrepancies, along
with causes of deviation from a true BIC are discussed.
Let us remark on some future possible extensions of

our work. These concepts translate across length scales
and material properties, and may find applications at the
micro and nano-scales. At those scales, the limitations
associated with material damping may be significantly
reduced. The idea of cancelling forces and moments by
exploiting symmetry may be extended to realize bound
modes and BICs in plates, shells and 3D architected
solids. Our framework is relevant in physical domains be-
yond the elastic structures considered here, for instance
in the photonic crystal waveguides with off-channel de-
fects, in which BICs were predicted earlier [26].

ACKNOWLEDGMENTS

This work was supported by the U.S. National Science
Foundation under Award No. 2027455

Appendix A: Finite element shape functions and

matrices

Let us discuss an approximation we use to determine
the effective bending stiffness of the beam segment be-
tween sections 1 and 2 in Fig. 6. Its contribution comes
from three segments: the two segments of length d/2
at the two ends having rigid masses, and the beam seg-
ment with length le = l − d between them. These three
segments may be viewed as springs in series and their
effective stiffness is lower than the stiffness of these seg-
ments. The segment having rigid masses (length d/2) has
significantly higher bending stiffness and its contribution
to the effective bending stiffness is neglected. Only the



10

1

2

d

FIG. 6. Schematic of a beam finite element with degrees of
freedom [θ1, u1]

T and [θ2, u2]
T at sections 1 and 2, respec-

tively.

beam segment le in Fig. 6 is used to determine the ef-
fective bending stiffness. Under this approximation, the
rigid masses may be represented as point masses with a
beam segment of length le between them.
Figure 6 displays a schematic of a beam finite element.

The discrete degrees of freedom are the displacements
and rotations at the location of rigid masses, labeled
[θ1, u1]

T and [θ2, u2]
T in this figure. Let us denote

the location of point 1 and 2 by x1 and x2, respectively.
In this element, we seek a solution of the form

u(x) = N1(ξ)θ1 +N2(ξ)u1 +N3(ξ)θ2 +N4(ξ)u2, (A1)

where ξ is a local coordinate in the element given by
(x−x1)/le and taking values in [0, 1]. Ni(ξ) are Hermite
polynomial shape functions [39] and explicit expressions
for the shape functions are

N1 = leξ(ξ − 1)2 (A2a)

N2 = 1− 3ξ2 + 2ξ3 (A2b)

N3 = leξ
2(ξ − 1) (A2c)

N4 = ξ2(3− 2ξ) (A2d)

Here, Eqn. (A1) may be written compactly as u(x) =
Nu

T , with N and u being vectors having components
Ni and ui, respectively.
Let us derive the contribution of the above beam seg-

ment to the governing equation. We substitute Eqn. (A1)
into Eqn. (3) and separate the terms with and without
ω2 into mass matrix, Mel and stiffness matrix, Kel re-
spectively for an element. The various terms in Eqn. (3)
then have the form δuT

Kelu or ω2δuT
Melu, where

Kel =

∫ x2

x1

d2NT

dx2
EI

d2N

dx2
dx, (A3)

Mel =

∫ x2

x1

ρANT
Ndx

+

2
∑

i=1

miN
T (ξi)N(ξi) +

2
∑

i=1

Ii
dNT (ξi)

dx

dN(ξi)

dx
.

(A4)

Here, x1 and x2 are respectively locations for section 1
and 2 in Fig. 6. The mi and Ii represent mass and mass
moment of inertia of ith rigid mass, respectively. Explicit
expressions for these matrices are

Mel =
mb

420







4l2e + I1 22le −3l2e 13le
22le 156 +m1 −13le 54
−3l2e −13le 4l2e + I2 −22le
13le 54 −22le 156 +m2







(A5a)

Kel =
EI

l3e







4l2e 6le 2l2e −6le
6le 12 6le −12
2l2e 6le 4l2e −6le
−6le −12 −6le 12






. (A5b)

Here, mb = ρAle is the mass of the beam in the ele-
ment. Assembling Mel and Kel for every beam segment
in the structure gives its massM and stiffness K matrix.
The governing equations result in an eigenvalue problem
ω2

Mu = Ku. Here, u is a vector with components
having the displacements and rotations at the rigid mass
locations.
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Appendix B: Transmittance to far field

650 700 750
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FIG. 7. Ratio of kinetic energies at sections outside and inside
the compact region goes to zero at the BIC frequency. Steady
state results from 3D finite element analysis.

Appendix C: Simulations with material loss and

imperfect geometry

To identify the source of discrepancy between simula-
tions and experiments, we conducted simulations for two
other cases that consider material loss and deviation from
exact geometry:

• Considering material loss. We consider the loss fac-
tor of 0.01 for both aluminum and magnet.

• Introducing perturbation in 3D model. We change
the location of every cylinder pairs from the loca-
tion in theoretical design by a random value in the

650 700 750
-40

-20

0

20

40

60

Without loss

With material loss

Perturbed design

Experiment

FIG. 8. (a) Schematic of a structure violating reflection sym-
metry about y-axis. Attached cylinders are marked by black
circles. (b) Out-of-plane displacement along main beam at
756 Hz, which is the closest to the observed BIC frequency.
The BIC in the compact region between A and B cannot exist
due to violating symmetry about the x axis.

interval of [−4% 4%] of the unit cell length along
corresponding beam axis. This perturbation aims
to consider the error caused due to attaching the
magnets by hand in the structure.

The frequency response for all cases, including the sim-
ulation with lossless perfect geometry, is presented in
Fig. 8. Also shown is the experimentally measured re-
sponse. We observe that the effect of material loss (blue
curve) is negligible on the quality factor. In contrast,
the change in geometry due to deviation in magnet lo-
cation (red curve) results in a significant reduction in
quality factor, as well as a shift in frequency. A sim-
ilar frequency shift is also observed in the experiment.
Based on these results, we conclude that imperfections
in manufacturing and assembly have a more significant
effect on the quality factor compared to material loss in
the considered frequency regimes.

Appendix D: Effect on BIC for breaking symmetry

along the x axis

x

y

FIG. 9. (a) Schematic of a structure violating reflection sym-
metry about y-axis. Attached cylinders are marked by black
circles. (b) Out-of-plane displacement along main beam at
756 Hz, which is the closest to the observed BIC frequency.
The BIC in the compact region between A and B cannot exist
due to violating symmetry about the x axis.
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Appendix E: 1-parameter family of designs for other

BICs

(a)

(b)

FIG. 10. 1-parameter family of side beam design that sup-
port the BICs marked by blue (a) and red (b) markers in
Fig. 2(b), respectively. The curve in (b) is continuous. It
looks discontinuous as the design variables take negative val-
ues (not shown).
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