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The atomically precise placement of dopants in semiconductors using scanning tunneling microscopes has
been used to create planar dopant-based devices, enabling the exploration of novel classical or quantum com-
puting concepts, which often require precise control over tunneling rates in their operation. While the geometry
of the dopants can be defined to sub-nanometer precision, imperfections can still play a significant role in de-
termining the tunneling rates. Here, we investigate the influence of different imperfections in phosphorous
δ -layer tunnel junctions in silicon: variations of δ -layer thickness and tunnel gap width, interface roughness,
and charged impurities. It is found that while most of the imperfections moderately affect the tunneling rate, a
single charged impurity in the tunnel gap can alter the tunneling rate by more than an order of magnitude, even
for relatively large tunnel gaps. Moreover, it is also revealed that the tunneling rate strongly depends on the
electrical charge sign of the impurity.

I. INTRODUCTION

Atomic precision advanced manufacturing (APAM) can be
used to create 2D doped regions (known as δ -layers) in sili-
con that simultaneously have single-atom precision [1–6] and
very high conductivity [7–12]. APAM has application for ex-
ploring basic principles of novel electronic devices, including
nano-scale diodes and transistors for classical computing and
sensing systems [11, 13–15] (see e.g. Fig. 1 a and b). Pri-
marily, however, this technology is used to explore dopant-
based qubits in silicon, with recent advancements in under-
stand exchange-based 2-qubit operations [16], the limits to
qubit fidelity from environmental noise [17], the advantages
to leveraging the number of dopants as a degree of freedom
[18, 19], and the exploration of many body [20] and topologi-
cal [21] effects in dopant chains (see e.g. Fig. 1 c). In princi-
ple, atomically precise fabrication imbues the kind of control
required by these applications, which have a high sensitivity
to tunnel rates.

However, in reality, APAM involves tradeoffs between a
number of defect mechanisms whose impact on tunnel rates
have not been systematically studied, and this work pursues.
A general processing tradeoff exists where the point defect
density can be reduced by increasing the various processing
temperatures, at the expense of worse dopant placement un-
certainty from activating dopant diffusion [10]. More specif-
ically, there is a well-known intrinsic stochasticity from the
underlying chemistry resulting in a dopant placement uncer-
tainty of ±0.3 nm [1, 4]. Moreover, after dopant incorpora-
tion, δ -layer devices must be capped with silicon at moderate
temperature to protect them, but adatom-mediated diffusion
can lead to a loss of out-of-plane sharpness that is on the or-
der of 1 nm [22]. In contrast, the low temperature capping
layer growth also leads to charged point defects at a density of
∼ 1 defect in a (10 nm)3 volume [23]. Determining which of
these disorder mechanisms is most likely to create large varia-
tions in tunneling rates in a simpler tunnel junction geometry
will help inform how to navigate these tradeoffs, and lays the
groundwork to analyze the more complicated case of qubits in
the future.

Electron tunneling is understood in different terms at differ-
ent length scales – ranging from semi-empirical descriptions

FIG. 1. Examples of atomic-precision advanced manufacturing
nanodevices. a δ -layer tunnel junction field-effect transistor (FET)
introduced by [15]. b A δ -layer tunnel junction is used for detecting
electrons in the quantum dot (QD) in [14]. c Two-qubit donor spin
device from [16, 17].
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of resonant tunnel diodes in terms of effective barrier heights
[24] to atomistic hopping through single molecules in break
junctions [25]. Challenges arise in problems where the macro-
scale description of tunneling in terms of band structure can-
not account for atomic-scale details by simply renormaliz-
ing parameters. A direct quantum-mechanical way to investi-
gate tunneling requires an open-system charge transport treat-
ment [26]. In this work we will employ an efficient, charge
self-consistent, quantum transport implementation of open-
system Non-Equilibrium Green Function (NEGF) formalism,
known as the Contact Block Reduction (CBR) method [27–
34]. We combine it with an effective mass description for free
electrons, shown to be in a very good agreement with tight-
binding models for Si nanowires with sizes down to 3 nm
[35, 36] and P δ -layer tunnel junctions in Si [37], to assess
the effect of imperfections on the tunneling rate for phospho-
rous δ -layer tunnel junctions in silicon (Si: P δ -layer tunnel
junction). The considered imperfections in this work include
variations of the δ -layer thickness, small variations of the tun-
nel junction gap length, roughness in the edges of the δ -layers,
and the presence of charged impurities in the intrinsic gap.

II. METHODOLOGY

To explore the impact of these defect mechanisms, we adopt
a structure of a δ -layer tunnel junction, which consist of two
highly-conductive δ -layers separated by an intrinsic semicon-
ductor gap. In the open-system NEGF framework, the com-
putational device consists of a semi-infinite source and drain,
in contact with the channel of length L, which is composed of
a lightly doped Si body and Si cap and two very thin, highly
P-doped layers (referred to as left and right δ -layers) sepa-
rated by intrinsic gap of length Lgap, as shown in Fig. 2 a.
The channel length is chosen to be L = 30 nm+Lgap to avoid
the boundary effect between the source and drain contacts, the
device height is H = 8 nm and the total device width is cho-
sen to be W = 15 nm, with an effective width of 12 nm for the
δ -layer, to avoid size quantization effects on the conductive
properties of δ -layer systems [38]. We consider three different
δ -layer thicknesses: t = 0.2 nm to approximate the true mono-
atomic δ -layer, an intermediate t = 1.0 nm and the ”thick”
δ -layer of t = 5.0 nm. The sheet doping density of δ -layer
is ND = 1.0× 1014 cm−2 (N(2D)

D = t ×N(3D)
D ) and the doping

densities in the Si cap and Si body are NA = 5.0×1017 cm−3

in all simulations. In work [39], it was found that the effect of
dopant (dis)order in the δ -layers is negligible, thus modeling
the δ -layer as a continuum step-like doping profile is a good
approximation. Furthermore, all simulations are carried out
at the cryogenic temperature of 4K, for which we can neglect
inelastic scatterings [7, 40].

The simulations in this work are conducted using the open-
system charge self-consistent Non-Equilibrium Green Func-
tion (NEGF) Keldysh formalism [41, 42], together with the
Contact Block Reduction (CBR) method [27–34] and the ef-
fective mass theory. The CBR method allows a very effi-
cient calculation of the density matrix, transmission function,
etc. of an arbitrarily shaped, multiterminal two- or three-

FIG. 2. Si:P δ -layer tunnel junction (TJ) devices. a Ideal device,
which consists of a semi-infinite source and drain, in contact with
the channel. The channel is composed of a lightly doped Si body and
Si cap and a very thin, highly P doped-layer with an intrinsic gap of
length Lgap. b Device with roughness in δ -layer edges; The edge
roughness is modeled as periodic protrusions of size d1 ×d2 × t with
a periodicity of 2×d2. c Device with presence of a charged impurity,
either p-type or n-type, in the center of the intrinsic tunnel gap; The
charged impurity is represented as a green sphere in the figure.

dimensional open device within the NEGF formalism and
scales linearly O(N) with the system size N. As validation,
in our previous works [43, 44], we demonstrated a very good
agreement with experimental electrical measurements for Si:
P δ -layer systems [7, 45–47], proving a excellent reliability
of this framework to investigate δ -layer systems. Similarly,
our published results in [38], without fitting parameters, agree
remarkably well with the most recent experimental data for
tunnel junctions in these systems[48], as exhibited in [37].

Within this framework, we solve self-consistently the open-
system effective mass Schrödinger equation and the non-
linear Poisson equation [27, 30, 33]. We employ a single-
band effective mass approximation with a valley degeneracy
of dval = 6. For the charge self-consistent solution of the non-
linear Poisson equation we use a combination of the predictor-
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corrector approach and Anderson mixing scheme [31, 33].
First, the Schrödinger equation is solved in a specially defined
closed-system basis taking into account the Hartree potential
φ H(ri) and the exchange and correlation potential φ XC(ri)
[49]. Second, the local density of states (LDOS) of the open
system, ρ(ri,E), and the electron density, n(ri), are computed
using the CBR method for each iteration. Then the electro-
static potential and the carrier density are used to calculate the
residuum F of the Poisson equation∣∣∣∣F [ϕH(ri)]

∣∣∣∣= ∣∣∣∣AϕH(ri)− (n(ri)−ND(ri)+NA(ri))
∣∣∣∣,
(1)

where A is the matrix derived from the discretization of the
Poisson equation and ND and NA are the total donor and ac-
ceptor doping densities arrays, respectively. If the residuum
is larger than a predetermined threshold ε , the Hartree poten-
tial is updated using the predictor-corrector method, together
with the Anderson mixing scheme. Using the updated Hartree
potential and the corresponding carrier density, the exchange-
correlation is computed again for the next step, and an itera-
tion of the Schrödinger-Poisson equations is repeated until the
convergence is achieved with

∣∣∣∣F [ϕH(ri)]
∣∣∣∣ < ε = 10−6 eV.

Further details of the methodology are included in [37]. In
our simulations we have utilized a 3D real-space model, with
a discretization size of 0.2 nm along all directions, thus with
about 106 real-space grid points, and around 3,000 energy
points were used. The CBR algorithm automatically ascer-
tains that out of more than 1,000,000 eigenstates only about
700 (< 0.1%) of lowest-energy states is needed, which is
generally determined by the material properties (e.g. dop-
ing level), but not the device size. We have also employed
the standard values of the inertial effective mass tensor for
electrons, ml = 0.98×me, mt = 0.19×me, the dielectric con-
stant of Silicon, εSi = 11.7, and the cryogenic temperature of
T= 4.0 K in all our simulations.

III. RESULTS AND DISCUSSION

A. Conductivity of ideal tunnel junctions

In our previous work for infinite-width (W → ∞) δ -layer
systems [44], we demonstrated that the distribution of dopants
along the confinement z-axis for a fixed sheet doping den-
sity (N(2D)

D ) significantly affects the current. Conductivity
decreases for sharper δ -layer doping profiles, which create
strong transverse electric fields in their vicinity, while it in-
creases for broader δ -layers doping profiles, which conversely
create weaker transverse electric fields. We also report in this
work that the same trend is observed for finite-width δ -layer
tunnel junctions. In Fig. 3, the tunneling current I vs the tun-
nel gap length Lgap for an ideal δ -layer tunnel junction (see
2 a) is included for different δ -layer thicknesses and two volt-
ages: 1mV and 100 mV. As shown, the tunneling current de-
creases as the δ -layer thickness decreases for a fixed sheet
doping density (i.e. the total charge density is kept constant).
We also find that the overall I vs Lgap trend is practically ex-
ponential for all tunnel gap lengths Lgap = 0, ...,12 nm, i.e.

FIG. 3. Characteristic tunneling current curves. Total current I
(semi-logarithmic scale) vs. tunnel gap length Lgap for different val-
ues of δ -layer thickness t and applied voltages (1 mV and 100 mV).
Black dotted lines represent least-square fits to the exponential trend.
ND = 1.0×1014 cm−2 and NA = 5.0×1017 cm−3.

FIG. 4. Two conductivity regimes in δ -layer tunnel junctions.
Total current vs voltage (blue curve, linear scale) and the corre-
sponding differential resistance dV/dI (red curve, semi-logarithmic
scale) are shown for Lgap = 10 nm, ND = 1.0× 1014 cm−2, NA =

5.0×1017 cm−3 and t = 1 nm.

ln I ∼ ln ILgap=0 − Lgap/Bvoltage, where ILgap=0 is the current
when Lgap = 0, Lgap is the tunnel gap length and Bvoltage is
a proportional constant related with the barrier height. As
a guide to the eyes, the exponential I vs Lgap trend is in-
cluded in the figure as black dotted lines for t = 1 nm. How-
ever, a deviation from the exponential trend can be noticed
for large tunnel gaps Lgap > 7 nm and an applied voltage of
1 mV (dashed lines in the figure). Conversely, for a voltage
of 100 mV (continous lines in the figure), the deviation from
the ideal trend vanishes and the overall trend is exponential,
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FIG. 5. Local Density of States for δ -layer tunnel junctions. The LDOS(E,x) for a tunnel junction of Lgap = 10 nm is shown in a and b when
a voltage of 1 mV and 100 mV is applied to the drain contact, respectively. The Fermi levels indicated in the figures correspond to the Fermi
levels of the source and drain contacts. In a and b, the corresponding effective 1D potentials are also shown, calculated by integrating over the
(y,z)-plane the actual charge self-consistent 3D potentials weighted with the electron density. ND = 1.0×1014 cm−2, NA = 5.0×1017 cm−3,
and t = 1 nm.

thus shedding light on two conductivity regimes for δ -layer
tunnel junctions[38]: low- and high-voltage regimes. As re-
ported in [38], the deviation from the ideal trend is the result
of the quantized conduction band in both δ -layers (left and
right) and a certain mismatch between the left and right states,
which importantly can only occur for low applied voltages.

Fig. 4 shows the I-V characteristic curve for an ideal tun-
nel junction of length Lgap = 10 nm and t =1 nm. We can
discern two ohmic behaviors, elucidating again the existence
of two distinct conductivity regimes corresponding to the low
and high voltage: the first one, between 0 V and 0.04 V, with a
resistance of approximately 5−6 MΩ; the second one, above
0.08 V, with a resistance of 0.2− 0.3 MΩ. The resistance in
the low-voltage regime is one order of magnitude higher than
in the high-voltage regime. Between these two regimes, ap-
proximately between 0.04 V and 0.08 V, there is a transition
region over which the resistance is reduced. The tunneling
resistance in the low-bias regime agrees very well with the
measured resistances for tunnel junctions in [48] for the same
regime [37]. Additionally, we note that the existence of two
conductivity regimes in δ -layer tunnel junctions agrees well
with recent experimental I-V measurements [15, 48].

To get a better understanding of the two conductivity
regimes (see Fig. 4) and the strong influence of the quantized
conduction band on the tunneling current for low voltages (see
the oscillations for Lgap > 7 nm in Fig. 3), we examine the lo-
cal density of states (LDOS), which represent the available
states that can be occupied by the free electrons in space-
energy dimension. For very low temperatures the states below
Fermi level are occupied, whereas the states above Fermi level

are unoccupied. Fig. 5 shows the LDOS along x-direction for
a tunnel junction of Lgap = 10 nm when a voltage of 1 mV in
a and 100 mV in b is applied to the drain contact. Addition-
ally, the corresponding effective 1D potential is included in
the figure, exhibiting a tunnel barrier height of approximately
55 meV for the equilibrium case, which is in excellent agree-
ment with the estimation height obtained from the measured
I-V curve using the WKB approximation for direct tunneling
resistance [15] and the tight-binding calculations for the bar-
rier height in [48]. Firstly, as shown in Fig. 5, the low-energy
LDOS are strongly quantized, highlighted with dashed lines
in the figure. This strong quantization (or similarly the pres-
ence of quasi-discrete states) in the low energies, is the result
of the strong confinement of the electrons in the z-direction
due to the ultra-thin δ -layer. The presence of discrete states
have been observed experimentally in several high resolution
ARPES measurements for δ -layers in silicon [50, 51]. On the
contrary, for high energies, the LDOS are practically continu-
ous in space-energy, thus these states are not quantized. When
a voltage is applied to the drain contact, the Fermi level corre-
sponding to the drain contact is reduced, resulting in lowering
the energies of all states in the right side as well. As a result,
new unoccupied states in the right δ -layer will be available to
be occupied by the tunneling electrons coming from the left
δ -layer. When a low drain voltage is applied, < 45−50 mV,
only the unoccupied quantized states in the right δ -layer will
play a role in the tunneling process. If the occupied quasi-
discrete states near the Fermi level in the left side align with
the unoccupied quasi-discrete states in the right side, it will
result in a considerable increase of the tunneling current as
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FIG. 6. Effect of δ -layer thickness variation. Current ratio,
It/It=0.2 nm, vs. tunnel gap length for different deviations of the δ -
layer thickness from the ”ideal” mono-atomic layer.

shown in Fig. 3 for Lgap = 10 nm and t = 1 nm. Conversely,
if the overlap is minimum, as happen for Lgap = 11 nm and
t = 1 nm, the tunneling current will be reduced. For low bi-
ases, this alternating mismatch can only exist for sufficiently
large tunnel gaps, Lgap > 7 nm, because the coupling of the
left and right δ -layer wave-functions for narrow tunnel gaps
(Lgap < 7 nm) equalizes the electron states on both sides, in-
creasing the overlap and thus eliminating the mismatch. When
a high bias is applied, as in Fig. 5 b, it makes the continuous
unoccupied high-energy states in the right side available for
tunneling from the left side, thus diminishing the influence
of the conduction band quantization on the current, as can be
seen in I vs Lgap plots in Fig. 3 for 100 mV.

In the following we will evaluate the effect of diverse im-
perfections in δ -layer tunnel junctions on the tunneling cur-
rent. We therefore remark the importance of the evaluation
of the tunneling rate for both conductivity regimes: low- and
high voltage regimes. For low voltages, strong quantization
effects on the tunneling current are expected, especially for
large tunnel gaps, because of the quantized low-energy con-
duction band; thus, it will be reflected in non-monotonic or os-
cillated characteristic I-V curves. Conversely, in the high-bias
regime, no significant influence of the low-energy conduction
band quantization is expected on the tunneling current.

B. Effects of δ -layer thickness deviations from mono-atomic
layer

We first investigate the effects of δ -layer thickness varia-
tion on the tunneling rate. Fig. 6 shows the current ratio be-
tween two different δ -layer thicknesses (t = 1, 5 nm) with re-
spect to the ideal mono-atomic layer, which is approximately
0.2 nm, in dashed lines for a low-bias of 1 mV and in contin-
uous lines for a high-bias of 100 mV. Our results suggest that

FIG. 7. Effect of tunnel gap length variation. Current ratio,
ILgap+δLgap

/ILgap vs. tunnel gap length, Lgap, for distinct applied volt-
ages. t = 1.0 nm, ND = 1.0×1014 cm−2 and NA = 5.0×1017 cm−3.

the tunneling rate increases approximately up to two times for
a broadening of the δ -layer of 1 nm. Interestingly, the effect
is roughly constant for the whole considered tunnel gap Lgap
range. However, for even wider δ -layers, the tunneling rate
further increases, between two and seven times for a effec-
tive thickness of 5 nm, developing now a stronger dependence
on the tunnel gap length. Furthermore, for large tunnel gaps
in the low-bias regime (1 mV), the strong non-monotonic de-
pendence of the current ratio on the gap length is the result
of the space-energy quantization of the conduction band and
the mismatch in the overlapping between the states in the left
and right δ -layers, discussed in Sect. III A. More specifically,
the peak at Lgap = 10 nm is the result of maximum overlap
between occupied quasi-discrete states from the left δ -layer
with unoccupied quasi-discrete states from the right δ -layer
for δ -layers thicker than monoatomic layers. It is worth not-
ing that the energy levels of these quasi-discrete states exhibit
a dependence on multiple factors, including the doping den-
sity, width and thickness, and length of the tunnel gap. When
a higher voltage is applied (e.g. for 100 mV), it results in a
lower current ratio, and the quantization effects diminish as
we discussed in Sect III A.

C. Effects of tunnel gap length variations and interface
roughness

Next we will assess how the variation of the tunnel gap
length and the roughness of the δ -layer might affect the tun-
neling rate. As a first approximation, the interface roughness
can be modeled as a uniformed increase or reduction of the
average gap length ⟨Lgap⟩. We evaluate in Fig. 7 the change
in the tunneling current for small uniform variations, such as
Lgap + δLgap with δLgap = ±0.2 nm. This small perturba-
tion is of the order of the stochasticity of APAM chemistry.
Our simulations suggest that a small variations of the tun-
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FIG. 8. Effect of interface roughness. Current ratio,
Iideal/Iroughness, vs. tunnel gap length, Lgap, for an applied bias of
1.0 mV. For each tunnel gap length, different roughness sizes have
been considered, ranging d1 = 0.8− 2.0 nm and d2 = 0.6− 3.4 nm
(see Fig. 2 b). The dots represent the average and the bars represent
the dispersion of the values. t = 1.0 nm, ND = 1.0×1014 cm−2 and
NA = 5.0×1017 cm−3.

nel gap length (of the order of ±0.2 nm) can lead to a cur-
rent change of around 20% with respect to the ideal (or de-
signed) length for the whole studied range. A reduction of
the tunnel gap length evidently results in an increase of the
tunneling rate, while an increase of the effective gap length
leads to a decrease of the tunneling rate by a similar magni-
tude. For large tunnel gaps in the low-bias regime (see dashed
lines for 1 mV), our results similarly present the expected non-
monotonic behaviour due to the quantization effect, but this
effect vanishes when higher voltage is applied (see continu-
ous lines for 100 mV).

A second-order analysis of the edge roughness can be
performed assuming that the average ⟨Lgap⟩ value does not
change due to the roughness. In this case, we model the
roughness as periodic protrusion of size d1 × d2 × t, with a
periodicity of 2×d2, as shown in Fig. 2 b, instead of the uni-
formed variation evaluated above. To maintain ⟨Lgap⟩ con-
stant we have only considered in-phase roughness, i.e. the
protrusion of the left δ -layer is exactly a mirror of the right
side. The analysis of out-of-phase roughness is not the scope
of this work and it will be further investigated outside. In our
analysis, we have considered different roughness sizes, vary-
ing the parameter d1 from 0.8 nm to 2.0 nm, and the parameter
d2 from 0.6 nm to 3.4 nm. Fig. 8 includes, for all evaluated
roughness sizes, the current ratio between the ”non-ideal” tun-
nel junction device (with edge roughness) and the ”ideal” de-
vice (without any roughness) for a voltage of 1 mV. The simu-
lations indicate that edge roughness reduces the tunneling rate
between 6% and 20% for almost the whole considered gap
range, predicting very similar magnitude of the tunneling rate
change as the uniformed variation of the tunnel gap length.

One can also notice that for large tunnel gaps, especially for
Lgap = 9− 10 nm, the tunneling rate is even further reduced
up to 2.2 times due to the mentioned quantization of the con-
duction band.

D. Effects of charged impurities in the tunnel gap

In the following, we evaluate the effects on the tunneling
rate by the presence of a single charged impurity in the tun-
nel gap, assuming a point-charge distribution for all charged
impurities regardless of the specific atomic species, as shown
in Fig. 2 c. For the simulation set-up, we place in the center
of the tunnel gap either a n-type impurity (e.g. a phosphorus
atom) or a p-type impurity (e.g. an aluminium atom). The
impurities are modeled by approximating a point charge with
a density of (positive or negative) 4.6× 1021 cm−3 homoge-
neously distributed in a total volume of (0.6 nm)3. While
in this work we restrict our analysis to the center-gap loca-
tion, the influence of other locations may be also interesting
to investigate since the free electrons in δ -layer systems form
distinct conducting layers perpendicular to the confinement
direction, thus signaling a highly non-homogeneous electron
density distribution [43, 44].

Fig. 9 shows the LDOS of a δ -layer tunnel junction with a
single n-type impurity for an applied voltage of 1 mV in a and
for 100 mV in b, and with a single p-type impurity for 1 mV in
c and for 100 mV in d. In addition, Fig. 10 shows the LDOS
difference for both applied voltages between the ideal tunnel
junction (i.e. the LDOS shown in Fig. 5) and the junction with
the impurity (i.e. the LDOS shown in Fig. 9), therefore it rep-
resents the localized states created (in red color) or depleted
(in blue color) by the impurity. As Fig. 9 a and b reveal, an
n-type impurity in the middle of the tunnel gap creates un-
occupied states above the Fermi level within the tunnel gap,
i.e. between x = 15−25 nm, as one might discern comparing
panels a and b in Fig. 5 and Fig. 9. The new available states
are clearly shown in red color in panels a and b in Fig. 10.
On the contrary, a p-type impurity depletes unoccupied avail-
able states above the Fermi level as shown in Fig. 9 c and d
within the tunnel gap (x = 15−25 nm). The depletion of the
states due a p-type impurity can be also seen in Fig. 10 c and
d in blue color since we are representing the LDOS difference
between the ideal tunnel junction and the one with the p-type
impurity. Interestingly, the presence of the impurity can be
sensed even far from the impurity position as Fig. 10 also re-
veals for both impurity types. The impurity creates a quan-
tized perturbation in the unoccupied available states (above
the Fermi level) even far from the impurity location, shown as
ripples between x = 0−15 nm and x = 15−40 nm above the
Fermi level in the figure. However, the intensity of the pertur-
bations vanish as we move away from the impurity location.

In the semi-classical picture, the energy difference between
the peak of the effective electrostatic potential and the Fermi
level is the energy barrier which the electrons have to over-
come to tunnel from one δ -layer to the other. Because of the
presence of the impurity in the middle of a nano-scale gap,
the effective electrostatic potential is obviously affected. For
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FIG. 9. Local Density of States for δ -layer tunnel junctions with impurities. The LDOS(E,x) for a tunnel junction of Lgap = 10 nm is
shown: for a n-type impurity when a voltage of 1 mV and 100 mV is applied to the drain contact in a and b, respectively; for a p-type impurity
when a voltage of 1 mV and 100 mV is applied in c and d, respectively. In all figures, the corresponding effective 1D potentials are also
shown in red color, calculated by integrating over the (y,z)-plane the actual charge self-consistent 3D potentials weighted with the electron
density. The effective 1D potential for the ideal tunnel junction is also included in orange dashed lines for comparison purpose. Lgap = 10 nm,
t = 1.0 nm, ND = 1.0×1014 cm−2, and NA = 5.0×1017 cm−3.

an n-type impurity in the middle of tunnel gap, the height of
the electrostatic barrier is reduced, as shown in Fig. 9 a, in
which the height of the electrostatic barrier without impurity
(the orange dashed curve) is slightly higher than the one with
an n-type impurity (the red continuous curve). In addition,
the n-type impurity creates a dip in the electrostatic poten-
tial due to the donor atom. For a p-type impurity, acceptor
atom, the depletion of the states above the Fermi level, in

turn, increases the height of the energy barrier in the elec-
trostatic potential with respect to the ideal case, as depicted in
Fig. 9 c, where the height of the electrostatic potential for the
ideal tunnel junction (red continuous curve) is higher than the
electrostatic potential for the tunnel junction with the impurity
(orange dashed curve).

Fig. 11 shows the current ratio versus the tunnel gap length
Lgap for both impurity types and voltage regimes (1 mV and
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FIG. 10. Localized states created or depleted by a charged impurity. Shown is the LDOS(E,x) difference for a tunnel junction of
Lgap = 10 nm between: n-type impurity in the middle of the tunnel gap and without impurity in a and b for an applied voltage of 1 mV
and 100 mV, respectively; p-type impurity and without impurity for an applied voltage of 1mV and 100 mV in c and d, respectively. The
corresponding effective 1D potentials are also shown in red color, together with the effective 1D potential for the ideal case in orange color.
ND = 1.0×1014 cm−2, NA = 5.0×1017 cm−3, and t = 1 nm.

100 mV) in a, b and c for a δ -layer thicknesses of t =
0.2, 1.0, 5.0 nm, respectively. These simulations first reveal
that a n-type impurity increases the tunneling rate, whereas a
p-type impurity decreases the tunneling rate. This result can
be explained in two different, but related ways. The first one,
which corresponds to a semi-classical picture, is by examin-
ing the electrostatic potentials shown in Fig. 9 and discussed
above: an n-type impurity decreases the barrier height (i.e. the
energy difference between the peak of the electrostatic poten-
tial and the Fermi level), whereas a p-type impurity increases
the barrier height. Then the tunneling current increases or de-
creases according to the change of the barrier height. The

other way is to examine the unoccupied and occupied states
in the LDOS for the conduction band. When we apply a pos-
itive voltage to the drain contact, the right Fermi level and
occupied and unoccupied states move down, falling below the
Fermi level of the source. As result, electrons injecting from
the source can tunnel into these available states. The pres-
ence of an n-type impurity creates unoccupied states within
the tunnel gap, just above the Fermi level in equilibrium. Sim-
ilarly, when a voltage is applied, these available states might
also fall within the source and drain Fermi energy levels and,
therefore, they became as intermediate states in which elec-
trons can tunnel in and out, reducing then the tunneling length
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FIG. 11. Effect of charged impurities. Current ratio,
Inon−ideal/Iideal , vs. tunnel gap length, Lgap, for tunnel junctions
with a single n-type and p-type impurities in the intrinsic gap: a
t=0.2 nm; a t=1.0 nm; and c t=5.0 nm. The insets in a, b and c
are a zoom of the result within the range between 3 nm and 8 nm.
ND = 1.0×1014 cm−2 and NA = 5.0×1017 cm−3.

(i.e. the width of the barrier in the semiclassical picture) and,
therefore, increasing the tunneling rate. On the contrary, the
presence of a p-type impurity creates a depletion of the states
within the tunnel gap, as shown panels c and d in Fig. 10 as a
blue cloud around the effective electrostatic potential, increas-
ing then the effective tunneling length and, therefore, reducing
the tunneling current.

We can also observe from Fig. 11 two different behavior,
corresponding to narrow tunnel gaps Lgap = 3 − 7 nm and
large tunnel gaps Lgap > 7 nm, in which the deviation of the
tunneling current from the ideal one behave differently. For
narrow tunnel gaps, the magnitude of the effect on the tun-
neling rate is very similar for both impurity types and not
very pronounced (see the inset figures): up to 3.75 times in-
crease and 2.5 times reduction of the tunneling rate for a n-
type and p-type impurity, respectively, when the tunnel gap
length is 7 nm. Our simulations also exhibit that there is not
significant difference on tunneling rate change in both voltage
regimes (1 mV for the low-voltage regime and 100 mV for
the high-voltage regime) for narrow tunnel gaps: the change
of the tunnel rate with respect to the ideal tunneling current
is only slightly higher for higher voltages. The deviation in
the magnitude of the effect on the tunneling current between
both impurity types starts approximately for Lgap > 7 nm: the
effect of a n-type impurity becomes much more relevant than
for a p-type impurity, especially for the high-voltage regime
(100 mV in the figure), in which it is a few times higher than
in the low-voltage regime (1 mV in the figure). Interestingly,
our simulations suggest that the tunneling current can be up
to 60 times higher and 20 times lower for a single n- and p-
type impurity, respectively, for a tunnel gap length of 12 nm.
Finally, we note that the charged impurity is better sensed by
thinner δ -layers, as our result indicates the current ratio in-
creases as the thickness of the δ -layer decreases.

IV. CONCLUSION

We have employed an open-system quantum transport anal-
ysis to investigate the effect of diverse imperfections on the
tunneling rate in Si: P δ -layer tunnel junctions. These imper-
fections span from geometry variations of the δ -layer thick-
ness and junction gap length, to the presence of charged impu-
rities, either n-type or p-type, in the intrinsic gap. It is shown
that while most of the disorders moderately affect the tunnel-
ing rate, a single charged impurity in the tunnel gap can al-
ter the tunneling rate by more than an order of magnitude.
Contrary to predictions of semiclassical impurity scattering
(mobility-based) models, the electric sign of impurity plays
an important role in the tunneling rate: the rate of current in-
crease due to an n-type impurity in Si: P δ -layer systems is
several times higher than the rate of current decrease for a
p-type impurity, especially for large tunnel gap lengths. Sim-
ilarly, we can extrapolate these findings to other systems such
as Si: B δ -layer tunnel junctions, in which the influence of
a p-type impurity in the intrinsic gap, instead of an n-type,
would result in a dramatic increase of the tunneling current.

These results immediately suggest that the overall geomet-
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ric fidelity of the APAM device fabrication can be less impor-
tant than mitigation of charged impurities nearby the junction,
which can lead to a strong change of tunneling rates. APAM-
based qubits in particular require having tunneling rates that
are tightly controlled between multiple closely-spaced ob-
jects. This includes exchange coupling between a pair of
donor-based qubits, initialization from a tunnel-coupled sin-
gle electron transistor, and spin-to-charge conversion from the
resonant tunneling of the single electron transistor to the leads
in Figure 1. Importantly, a change in tunneling rates from the
fabricated geometry due to impurities can be hard to compen-
sate for using electrostatic gates. The size of the gates (tens
of nm) and the required spacing for them to not leak to one
another (tens of nm) is much larger than the length scale for
tunnel coupling (a few nm). In the APAM geometry, these
gates are few in number - enough to control electrostatics, but
too few to control tunneling rates. This leads to the conclu-
sion that adopting APAM processing practices that minimize
charged defects is more important than those that preserve the
absolute device geometry.

Finally, the extreme sensitivity of δ -layers tunnel junctions
on the tunneling current to the presence of charges in the
vicinity of the tunnel gap opens a great opportunity to use
them for quantum FET-based sensors for biological, chemical
and radiation applications. The signal detection (either due
to radiation or specific molecules) at the sensing area would
be strongly enhanced due to the conduction band quantization
created by the highly-confined δ -layers. The sensing area can
be placed above the tunnel gap, replacing the traditional gate
in a conventional geometry. Contrary to traditional FET-based
sensors, instead of needing to accumulate enough charges at
the sensing area to invert the full channel and detect the signal

[52], quantum FETs based on δ -layers would allow to detect
even small signals that correspond to a single charge, thus sig-
nificantly enhancing the sensitivity with respect to traditional
FET-based sensors.
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