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We detect correlations in qubit-energy fluctuations of non-neighboring qubits defined in isotopi-
cally purified Si/SiGe quantum dots. At low frequencies (where the noise is strongest), the correla-
tion coefficient reaches 10% for a next-nearest-neighbor qubit-pair separated by 200 nm. Correlations
with the charge sensor signal reach up to 70%, proving that the observed noise is of electrical origin.
A simple theoretical model quantitatively reproduces the measurements and predicts a polynomial
decay of correlations with interqubit distance. Our results quantify long-range correlations of noise
in quantum-dot spin-qubit arrays, essential for their scalability and fault-tolerance.

I. INTRODUCTION

Noise is an obstacle for the realization of quantum
computing. Qubits are coupled to noisy environments
that perturb the whole computational sequence: ini-
tialization, manipulation, evolution and readout. While
progress in improving each of these stages is notable [1–
18], decreasing noise further is a challenging task that
requires understanding of the noise origin and proper-
ties. The required level of understanding grows as the
noise is pushed to smaller magnitudes. In addition, none
of the pursued computational platforms, including semi-
conductors, will become noise-free. The need for quan-
tum error correction (QEC) will thus remain. However,
the error thresholds and even the feasibility of a given
QEC scheme depend on the noise type. Correlations of
the noise in space (across different qubits) can be espe-
cially detrimental [19–26]. Such inter-qubit noise corre-
lations have been observed recently for semiconductor
qubits in Ref. [27].

In spin qubits defined by trapping individual electrons
in semiconductor quantum dots (QDs) [28, 29], the co-
herence time is limited by magnetic and electric noise.
The most relevant source of magnetic noise is the col-
lective Overhauser field from nuclear spins of the host
material, coupled to the qubit via the hyperfine inter-
action [30–33]. The shift to materials which have zero-
spin isotopes, such as silicon, has led to a significant
improvement on coherence times [34–36]. While isotope
purification improves coherence further [7, 18, 37, 38],
the residual nuclear spins can still be the dominant de-
coherence source [10, 39–42]. On the other hand, elec-
trical noise (charge noise) [43] couples to a spin qubit
via spin-orbit interactions. In materials without a siz-
able intrinsic spin-orbit coupling, electric control of the
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spin requires to implement an extrinsic one, using mi-
cro magnets [44–46]. Thus, irrespective of the material
and its level of isotopic purification, the first question
concerning the noise observed in a current-generation
semiconducting device is whether it is dominated by
magnetic or electric fluctuations.

The first step in analyzing noise is to inspect its
spectrum. Being physically very different, one hopes
that magnetic and electric noise will have distinct spec-
tra: the ubiquitous 1/f -like spectra [47] suggest charge
noise [48] while 1/f2 high-frequency tail suggests nuclei
[49, 50]. Unfortunately, this rule of thumb is not re-
liable. In experiments, the charge noise powers range
from small to large (1/f0.65 in Ref. [51] versus 1/f2

in Ref. [37]), show large differences between similar de-
vices [52], and for a given device are different in differ-
ent frequency ranges [53]. The analysis is further im-
peded by the lack of consensus on the origin of charge
noise [54, 55] and by the lack of knowledge of the mi-
croscopic details of the quantum dot environment: the
spectrum of the nuclear-spin noise is not a simple power
law [31] and its exact shape depends on the nuclear
spin diffusion, in turn depending on those microscopic
details. For example, the subdiffusive behavior of the
Overhauser field observed in Refs. [56, 57] remains un-
explained.

One of the major findings of this article is that the
noise nature (it is charge noise in our device) can be
ascertained from spatial correlations, both qubit-qubit
and qubit-sensor ones. We demonstrate it on a three
quantum-dot device made in 28Si/SiGe heterostructure,
where we quantify spatio-temporal correlations of de-
phasing noise affecting the outer two quantum dots. The
two dots are approximately 200 nm apart but, more im-
portantly, they are not the nearest-neighbors in the ar-
ray. Despite this physical separation, we find clear spa-
tial correlations of the energy fluctuations of the spin
qubits hosted in the two dots. Based on the correla-
tions, we conclude that the underlying noise is charge
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FIG. 1. (a) A false color scanning electron microscope image
of a device nominally identical to the one measured. The
white scale bar indicates 100 nm. (b) The simulation of
the z component of the micro-magnet field in the QD plane.
(c) A schematic depiction of the structure layers with the
micro-magnet (yellow) on top and a thin SiO2 layer (red)
right below the metallic gates.

noise originating in the device. We also devise a micro-
scopic model interpreting the noise as an ensemble of
two-level charge fluctuators localized nearby the quan-
tum dot array. The model quantitatively agrees with
the measurement results and allows us to estimate the
expected variability of noise spectra and the scaling of
correlations with qubit-qubit separation in similar de-
vices.
The paper is organized as follows: In Sec. II, we de-

scribe the device. In Sec. III, we outline the measure-
ment protocol and show the noise spectra including spa-
tial correlations. In Sec. IV, we analyze the noise origin
from the qubit-charge sensor correlations. In Sec. V, we
discuss the dephasing mechanism and our model of the
observed noise spectra. We summarize in Sec. VI.

II. SILICON TRIPLE QUANTUM DOT
DEVICE

The triple quantum dot (TQD) device shown in
Fig. 1a was fabricated by patterning of overlapping alu-
minium gates [58] on top of an isotopically purified
28Si/SiGe wafer (800 ppm 29Si). The wafer is composed
of a 10 nm thick Si quantum well, a 50 nm SiGe spacer,
and a 2 nm SiO2 cap. The gates consist of screening
(purple in Fig. 1a), accumulation (orange), and barrier

(green) gates, with a thickness of 25 nm, 45 nm and
65 nm, respectively. We tune the device to the (1,0,1)
charge configuration, meaning that single electrons are
trapped in the left- and right-most dots (blue and red
arrows in Fig. 1a, respectively), underneath the plunger
gates P1 and P3, which are separated by 180 nm. The
middle dot remains empty throughout the experiment.
Qubits are defined in the spin states of the electrons,
Zeeman-split by the applied in-plane external magnetic
field Bext = 0.45 T. With a sensor QD (orange circle
in Fig. 1a) in the vicinity of the TQD structure, we
read out the spin states by spin-to-charge conversion
via energy selective tunneling [59], which is also used for
initialization. Fast single-shot spin readout is achieved
by radio-frequency reflectometry by coupling the sensor
QD to a tank circuit [13].

Electric control of the spin qubits is executed via
electric-dipole spin resonance. It is enabled by a mag-
netic field gradient of a micro-magnet [45] located on
top of the device. It is insulated from the metallic elec-
trodes (Fig. 1c) with a 30 nm thick aluminium oxide
layer grown by atomic layer deposition. A simulation
of the micro-magnet magnetic field parallel to the ex-
ternally applied field is presented in Fig. 1b. For the
simulation, we employed the COMSOL Multipyshics®
software with a 3D geometry following the fabrication
parameters of our layered structure, including a sim-
plified geometry for the overlapping aluminium gates.
The qubit Rabi frequencies are fRabi

L = 3.73 MHz and
fRabi
R = 4.07 MHz, with the subscript L (R) referring
to the left (right) qubit. The measured coherence times
are T ∗

2,L = 6.1 µs and T ∗
2,R = 6.9 µs for an integration

time of 100 seconds. Because the typical qubit energy
fluctuations are much larger than the measured remnant
exchange coupling, J = 0.9 kHz [60], the qubits can be
considered non-interacting.

III. QUBIT-FREQUENCY AUTO AND CROSS
CORRELATIONS

In our work, we study dephasing noise manifested as
fluctuations in the resonant energy of the qubits. In or-
der to probe the spatio-temporal correlations, we mea-
sure interleaved Ramsey oscillations of the qubits re-
peatedly and estimate the time evolutions of their res-
onant energies using a Bayesian algorithm [56]. An in-
terleaved Ramsey cycle starts with the initialization of
the two qubits to the spin down state. Next, a π/2
pulse, a free evolution time te, and a second π/2 pulse
are applied to qubit L, followed by the same sequence
applied to qubit R. The cycle is finalized by readout of
the spin state of both qubits. Each cycle takes 2.09 ms
and is repeated for te increasing from 0.04 µs to 4 µs, in
0.04 µs steps. This repetition of cycles forms a record.
An energy value for each qubit is extracted from a sin-
gle record by Bayesian estimation [56, 57]. Collecting
data from 105 records, we obtain the time evolution of
the qubit energies covering a time span of 5 hours 48
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minutes. Two typical samples of the time evolution are
plotted as insets in Fig. 2a. One can see fast fluctuations
modulated by a slow switching between two discrete lev-
els in both qubits, each of them with different rates. The
switching in one qubit appears to be independent from
the other at first sight, but we will make the statement
more precise below.
To analyze the spectral content of the noise, we define

the following power spectrum,

Cαβ(f) =

∫ ∞

−∞
dτe2πifτ ⟨δνα(t)δνβ(t+ τ)⟩ . (1)

Here, τ is the time delay of two signals δνα and δνβ , that
in our case are qubit energy fluctuations measured with
respect to an arbitrary reference value. The indexes
label qubits α, β ∈ {L,R}, and ⟨· · ·⟩ denotes a statisti-
cal average over time t. For equal indexes, α = β, the
general formula yields the auto power spectral density
(auto-PSD), Sα ≡ Cαα. It is a real and symmetric func-
tion of the frequency f and gives the frequency spec-
trum of the signal δνα. On the other hand, the cross
power spectral density (cross-PSD) CLR = C∗

RL is, in
general, complex and gives frequency-resolved correla-
tion between the two signals and, in turn, the spatial
correlations of the noise.
It is common to relate the auto-PSDs and the cross-

PSD introducing the normalized cross-PSD, also known
as the correlation coefficient:

r(f) =
CLR(f)√
SL(f)SR(f)

. (2)

The normalized cross-PSD is a complex function r(f) =
|r(f)|eiϕ(f). Its magnitude measures the proportion of
correlated noise with respect to the total noise and its
phase describes the correlations type: At a given fre-
quency, |r| = 1 corresponds to perfect spatial correla-
tions while |r| = 0 means independent (uncorrelated)
noise. With a finite |r|, ϕ = 0 corresponds to posi-
tive correlations, ϕ = π to negative correlations (anti-
correlations), and other values can be interpreted as a
time lag between the two signals.
We evaluated the auto-PSD for each qubit using the

methods of Ref. [61], which deliver not only the esti-
mated values of the PSDs but also the confidence level
of the estimations. The results are plotted in Fig. 2a
and show a Lorentzian (∝ f−2) dependence at frequen-
cies lower than 0.01 Hz in both qubits. A Lorentzian
spectrum arises if the qubit is coupled to a randomly
switching two-level system (TLS) [62]. The correspond-
ing qubit-energy switches can be seen in the time traces.
The normalized cross-PSD (Figures 2b and 2c) in this
frequency range shows positive correlations with a mag-
nitude between 0 and 0.3. However, the level of con-
fidence (represented as a color gradient) is too low for
a definite judgement about finite correlations [63]. We
conclude that, most probably, the low-frequency noise is
dominated by each qubit being coupled to its own TLS,
the two being independent. The TLSs are either charge
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FIG. 2. (a) The power spectral density of the left (blue) and
right (red) qubit-energy fluctuations. The dotted line corre-
sponds to a f−2 dependence as a reference. Inset: sample
time traces of each qubit energy showing a 2-level switching
behavior; the color code follows that of the main panel. (b-
c) The correlation coefficient amplitude (b) and phase (c).
In all panels, the color gradient represents the estimating
distribution of the corresponding quantity at each frequency
with the maximum likelihood estimator marked as points
(details are discussed in Ref. [61]); the continuous lines are
calculated from the TLSs set given in Fig. 4.

defects (charge traps or dipolar fluctuators; see below)
with long (>1000 s) switching times [43, 64], or it could
be single nuclear spins hyperfine coupled the qubits [42].

The higher-frequency parts of the auto-spectra ex-
hibit different slopes for each qubit and their relation
with the time-traces is not straightforward. Neverthe-
less, the normalized cross-PSD displays two interesting
features in this regime. First, despite the large separa-
tion between qubits, spatial noise correlations reach up
to |r| ∼ 0.1 (around 0.4 Hz). Second, these finite corre-
lations have a well-defined phase. At higher frequencies,
the phase is π, while there seems to be a transition to
phase 0 around 0.06 Hz. The well-defined phase further
confirms that the correlations are beyond coincidence:
within the range 0.1–1 Hz, the fluctuations in the reso-
nant energies of the two qubits are correlated.

After presenting the data, we next discuss the noise
origin and propose a simple microscopic model for it.
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IV. IDENTIFYING THE ORIGIN OF THE
NOISE

Our a priori expectation concerning the noise in the
device is that it is either charge noise or magnetic noise
due to the remnant 29Si. As explained in the introduc-
tion, it is difficult to infer the noise origin from the auto
power spectra. In this section, we discuss the qubit-
qubit cross-correlations as more revealing concerning
the noise source [27] and reason that they suggest that
charge noise dominates. We demonstrate this domi-
nance unequivocally by detecting high cross-correlation
between the fluctuations of the qubit energies and the
charge sensor voltage shifts.
Let us start with qualitative estimates. Given the

typical size of our QDs (≈ 28 nm in diameter for a 2
meV harmonic confinement), the maximum hyperfine
coupling strength achievable for a single nuclear spin is
about 10 kHz [calculated with Eq. (A1)], about one or-
der of magnitude smaller than the two-level frequency
switching seen in the time-traces in Fig. 2a. Similarly
for the auto-correlation spectra: In App. A, we esti-
mate the auto-PSD due to diffusive nuclear spins and
find that it is at least an order of magnitude too low
to account for the auto-PSD at any frequency. When
we apply the same model to cross-correlations, the dis-
crepancy becomes much more drastic: The calculation
predicts cross-correlations due to nuclei that are orders
of magnitude lower than the measured values. In other
words, magnetic noise is expected to be highly local.
This fact is the consequence of the negligible overlap
of the electron wave functions in the non-neighboring
dots. On the other hand, it is natural to expect non-
local correlations in charge noise involving long-range
Coulomb interactions. We conclude that these are hints
that nuclear spin noise does not play a significant role
in the low-frequency noise of our device. This conclu-
sion would be in line with previous work on isotopically
purified silicon devices with a micro-magnet [7]. On the
other hand, these are hints only, since it is hard to ex-
clude a possibility of some correlated nuclear dynamical
polarization effects, or non-local nuclear spin flip-flops,
or similar.
To conclusively determine that our device is domi-

nated by charge noise, we now analyze the cross-PSD
between the qubit energies and the charge sensor sig-
nal. We define a single-shot readout voltage value as the
difference between the highest and the lowest voltages
measured during the readout window from the radio-
frequency reflectometry setup [13]. Then, we define the
charge sensor signals V σ

L and V σ
R as the average of all

the single-shot voltage outcomes with the same spin-
state readout σ ∈ {↑, ↓}, taken from a record obtained
while measuring the left and right qubit, respectively. In
this way, following our energy-selective-tunneling mea-
surement scheme, V σ

L refers to the charge sensor signals
taken at a point in the transition line between charge
states (1, 0, 1) ↔ (0, 0, 1). Similarly, V σ

R are the signals
at a point belonging to the (1, 0, 1) ↔ (1, 0, 0) transi-
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FIG. 3. Normalized cross-PSD between the qubit energies
and the charge sensor signals V ↑,↓

L and V ↑,↓
R . The upper

(bottom) panel shows the correlations for the left (right)
qubit. Similar to Fig. 2, the color gradients represent the
probability distribution of the cross-PSD, with the maximum
marked with circles. The corresponding phases and auto-
PSDs are presented in Appendix B.

tion line. The voltages V ↑
α correspond to measurements

with the presence of a ‘blip’ in the charge sensor sig-
nal, indicating the occurrence of an electron-tunneling
event, whereas V ↓

α correspond to measurements in the
absence of electron tunneling to the reservoir [59]. As
such, V ↓

α contain information of the charge configuration
(1, 0, 1) whereas V ↑

α contain information of not only the
(1, 0, 1) charge state but also the “non-qubit” configura-
tions: (0, 0, 1) for α = L and (1, 0, 0) for α = R (for the
exact definitions, see Appendix B) [65]. Figure 3 shows
the normalized cross-PSD amplitudes between the qubit
energies and the charge sensor signals, obtained from
Eq. (1) using V σ

α as one of the signals. There are corre-
lations as high as ∼ 0.7 for the left qubit and ∼ 0.5 for
the right one. These strong correlations with the sig-
nal of the charge-sensor (assumed largely insensitive to
magnetic noise) are firm evidence of charge noise being
dominant in our device.

We point out that the evaluation of the correlations
between the qubit energy and the charge sensor sig-
nal does not require additional measurements. We ob-
tained them from the Ramsey data used to plot Fig. 2.
Therefore, such correlations can be extracted even from
previously reported single-qubit experiments. With this
method, if strong correlations are found it is possible to
directly determine whether a device is (was) dominated
by electric noise, instead of relying on the analysis of
auto-spectra [7, 37]. Having confirmed that charge noise
is the dominant dephasing mechanism here, in what fol-
lows we see how it can account for the measured noise
spectra quantitatively.
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V. NOISE MODEL: AN ENSEMBLE OF
CHARGE FLUCTUATORS

Perhaps the most popular model to account for
1/f -like spectrum is to consider a superposition of
Lorentzian spectra, an idea that goes back to Berna-
mont [66]. An ensemble of TLSs, each of which has a
Lorentzian spectrum [67], can have the suitable distri-
bution of switching times under plausible assumptions
[68–70]. In a solid-state device, such TLSs are expected
to be present due to fabrication imperfections or in-
herent crystal defects. While their location and nature
remain unclear [54], the amorphous oxide (colored red
in Fig. 1c), and the semiconductor/oxide interface are
probable hosts [55].
We follow this idea and relate the observed noise

to a TLS ensemble. While such modeling is not new
[35, 52, 71], we point out two differences to previous
works. First, we do not fit the spectra that we observe
to 1/f -like power laws, in turn invoking a large (in the
limit, infinite) ensemble of TLSs. We find it hard to
reconcile the idea of an infinite number of TLSs with
our nanometer-sized dots and the non-uniform spectral
features that we observe. Second, we fit the whole set of
spectral data shown in Fig. 2, including the auto-PSD of
both qubits, and the cross-PSD magnitude and phase,
to a single set of TLSs. Surprisingly, we find that a col-
lection of a few TLSs located around the quantum dot
array can reproduce quantitatively all observed qubit
noise features, including the intricate dependence of the
normalized cross-PSD magnitude and the correlation-
anticorrelation crossover in its phase.

A. A few TLSs as the charge noise source

We assume that the noise in the qubit energies arises
due to fluctuating electric fields. We denote the field

at the location of the dot α as δE⃗α and assume that
it is constant over the single-dot lateral dimensions.
The field affects the qubit by shifting the dot center,
which, due to the non-uniform micro-magnet field (see
Fig. 1b), changes the spin-qubit energy by δνα. Assum-
ing parabolic lateral confinement, we have

δνα =
gµB

2πℏ
e

mω2
α

(
∂Bα

∂x
δEx

α +
∂Bα

∂z
δEz

α

)
, (3)

where ℏωα is the confinement energy, Bα is the z com-
ponent of the magnetic field at QD α location, µB is
Bohr’s magneton, e is the electron charge, m is the ef-
fective mass, and g is the g-factor. We neglect the QD
shifts along the growth direction where the confinement
is stronger.
We assign the fluctuating electric fields from Eq. (3)

to charge fluctuations δqi of an ensemble of TLSs,

δE⃗α =
∑
i

1

4πϵϵ0

x⃗α − x⃗i
|x⃗α − x⃗i|3

δqi. (4)
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FIG. 4. One possible set of TLSs that reproduces the ex-
perimental data. The tonality gives the switching time of
the corresponding TLS. All TLSs are located 50 nm above
the QD plane and have an opposite image charge 4 nm fur-
ther above. The two disks in the center correspond to the
QDs with yellow, orange, and red representing 3, 2, and
1 standard deviations of the electron’s probability distribu-
tion, respectively, for a 2 meV parabolic confinement. The
QDs are located at (x, z) = (±100 nm,±5 nm). We used
m = 0.2m0 with m0 the free electron mass and ϵ = 13.

Here, i is the TLS label, ϵ is the effective dielectric
constant of the layered structure, ϵ0 is the permittiv-
ity of vacuum, x⃗α is the QD center, and x⃗i the TLS
position. We assume that TLSs are independent, their
charge state switches between empty δqi = 0 and occu-
pied δqi = ±e, with a characteristic switching time ti.
These properties are grasped by the correlator

⟨δqi(t)δqj(t+ τ)⟩ = e2

4
[1 + δij exp(−τ/ti)] . (5)

Given a distribution of TLSs and the location of the
QDs, Eqs. (1), (3), (4), and (5) allow us to calculate the
auto-PSDs and the cross-PSD, from which we obtain
the correlation coefficient using Eq. (2).

We use a least squares minimization algorithm to fit
the correlation spectra. We increase the number of TLSs
until a satisfactory fit is realized, with the lateral coor-
dinates (x and z) and the switching time of every TLS
as the fitting parameters. Importantly, we include im-
age charges, −δqi, putting one above every TLS. In this
way, in the model we approximate the screening due to
structure metals [72] by screening from a metallic plane
(placed above the oxide, at y = −52 nm; the QD plane
is at y = 0 nm). The rest of the parameters are fixed
as follows. We set all TLSs to y = −50 nm, being the
interface between the SiGe spacer and the SiO2 layer.
Concerning the effects on a single qubit, the TLS shift
along y farther (closer) to the screening plane can be
compensated by a shift closer to (away from) the qubit
laterally. While the in-oxide depth of a TLS might be
correlated to its switching time [73], in our model we
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do not consider such a link and keep switching times as
independent parameters. The best achievable fit would
then not be substantially improved by allowing for small
additional variations of the y coordinate of the TLSs.
We also limit ourselves to one image charge per TLS,
even though the model could be extended to include
more images to account for higher order effects at the
interfaces between dielectrics. The values of the mag-
netic field gradients follow from Fig. 1b and the QD lo-
cations. Although we do not precisely know the latter,
the measured anti-correlations suggest that the qubits
could be subject to opposite magnetic gradients. There-
fore, as an example, we slightly displace the two dots
asymmetrically along the z axis.
Figure 4 depicts one set of TLSs that leads to the

curves in Fig. 2. The spectral content of the noise and
the type and strength of correlations are quantitatively
accounted for by the model with only seven TLSs, cor-
responding to a density nc ∼ 1010 cm−2. We point out
the significance of screening when obtaining this value,
in line with Ref. [74]; if we remove the image charges
from the model, the noise from even a single TLS in
the vicinity of the dots is already about two orders of
magnitude larger than the measured auto-PSDs.

B. Scaling of noise correlations with distance

Perhaps more crucial than the magnitude of the noise
correlations is their scaling with interqubit separation
[19, 20]. We take advantage of our model to investi-
gate this scaling by simulation of qubits with increasing
separation. For these simulations we locate the qubits
at (x, z) = (±d/2, 0) and assign fixed magnetic gradi-
ents ∂B/∂x = 0.1 mT/nm and ∂B/∂z = 0 for both

qubits, irrespective of their separation d. We generate
3000 random distributions of TLSs in a square-shaped
area of 35 µm side length, with switching times in the
range (10−5, 105) s, using linearly and logarithmically
uniform distributions for space and time, respectively
[75]. In these simulations, we keep the remaining pa-
rameters the same as in Sec. VA, including the TLS
density nc = 1010 cm−2. Since each distribution yields
different spectral characteristics (see Appendix C) and
the PSDs are not self-averaging [76], we characterize
the generated ensemble by both the average and the
standard deviation at each frequency. We evaluate two
quantities: the average normalized cross-PSD magni-
tude ⟨r⟩ ≡ ⟨|CLR|/

√
SLSR⟩, and the average cross-

PSD magnitude normalized by the average auto-PSDs
r̄ ≡ ⟨|CLR|⟩ /

√
⟨SL⟩ ⟨SR⟩, introduced for comparison

with analytic results. We plot these quantities at 1 Hz
as a function of the qubit separation in Fig. 5. The
average correlation ⟨r⟩ initially appears to decay expo-
nentially, but eventually a polynomial tail ∝ d−4.2 is
observed at large interqubit separations. While we ob-
serve that r̄ is smaller than ⟨r⟩, a similar polynomial tail
appears. To highlight the effect of screening, we perform
the same simulation without the image charges and ob-
tain the gray circles, which show a much slower decay
⟨r⟩ ∝ d−2. We note that these averages calculated from
random sampling show a trend but may require large en-
sembles to ensure convergence. To confirm the observed
trends, we turn to an analytic result, which can be ob-
tained for r̄. The derivation is presented in Appendix D
and yields r̄ ∝ d−5 + O(d−7), shown as a purple curve
in Fig. 5. Given the similar polynomial decays in sim-
ulations, we conjecture that ⟨r⟩ also follows the ∝ d−5

decay in the limit d→ ∞ (we could not obtain analytic
results for it). In any case, given the power-law decay
of spatial correlations, screening becomes essential for
such correlations to decay fast enough to enable error
correction [77].

C. Implications of a-few-TLS model

We mention a few things that can be learned from
these investigations. First, charge noise properties re-
flect a specific distribution of TLSs which is device—and
potentially also cooldown—dependent. Unless these
sources reach some kind of self-averaging statistical
limit, a single set of PSDs from a given device will
not fit any generic theory predicting universal behavior.
Second, the distribution of TLSs leading to particular
spectral characteristics is not unique (see Appendix E).
Third, while each TLS affects both qubits and individ-
ually induces perfectly correlated noise, spatial correla-
tions will decrease upon adding noise from a collection of
fluctuators with different couplings [25]. This, perhaps
counter-intuitive, behavior is shown in Fig. 10, where a
high density of TLSs suppresses the degree of noise cor-
relation between qubits. Fourth, while we considered
charge traps in the oxide, defects in the quantum well
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[78] could contribute as well. In this case, we point out
again that they should be of dipolar nature, since an
unscreened charge trap would cause a noise magnitude
inconsistent with our measurements. Nevertheless, as
explained in Sec. VA, our main results, especially the
scaling with distance, remain unaltered: A charge trap
close to a screening plane is equivalent to a fluctuat-
ing charge dipole. Finally, screening plays a major role
in both the magnitude and range of the noise. A high
density of metallic gates close to the substrate surface
screening TLSs seems beneficial, favoring overlapping
gate designs such as the one used here. Even though
we measured correlated noise beyond nearest-neighbor
qubits, screening makes spatial correlations decay fast
enough such that QEC remains feasible.

VI. CONCLUSIONS

We measured the auto- and cross-correlation noise
spectra of non-neighboring spin qubits defined in
28Si/SiGe quantum dots. Our main result is observing
clear cross-correlations in the frequency range 0.1–1 Hz,
with a magnitude about 10%, despite the qubits being
non-neighboring. In addition, we found strong corre-
lations (∼ 70%) between the qubit energies and the
charge sensor signal, providing indisputable evidence
that charge noise is the dominant dephasing mechanism
in our qubits. We were able to quantitatively repro-
duce the measured data by modeling the noise as a su-
perposition of a few independent charge two-level sys-
tems located in an oxide layer of the device. Our model
explains the variability in charge noise spectra across
nominally identical devices and highlights the impor-
tance of screening not just to decrease the noise mag-
nitude but also its range. We predict a polynomial de-
cay of noise cross-correlations with interqubit separa-
tion which could be checked in future measurements in
larger spin qubit arrays. Our study motivates further
research on noise spatial correlations, not only in spin
qubit systems but in any candidate for quantum com-
puting. Noise correlation properties are crucial for the
implementation of quantum error correction and are an-
other important benchmark to take into account.
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Appendix A: Spatial correlations due to nuclear
spin noise

Here we reason that the nuclear spins cannot cause
the observed correlations. We do so by calculating the
auto- and cross-PSD via a model of diffusive nuclei fol-
lowing Refs. [30–32, 79]. The energy shift δν of a qubit

with spin S⃗ due to nuclear spins I⃗n is

δν =
v0A

2πℏ
∑
n

|ψ(x⃗n)|2Izn, (A1)

where ψ(x⃗) is the electron’s wave function, v0 the unit
cell volume and A = 2.4 µeV the hyperfine coupling
strength for 29Si [80–82]. We replace the discrete sum-
mation over nuclei by an integral over space introducing
the (dimensionless) nuclear polarization density P (x⃗, t):

δν =
pA

2πℏ

∫
d3x P (x⃗, t)|ψ(x⃗)|2,

with p the fraction of 29Si nuclei.
The dynamics of the nuclei with their magnetic

dipole-dipole interaction show a diffusion-like behavior
in the absence of nuclear spin relaxation. Thus, we write
the evolution of the nuclear polarization as:

∂P (x⃗, t)

∂t
= D∇2P (x⃗, t).

The stochastic nature of the nuclear spins is grasped
by inserting a stochastic force ξ(x⃗, t) into the diffusion
equation for P . Moving to Fourier space this leads to:

∂Pk⃗(t)

∂t
= −4π2k2DPk⃗(t) + ξk⃗(t).

Solving the diffusion equation we obtain for an unpolar-
ized system:

Pk⃗(t) =

∫ ∞

0

dt′ ξk⃗(t− t′)e−4π2k2Dt′ . (A2)

Now, we are interested in calculating the cross-
correlator CLR(t, t

′) ≡ ⟨δνL(t)δνR(t′)⟩. To do so, we
assume that the statistics of the random forces are in-
dependent in space and time:

⟨ξk⃗1
(t1)ξk⃗2

(t2)⟩ = δ(t1 − t2)δ(k⃗1 + k⃗2)Ξ(k1). (A3)

From Eqs. (A2) and (A3) we get the following cross-
correlator:

CLR(t, t
′) =pA2 I(I + 1)

3
v0

×
∫
d3k |ψL|2k⃗|ψR|2−k⃗

e−4π2k2D|t−t′|,

(A4)
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FIG. 6. The main panel of Fig. 2a including the auto power
spectral density of the nuclear spin noise (orange) calculated
according to Eq. A5 for d = 0. Insets: cross power spectral
density and correlation coefficient calculated for an interdot
separation of 200 nm. The dotted lines are for reference.

where we evaluated Ξ(k) = 8π2k2DI(I + 1)v0p/3 by
direct calculation of CLL(t, t) from Eq. (A1). The cross
correlator from Eq. (A4) can be evaluated if we assume
a Gaussian form for the electron wavefunction:

|ψα(x⃗)|2 =
1

π3/2l2ply
exp

(
− (x− xα)

2 + z2

l2p
− y2

l2y

)
,

with lp and ly the spreads in-plane and out-of-plane,
respectively. Using this we get the final result for the
cross-correlator:

CLR(t, t
′) =

C0 exp[−κ/(1 + γ|t− t′|)]
(1 + γ|t− t′|)(1 + γζ|t− t′|)1/2

, (A5)

where we defined γ = 2D/l2p, κ = 2d2/l2p, ζ = l2p/l
2
y,

2d = xR − xL and:

C0 = p
A2

√
2π

I(I + 1)

3

a30
8VD

, (A6)

with a0 the lattice constant of silicon and VD = 2πl2ply
the QD volume. The Fourier transform of Eq. (A5) gives
us the cross-PSD from which we can evaluate the spatial
correlations. The auto-PSD is obtained by setting d = 0
and it is plotted in Fig. 6 for D = 0.4 nm2/s [83] and a
typical QD size of (lp, ly) = (14 nm, 3 nm). There we can
see that the nuclear noise auto-PSD is lower than the
measured values, giving further indication that the main
dephasing mechanism is charge noise. The correlation
coefficient is |r| < 10−6 in the frequency range of interest
as shown in the insets of Fig. 6, a value much smaller
than that displayed in Fig. 2b. This very small value
occurs because the Overhauser field experienced by the
qubits is determined by the spread of their respective
wave function; if there is not a considerable overlap,
the local nuclear dynamics evolve independently. Thus,
nuclear spin noise is uncorrelated at appreciable interdot
separations.
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FIG. 7. Auto-PSDs of the charge sensor voltages.
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FIG. 8. Phase of the cross-PSDs between the charge sensor
signals and the qubit energies.

Appendix B: PSDs of charge sensor signals

The charge sensor can be used to directly probe elec-
tric noise. Instead of acquiring separate data for the sen-
sor, we average the voltages from the single-shot mea-
surements that after binarization are used to estimate
the qubit frequencies. These single-shot voltages corre-
spond to the difference between the maximum and the
minimum rf voltages acquired during the readout time
window. If the single-shot readout voltage is above the
threshold the spin outcome is determined as |↑⟩, other-
wise as |↓⟩. We estimate a qubit frequency value from
a single record composed of 100 single-shot measure-
ments, then two sensor voltages are obtained by aver-
aging the voltages that yield the same spin outcome
out of those 100 values. Since the measurement stage
is performed at two different operation points, as ex-
plained in the main text, we have a total of four sensor
voltages V σ

α , with α ∈ {L,R} and σ ∈ {↑, ↓}, relating
to which qubit is being measured and the spin readout
result. The auto-PSDs of all charge sensor signals are
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aration. The black lines correspond to the 1000 spectra of
individual sets, and the ensemble average for ⟨r⟩ is plotted
in pink and for r̄ in purple.

displayed in Fig. 7. There, we can observe a dependence
∝ f−2 in the low-frequency spectra similar to that seen
in the qubits’ noise spectra from Fig. 2a. This similar-
ity may suggest a dominance of charge noise in qubit
dephasing, but the conclusive evidence is found in the
cross-PSDs between qubit energies and sensor voltages,
which have their magnitudes displayed in Fig. 3 and
their phases in Fig. 8. We find strong correlations with
well defined phases and high confidence level, demon-
strating our device is dominated by noise of an electric
origin. Furthermore, the non-uniform character of these
correlations with the charge sensor reinforces the idea
that there is a non-uniform distribution of noise sources.

Appendix C: Scaling of cross-correlations with
distance

When we simulate random ensembles of TLSs, the
noise spectral characteristics vary for each distribution.
Namely, the spectra are given by the properties of a
few TLSs, making the results not self-averaging [76].
This is demonstrated in Fig. 9, which shows that the
normalized cross-PSD can take basically any value be-
tween uncorrelated and perfectly correlated noise. On
the other hand, the average (be it ⟨r⟩ or r̄) takes on
an almost constant value independent of frequency (any
small features seen probably arise from our finite sam-
pling). This allows us to extract a mean correlation
strength for a certain interqubit separation. For con-
vention, we take the value at 1 Hz but the scaling with
distance is independent of this choice.
When the qubits are further apart, strong cross-

correlations become less likely and the average ⟨r⟩ de-
creases. The interqubit separation at which correlations
start to decay is determined by the mean distance be-
tween TLSs as is shown in Fig. 10. At higher densities,
the TLSs are closer to each other such that it becomes
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FIG. 10. Average normalized cross-PSD amplitude ⟨r⟩ at 1
Hz for different densities of TLSs. Vertical dashed lines give
the mean distance between TLSs, equal to 1/

√
2πnc.

more probable for the two qubits to strongly couple to
a different group of TLSs, leading to small noise cross-
correlations. Although the average correlation magni-
tude decreases with increasing density of charge fluctu-
ators, the overall noise amplitude increases proportion-
ally.

Appendix D: Analytical calculation of r̄

Here, we present an analytical calculation of r̄ =
⟨|CLR|⟩ /

√
⟨SL⟩ ⟨SR⟩ to determine the scaling of cross-

correlations with the interqubit separation.
We start by treating each charge TLS with its im-

age as an electric dipole, with fluctuating moment δp⃗ =

δql⃗ = δqlŷ. Following the parameters of our device, the
y coordinate of every TLS is y0 = −52 nm, the effective
ipole length is l = 4 nm, and the qubits are at y = 0.
In this way, the x component of the electric field at the
position x⃗α of qubit α due to a single TLS-image pair
k, located at x⃗k = (xk, y0, zk), can be approximated as:

δEdip
x,k(x⃗) ≈ δqk

3y0l

4πϵϵ0

xα − xk
[(xα − xk)2 + y20 + z2k]

5/2
. (D1)

With this, the correlator of electric fields is:

CEx
αEx

β
(f) = χ0

NTLS∑
k=1

(xα − xk)

[(xα − xk)2 + y20 + z2k]
5/2

× (xβ − xk)

[(xβ − xk)2 + y20 + z2k]
5/2

(D2)

× tk
1 + 4π2t2kf

2
,

with χ0 ≡ 9e2

2ϵ2
y2
0l

2

(4πϵ0)2
and α, β ∈ {L,R}. Upon averag-

ing over TLS parameters, the summation over ensem-
bles and over TLSs can be replaced by integrals with a
corresponding probability distribution for those param-
eters. We assume a uniform probability distribution for
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FIG. 11. Another set of TLSs that fits the measured data.

the position of the TLSs, equal to the density nc, and
a distribution ρ(t) for the switching time. Then, the
average for the correlator of electric fields is:

⟨CEx
αEx

β
(f)⟩ = χ0nc

∫ ∞

−∞
dxdz

(xα − x)

[(xα − x)2 + y20 + z2]5/2

× (xβ − x)

[(xβ − x)2 + y20 + z2]5/2

×
∫ ∞

0

dt ρ(t)
t

1 + 4π2t2f2
.

For the auto-correlations, the integral in space can be
solved analytically, obtaining:

⟨SEx
α
(f)⟩ = χ0ncπ

24y60
G(f), (D3)

where we defined G(f) ≡
∫∞
0
dt ρ(t)t/(1 + 4π2t2f2).

For the cross-correlation, we could evaluate the leading
order in an expansion of the integrand in powers of y0/d
around x = ±d/2. We obtained:

⟨|CEx
LEx

R
(f)|⟩ = χ0ncπ

192y0d5
G(f) +O

(
d−7

)
. (D4)

Equations (D3) and (D4) give:

r̄ =
⟨|CLR(f)|⟩√

⟨SL(f)⟩ ⟨SR(f)⟩
=

1

8

y50
d5
, (D5)

where the functions G(f) cancel out making the result
independent of the specific time distribution ρ(t). This
result is plotted as a purple line in Fig. 5.

Appendix E: Non-uniqueness of the distribution of
fluctuators

The distribution of TLSs that can reproduce our re-
sults is not unique. Figure 11 depicts a different ensem-
ble of fluctuators that also leads to a satisfactory fit of
the data plotted in Fig. 2.
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