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Superconducting quantum processors comprising flux-tunable data and coupler qubits are a
promising platform for quantum computation. However, magnetic flux crosstalk between the flux-
control lines and the constituent qubits impedes precision control of qubit frequencies, presenting
a challenge to scaling this platform. In order to implement high-fidelity digital and analog quan-
tum operations, one must characterize the flux crosstalk and compensate for it. In this work, we
introduce a learning-based calibration protocol and demonstrate its experimental performance by
calibrating an array of 16 flux-tunable transmon qubits. To demonstrate the extensibility of our
protocol, we simulate the crosstalk matrix learning procedure for larger arrays of transmon qubits.
We observe an empirically linear scaling in calibration time with system size while maintaining a
median qubit frequency error below 300 kHz.

I. INTRODUCTION

Superconducting quantum processors comprising flux-
tunable transmon qubit arrays are at the forefront of con-
temporary digital quantum computation [1, 2] and analog
quantum simulation and emulation [3–5]. Flux-tunable
qubits enable controllable, strong qubit-qubit interac-
tions and high-fidelity two-qubit gates [6, 7] in many-
qubit systems by reducing parasitic couplings and qubit
frequency crowding. A central requirement for operating
such quantum devices is the accurate and precise fre-
quency control of each tunable element using local flux
lines, which can be used to tune each qubit individually.
While a current applied to a particular flux-line antenna
is designed to address only one qubit or coupler, there
are at least two mechanisms by which flux may couple to
additional elements. One is through the direct, unwanted
inductive coupling from the antenna to other qubits and
couplers. A second is via the send and return path of the
applied current, which may similarly induce unwanted
magnetic flux in other qubits as it traverses the flux line
and ground plane. The net effect is commonly referred
to as flux crosstalk. Crosstalk can be characterized and
compensated by measuring the response of each qubit to
the flux generated by every flux line independently and
presuming linear superposition, or by using an iterative
approach [8] and optimization [9] in systems with a non-
linear response.
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Machine learning techniques have been applied exten-
sively to calibrating quantum dots [10–18]. For super-
conducting quantum processors, machine learning ap-
proaches have been used, for example, for automated
recalibration of system parameters [19], optimization
of qubit frequency layouts [20], discrimination of qubit
states [21–25], and calibration of single- and two-qubit
gates [26, 27]. In this work, we demonstrate and an-
alyze a learning-based approach for characterizing flux
crosstalk on flux-tunable transmon devices. In compar-
ison to previous works, our approach does not involve
direct measurement of crosstalk matrix elements and re-
quires relatively few measurements.
Flux-tunable transmons comprise two Josephson junc-

tions forming a superconducting quantum interference
device (SQUID) in parallel with a shunting capacitor [28].
In this circuit, the Josephson energy EJ is tuned by
threading an external magnetic flux Φext through the
SQUID loop. The transition frequency between the
ground and the first-excited state of the transmon in
response to the applied magnetic flux is approximately
given by [28]

f(Φext) ≈(
fmax +

EC

h

)
4

√
d2 + (1− d2) cos2

(
π
Φext

Φ0

)
− EC

h

(1)

where fmax = (
√
8EJEC −EC)/h is the maximum qubit

frequency, assuming EJ ≫ EC , and EC is the trans-
mon charging energy. The asymmetry parameter d of the
SQUID junctions is given by d = |(EJ,2 − EJ,1)/(EJ,2 +
EJ,1)|, where EJ,1 and EJ,2 are the Josephson energies
of the two SQUID junctions. The transmon spectrum in
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Eq. 1 provides a formula to estimate the applied mag-
netic flux required for tuning the qubit to a particular
frequency.

In a flux-tunable transmon processor, the magnetic
flux is applied by running an electric current through a
flux line terminated by an antenna that is near the target
qubit and inductively coupled to its SQUID loop. The
current is generated at room temperature either by us-
ing an active current source or by using a voltage source
outputting voltage V across a series resistance R. In ei-
ther case, it is important to use a “stiff” current source
with high output resistance to ameliorate the impact of
temperature-dependent line resistance inside the refriger-
ator leading to the qubits. In this work, we use a voltage
source and resistor 1 kΩ to apply a current to each of
our flux bias lines. The magnetic flux can be expressed
as Φext = V/V Φ0 + Φoffset, where V Φ0 is the voltage re-
quired to tune the qubit by one magnetic flux quantum
Φ0, and Φoffset is a flux offset due to magnetic fields pro-
duced by vortices trapped in the superconducting ground
plane or other non-controllable sources of static magnetic
field.

Magnetic flux crosstalk can be treated as a linear pro-

cess; a vector of voltages V⃗ applied to the flux lines is re-

lated to the magnetic flux Φ⃗ext experienced by the qubits
by the relation

Φ⃗ext = (V Φ0)−1SV⃗ + Φ⃗offset , (2)

where V Φ0 is a diagonal matrix with V Φ0
i,i corresponding

to the V Φ0 of qubit i. S is the flux crosstalk sensitivity
matrix, with Si,j = ∂Vi/∂Vj representing the voltage
response of qubit i to a voltage signal applied to qubit
j. In this representation, the diagonal elements of S are

1, and characterizing S along with Φ⃗offset enables us to
compensate for the crosstalk and set the qubit frequencies
more precisely. Before this compensation, we observe a
spread in frequency error ∆f as shown in Fig. 1C.

The flux crosstalk sensitivity matrix for an array of N
flux-tunable transmon qubits contains N2 elements. We
note that since the qubit array and routing layouts are
not generally symmetric, the matrix S is not guaranteed
to be symmetric. In general, Si,j ̸= Sj,i, and so all N2 el-
ements need to be characterized. Typically, each element
Si,j is individually characterized by sweeping voltage Vj

targeting qubit j and measuring the response of qubit
i [5, 29, 30]. This approach, however, is not extensible
for characterizing the flux crosstalk of large transmon
qubit arrays (see Appendix B). The sample is fabricated
using a 3D-integrated, flip-chip process [31], where the
resonators and the flux lines are located on the inter-
poser tier, and the qubits are located on a separate qubit
tier. This learning-based calibration approach has been
employed to calibrate the flux crosstalk on planar as well
as flip-chip devices [4, 5, 32].
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FIG. 1. The Flux Crosstalk Model (A) Flux crosstalk
concept for superconducting transmon circuits. Current I1
passing near the SQUID of qubit 1 supplies an intended
amount of magnetic flux (green arrow). Due to crosstalk,
other qubits on the device may experience an unintended flux
from this current (dashed red arrow). (B) Optical image of
the qubit tier of the 16-qubit transmon array fabricated us-
ing a 3D-integrated, flip-chip process (see Appendix A for
details of the device). The capacitor pads of the qubits are
false-colored maroon. (C) Experimental distribution of the
difference between the measured qubit frequency and the tar-
get frequency ∆f = fq − ftarget without crosstalk correction

for 200 target frequency vectors f⃗target. For each f⃗target, all
16 qubits are simultaneously biased to random frequencies in
the region spanned by 100MHz− 1GHz below the maximum
qubit frequency, and then each qubit frequency is measured.
The shaded region indicates the 5th to 95th percentiles of the
distribution.

II. CALIBRATION PROTOCOL

A. Learning the flux crosstalk matrix

We learn the flux crosstalk matrix S by attempting to
set our qubits to a target frequency layout, measuring
the qubit frequencies as a result of applied external flux,
and then using the frequency error to optimize S. More

specifically, we apply a set of voltages V⃗ , where the i-th

element of V⃗ denotes the voltage applied to the flux line
targeting qubit i, and measure the frequency of qubit i to
infer the flux Φext,i via Eq. 1. Minimizing the difference
between the measured flux, Φext,i, and the estimated flux,

which depends upon V⃗ and S, optimizes S.

We generate V⃗ by randomly selecting a frequency for
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each qubit, f⃗ , subject to a few constraints. First, we re-
quire that each qubit frequency falls in the range spanned
by approximately 100MHz− 1GHz below its maximum
qubit frequency (colloquially referred to as the “sweet
spot” due to its first-order insensitivity to flux noise),
as illustrated in Fig. 2A. Second, to reduce frequency
shifts due to resonant interaction between qubits, we re-
quire that neighboring qubits in the array are far detuned
(> 200MHz), and the detuning between any two qubits
is at least 50MHz. The target frequency range includes
regions of the transmon spectrum close to the sweet spot,
which are less sensitive to changes in flux. This qubit fre-
quency placement is necessary for sufficiently detuning
the qubits. The detuning mitigates frequency shifts due
to resonant interaction between qubits (see Appendix A),
enabling us to accurately measure the frequencies of all
qubits simultaneously.

To minimize bias in this quasi-random selection, we
randomly permute the order in which target qubit fre-

quencies within f⃗ are chosen. This random permutation
ensures that, given the detuning constraints, the qubits
with higher sweet-spot frequencies in the latter half of

f⃗ are not regularly placed at the higher frequency end
of the training region. Using the transmon spectrum in
Eq. 1, we can calculate the magnetic flux values corre-

sponding to the target frequencies. An initial guess for V⃗
can be obtained from the relationship described in Eq. 2
by assuming S = I or using an estimate of the matrix.

All elements of V⃗ will be nonzero since each qubit is bi-
ased off of its sweet spot.

We apply V⃗ and measure the frequency of each qubit.
In our experiments, these frequency measurements are
performed simultaneously. We then convert the mea-
sured frequencies into the flux experienced by each

SQUID, Φ⃗meas. By repeating this procedure for M it-

erations, we obtain a set {V⃗i, Φ⃗meas,i}i=1:M of input volt-
ages and the resulting measured fluxes experienced by
the qubits. Using this data set, we train the elements of
the kth row of S by minimizing the mean-squared-error
cost function

C(Sk) =

1

M

M∑
i=1

∣∣∣∣∣
∣∣∣∣∣(Φ⃗meas,i)k −

[
(V Φ0

k,k)
−1SkV⃗i + (Φ⃗offset)k

]∣∣∣∣∣
∣∣∣∣∣
2

.

(3)

The first term in the cost function sum corresponds to
the measured flux on qubit k, and the second term corre-
sponds to the estimated flux based on our crosstalk ma-
trix and the applied voltages. We minimize C(Sk) with
the L-BFGS gradient descent optimization algorithm [33]
implemented in PyTorch [34] (see Appendix C for a com-
parison of different optimizers). For a visual schematic of
the calibration protocol, see Appendix D. The minimiza-
tion of the cost function will converge as the estimated
fluxes approach the measured fluxes.
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FIG. 2. Learning protocol simulation of measurement
uncertainty dependence for a 16-qubit array. (A) Frequency
spectrum of the transmon as a function of external flux ap-
plied. We bias the qubits to the maroon region of the spec-
trum for the flux crosstalk training. (B) We measure qubit
frequencies experimentally via spectroscopy, by measuring
the magnitude of the in-phase quadrature of the demodu-
lated signal (Im), and extract the qubit frequency from a
Lorentzian fit. (C) Simulated frequency error |∆f | and the
(D) Euclidean distance between the trained crosstalk matrix
S and the target matrix Starget when the matrix is learned
in the presence of qubit frequency measurement uncertainty
σmeas. ∈ {0, 0.5, 1} MHz. The distribution over 100 differ-
ent random realizations is shown using small circles, and the
median values are shown using large circles. Both quantities
converge quickly in less than M = 100 training sets. The
protocol accuracy decreases as the frequency measurement
uncertainty increases.

B. Protocol simulation

We analyze the performance of our protocol for learn-
ing the crosstalk matrix on a simulated model of the
16-qubit array of transmon qubits (shown in Fig. 1B).
Appendix E contains further details of the simulation
model. In Fig. 2C, we report the error in achieving the
desired target frequency ∆f = fq − ftarget when training
the matrix using a training set of size M .
For the simulations, we modeled the flux crosstalk

calibration protocol using realistic values for the trans-
mon spectra parameters (V Φ0 , Φoffset, fmax, EC , and
d). For the optimal crosstalk matrix Starget, we used
the previously-characterized crosstalk matrix for the 16-
qubit array of transmons. In these simulations, each
time a qubit frequency is “measured,” we add normally
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distributed error with standard deviation σmeas., reflect-
ing frequency-measurement imprecision (Fig. 2B) due to
the qubit spectral linewidth arising from dephasing and
power broadening, as well as frequency shifts arising from
dispersive shifts and residual ZZ couplings [35]. We find
that σmeas. ≈ 0.5MHz most closely reflects our experi-
mental conditions (see Appendix F for a discussion of fre-
quency measurement error sources). Based on the trend
in Fig. 2C, we expect that the plateau frequency error
|∆f | can be reduced by performing finer spectroscopy
scans or measuring qubit frequencies via Ramsey inter-
ferometry, at the cost of longer overall calibration time.
Another source of frequency measurement error arises
due to small dispersive frequency shifts, despite the de-
tuning scheme. We compensate for these detunings by
using previously-characterized qubit-qubit couplings, but
there could be some error in the calculation of the un-
coupled qubit frequency.

We then create a training set of size M and train
S. Finally, we validate our learned crosstalk matrix S

with a random vector of frequencies f⃗target independent
of the training set. These random frequency vectors are
chosen in the same way as the target frequency vectors
used to learn the matrix, i.e. all qubits are biased to
100MHz− 1GHz1 off the sweet spot with all qubits suf-
ficiently detuned. We attempt to set the qubits to these

frequencies and record the error |f⃗q − f⃗target|, with no

error added to the simulated measurement of f⃗q.
We study the convergence of the protocol in the pres-

ence of frequency measurement errors. We observe that
in the absence of measurement uncertainty (σmeas. =
0 MHz), the protocol is capable of achieving a median
frequency error |∆f | on the order of 1 kHz with M = 100
training sets. In Fig. 2D we consider the Euclidean dis-
tance between the trained crosstalk matrix S and the
target crosstalk matrix Starget: ||S − Starget||2. As the
frequency measurement uncertainty increases, the perfor-
mance of the protocol degrades, leading to a larger |∆f |
value when reaching the training plateau. We expect
that with the anticipated uncertainty in measuring qubit
frequencies in experiments, we should be able to achieve
a median frequency error on the order of 100 kHz.

III. EXPERIMENTAL RESULTS

Next, we experimentally assess the performance of our
protocol by calibrating the static flux-crosstalk matrix
for a 16-qubit array of transmons. Starting from the
assumption that S = I, we generate a set of 200 ran-
dom voltage vectors, apply each voltage vector to the
flux lines, and measure the corresponding qubit frequen-
cies simultaneously via spectroscopy. Despite targeting
> 200MHz detuning between neighboring qubits, each
qubit experiences a frequency shift due to its interaction
with other qubits. We calculate the uncoupled qubit fre-
quencies from the measured shifted frequencies using the
pre-characterized qubit-qubit couplings. Using Eq. 1, we

convert these frequencies into a vector of fluxes experi-
enced by each SQUID loop in the system corresponding
to each applied voltage vector. We use different subsets

of the measured set {V⃗i, Φ⃗
meas
i }i=1:200 to learn the device

crosstalk matrix.
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FIG. 3. Experimental implementation of the protocol
using a 16-qubit array of transmon qubits. We see the dis-
tribution of offset in the measured qubit frequencies from the
target values (∆f) for the crosstalk matrix trained with (A)
M = 10, (B) M = 20, and (C) M = 100 number of training
sets. The shaded region indicated the 5th to 95th percentile of
the distribution. (D) Error in targeting the qubit frequency
|∆f | after training the crosstalk matrix with a different num-
ber of measurement sets. We observe that by increasing the
training set size M , the median error (maroon points) de-
creases until reaching a plateau of approximately 290 kHz.

Prior to training, we selected a validation set of 10 tar-
get frequency vectors. This validation set was generated
in the same way as target frequency vectors for train-
ing, with the added condition that each qubit is placed
at least twice in the upper, middle, and lower regions
of the frequency training region. For each value of M ,

we randomly selected 20 different subsets of {V⃗i, Φ⃗
meas
i }

with size M . With each subset, we learned the crosstalk
matrix and then recorded the frequency error in setting
the qubits to the validation frequencies.
In Figs. 3A, 3B, and 3C we show the qubit frequency

deviation from the target validation set value (∆f) for
training sets of size M = 10, 20, and 100, respectively.
The shaded region in the figures indicates the 5th to 95th

percentiles of the distribution. We observe that by us-
ing a larger training set, the distribution of ∆f becomes
narrower.

In our experiments, we notice irregularities in the
transmon spectra of four of the qubits, presumably due
to two-level-system (TLS) defects coupled to the qubits.
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The frequency of a qubit coupled to coherent defects
shifts, resulting in deviations from the transmon spec-
trum. In such frequency regions, we experience an error
in setting the frequency of just a single qubit. Therefore,
we do not include those qubits in the validation. The
flux crosstalk for these four qubits can still be learned
by excluding the regions of their transmon spectra im-
pacted by TLSs. We can repeat the same learning-based
protocol, biasing each of the four qubits of interest to a
defect-free frequency, while applying quasi-random volt-
ages to all other qubits and measuring the frequencies of
the four qubits of interest. The resulting voltages and
fluxes can be used to learn the corresponding four rows
of S. In Appendix E, we report the full learned S for the
16-qubit array.

We demonstrate the experimental scaling of the fre-
quency error |∆f | as a function of M in Fig. 3D when
learning the crosstalk matrix with our protocol. The fre-
quency error generally decreases with the training set size
and reaches a plateau at M = 50 with a median error of
approximately 288 kHz.

IV. PROTOCOL SCALING

In order to demonstrate the extensibility of our ap-
proach, we simulate the learning procedure with an ex-
tension of the crosstalk model (see Appendix E) for larger
transmon array sizes. We show the scaling of the fre-
quency error for qubit arrays of size N = 16, 64, and 100
qubits in Fig. 4A, assuming conservatively a frequency
measurement uncertainty of 0.5MHz. We observe a rapid
convergence of the error in target frequency when using a
training set with a size larger than the number of qubits.

In Fig. 4B, we study the error scaling by keeping the
training set size constant (vertical slices of Fig. 4A). For
training set sizes ofM = 200, 300, and 400, the frequency
error empirically scales linearly with the number of qubits
and remains below 200 kHz. The sources of error used in
our model simulations are inaccuracies in characterizing
the transmon spectrum parameters and uncertainty in
qubit frequency measurements. Hence, we expect the
frequency error to be lower in simulation compared to
our experiments.

Based on the scaling observed in the simulation, in ad-
dition to the experimental demonstration, we conclude
that using our learning-based crosstalk optimization pro-
tocol we would be able to accurately train the crosstalk
matrix with M ≈ 2N spectroscopic frequency measure-
ments per qubit. Since we can perform simultaneous fre-
quency measurements, the total measurement time for
the training set will be proportional to 2N .

V. DISCUSSION

In this work, we describe an extensible approach for
accurate flux crosstalk characterization and calibration
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FIG. 4. Simulation of extensibility (A) Frequency error
scaling for N = 16, 64, 100 qubits. We observe rapid conver-
gence of frequency error after the training set size exceeds
the number of qubits. The distribution over 10 different ran-
dom realizations is shown using small circles, and the median
values are shown using large circles. (B) Vertical slices of
the data, highlighted in (A) by shaded boxes, show the me-
dian frequency error as a function of the number of qubits for
fixed training set size M ∈ {100, 200, 300, 400}. The simu-
lation assumes each qubit frequency measurement includes a
measurement uncertainty of 0.5MHz.

based on machine learning. We experimentally verify the
performance of our approach by employing the protocol
to calibrate the static flux crosstalk of a 16-qubit flux-
tunable transmon processor and observe convergence to a
median frequency error less than 300 kHz with only M =
50 spectroscopy measurements of each qubit frequency,
which can be done in parallel for all qubits. The protocol
can also be used to calibrate the crosstalk matrix for fast
flux pulses (see Appendix G).

We have demonstrated that our protocol enables us to
realize a qubit frequency layout with accuracies better
than < 300 kHz. In order to perform high-fidelity op-
erations, we measure the frequency of each qubit using
Ramsey interferometry after setting the qubit frequen-
cies. In Appendix H, we discuss the impact of frequency
errors on gate fidelities. The learned crosstalk matrix
from our protocol also extrapolates to frequency layouts
outside of the crosstalk training region defined in Fig. 2A
(see Appendix I).

The accuracy of the protocol for each qubit relies on
a precise characterization of the transmon spectrum fit
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parameters. Furthermore, spectrum irregularities caused
by TLS defects coupled to the qubit inhibit the conver-
gence of the crosstalk optimization. To address the for-
mer, we perform simulations (see Appendix K) that show
the method is robust against realistic errors in each fit
parameter. To combat the impact of TLSs, we could
use exclusion zones to avoid choosing frequencies in the
spectrum that diverge from the transmon model.

We also study the performance of our protocol for dif-
ferent levels of crosstalk (Appendix N). We find that our
method can effectively learn the device crosstalk when
off-diagonal elements stay below roughly 10%. Flux
crosstalk in current planar arrays of flux-tunable trans-
mons is generally comfortably within this bound [4, 5,
29, 36, 37], and it is even lower in multilayer devices that
can better suppress crosstalk (see Fig. 8A). This also sug-
gests that routine recalibration of S will be efficient, and
we numerically find it should require fewer measurements

than the initial calibration (see Appendix L).

Advances in calibration efficiency and extensibility are
essential as processor sizes increase. The learning-based
flux crosstalk calibration procedure introduced in this
work requires relatively few spectroscopic measurements,
is robust to measurement error, and scales favorably as
array size increases. Alternatively, one can use Ramsey
measurements to determine the qubit frequencies, which
is faster than spectroscopy for single-qubit frequency
measurement. Future implementations could use simul-
taneous spectroscopy measurements to initially learn the
matrix, and then use Ramsey measurements to fine-tune
the calibration if necessary. This approach reduces the
characterization time and improves the accuracy of the
flux crosstalk matrix characterization—and ultimately
the performance of algorithms and simulations run on
superconducting qubit processors.
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Appendix A: 3D-Integrated, Flip-Chip Device

Our experimental sample is an array of 16 flux-tunable
transmon qubits fabricated using a flip-chip process [31].
Unlike a planar architecture, where all chip elements
are mounted on the same surface, the flip-chip has two
separate tiers which are stacked on top of each other.
The qubit tier houses the qubits and the interposer tier
houses all other chip elements. The benefits of the flip-
chip design include decreased distances between control
lines and the qubits they target and increased shielding
between neighboring qubits, which significantly reduces
overall crosstalk levels for DC flux control and fast flux
pulses. For further details about the device see [32].

Qubit parameter Measured Value

fmax 4.887± 0.110 (GHz)

V Φ0 29.2± 2.7 (V)

d 0.35± 0.04

EC/h 196.1± 5.2 (MHz)

|Φoffset| 19.7± 5.9 (mΦ0)

TABLE I. Qubit parameters for the 3D-integrated flip-chip
device. Mean values plus or minus one standard deviation are
reported. Deviations in parameter values are due to uninten-
tional fabrication imperfections.

The nearest neighbor coupling on this device is fixed at
J/2π = (5.89± 0.4) MHz, measured at qubit frequencies
of 4.5GHz. Before performing the learning-based pro-
tocol, we characterize the qubit-qubit couplings should
be characterized. With the detuning scheme we use for
training (> 200 MHz detuning between nearest neighbor
qubits and > 50 MHz detuning between any two qubits),
we have a mean dispersive shift of around 180 kHz, which
we correct for (see Appendix F). This shift is less than
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the final frequency setting precision using the optimized
crosstalk matrix, which is ≈ 300 kHz. In our simulations,
we incorporate frequency measurement error and observe
frequency error convergence for σmeas. = 0.5MHz. We,
therefore, expect that this relatively small dispersive shift
does not greatly impact the final frequency setting pre-
cision of our protocol.

Appendix B: Comparison to Direct Measurement
Approach

One alternative to the learning-based approach to
crosstalk calibration described in this paper is to directly
measure each element of S. A downside to this approach
is that the number of elements of the crosstalk matrix
scales quadratically with the number of qubits in the ar-
ray.

We note that in our experimental setup, we can si-
multaneously measure all 16 qubits’ frequencies, and we
are able to leverage this simultaneous frequency measure-
ment in the learning-based protocol. We cannot perform
simultaneous frequency measurement in the direct mea-
surement approach, because we cannot bias more than
one qubit off of the sweet spot without introducing flux
crosstalk effects. We might wish to sweep the voltage ap-
plied to one flux line and measure the response of all other
qubits. Unfortunately, this approach to direct measure-
ment will not work due to the broadness of the transmon
spectrum (since 1/V Φ0

i,j ≪ 1/V Φ0
i,i for i ̸= j) and the rel-

atively narrow tuning range for our voltages applied to
flux lines. We will be unable to accurately fit the trans-
mon spectrum and extract V Φ0

i,j . To resolve elements of

S, we must first bias a qubit to a steep (flux-sensitive)
section of the transmon spectrum and then sweep the
voltage applied to another qubit’s flux line. Therefore,
we cannot perform a simultaneous frequency measure-
ment to obtain all the crosstalk elements due to one flux
line. There are creative methods by which we can ob-
tain more than one crosstalk element via simultaneous
measurements, but it will be impossible to obtain a full
column of the crosstalk matrix at once in this fashion.

We simulate the direct measurement approach for a
16-qubit array while varying the frequency measurement
uncertainty (as in Fig 2). For the direct measurement
approach, we bias qubit i away from its sweet spot by
applying a voltage Vi to flux line i. Then, we sweep
the voltage of flux line j across its full tuning range. For
our voltage source and qubit V Φ0 ’s, this is approximately
±0.3 times the average V Φ0 of a qubit. We fit the trans-
mon spectrum, holding fmax, EC, and d fixed. The new
flux offset will be approximately:

Φoffset =
Vi

V Φ0
i,i

+Φoffset,i (B1)

Using this initial guess for the flux offset and using the
slope of the measured frequencies to determine the sign

of V Φ0
i,j (to constrain it), we fit the curve to find V Φ0

i,j (we
also obtain Φoffset from the fit, but this information is ir-
relevant). Finally, the measured element of the crosstalk
matrix is:

Si,j =
V Φ0
i,i

V Φ0
i,j

(B2)

We see that for a reasonably assumed measurement un-
certainty of 0.5MHz, the direct measurement approach
reaches the same level of precision as the learning-based
approach with a size M = 30 training set when the num-
ber of data points reaches 10 (Fig. 5A. This tells us that
the direct measurement approach requires 5x as many
measurements to reach the same level of precision as the
learning-based approach.
In the learning-based approach, each qubit’s frequency

is measured 30 times. In the direct measurement ap-
proach, each qubit’s frequency is measured 10 times for
each flux line, for a total of 15 · 10 = 150 times. So for
16 qubits, we already achieve a ≈ 5× speedup by using
the learning-based protocol.

Appendix C: Gradient Descent Optimizers

One critical piece of the protocol is minimizing the
mean squared error cost function in a gradient descent
optimizer. Throughout this work, we use the L-BFGS op-
timizer in PyTorch, with a learning rate of 1.0. In order to
ensure proper convergence of our gradient descent mini-
mization, we compared the L-BFGS results to a couple of
other PyTorch optimizers: SGD and Adam (see Fig. 6).
On a practical level, it doesn’t matter which optimizer
we use, since this is not a bottleneck in our calibration
protocol. However, we find that L-BFGS converges with
fewer optimizer iterations in comparison to other opti-
mizers. Additionally, other optimizers have additional
parameters that need to be set. For example, SGD has a
momentum parameter that may need to be changed for
optimal performance.
We find that L-BFGS consistently converges in the

least iterations compared to other optimizers, and ad-
ditionally requires no tuning of parameters, making it a
good choice for practical use in the laboratory.

Appendix D: Schematic of Learning-based Protocol

The goal of flux crosstalk calibration is to control qubit
frequencies precisely. The learning-based approach de-
scribed in this paper is an intuitive approach to this
problem since it actively addresses the goal of the cal-
ibration via the calibration process. The intuitiveness of
the learning-based approach stands in contrast to a direct
measurement approach, which seeks to resolve individual
elements of the crosstalk matrix S, but does not directly
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FIG. 5. Scaling of direct measurement approach Simulation of direct measurement convergence for a frequency measure-
ment uncertainty of 0.5MHz. We sweep the number of frequency measurements between Vj = −0.3V Φ0 and Vj = +0.3V Φ0 .
(A) For N = 16 qubits, the performance of the direct measurement approach exceeds the performance of the learning-based
approach with M = 30 ≈ 2 × N training sets when the number of frequency measurements is ≈ 10. The median frequency
errors for the direct measurement approach are fitted linearly with a black line, which crosses over the learning-based median
frequency error at ≈ 12 data points. The medians are computed over 10 simulation repetitions. In (B), we examine the
performance of the direct measurement approach for N = 16 qubits under varying levels of frequency measurement uncertainty
σmeas.. We find that the crossover location (again, for the median frequency error using the learning-based approach with
M = 30 ≈ 2 × N training sets) increases as σmeas. increases. The medians are computed over 20 simulation repetitions. In
(C), we examine the scaling of this crossover location for up to N = 100 qubits, assuming σmeas. = 0.5MHz. The number
of frequency measurements required to match the learning-based protocol’s performance grows empirically linearly with the
number of qubits. (D) The number of frequency measurements required for each qubit, given by the crossover location times
N − 1, diverges from the learning-based M = 2×N measurements per qubit.
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FIG. 6. Comparison of gradient descent optimizers We minimize a mean squared error cost function to optimize S
row-by-row. In (A), we consider the final minimized cost versus the function change tolerance of the L-BFGS optimizer for
N = 16 qubits. The mean costs were computed over 100 simulation repetitions, and the x-axis is inverted for clarity. The
shaded region is the 95% confidence interval for the mean In (B,C,D), we compare the minimization of the cost function of
the L-BFGS, SGD, and Adam optimizers for N ∈ {16, 64, 100} qubits. L-BFGS terminates on tolerance, whereas SGD and
Adam terminate after a given number of iterations. The L-BFGS tolerance is set to 10−10 with a learning rate of 1.0. The
SGD learning rate is 1.0 with a momentum of 0.7. The Adam learning rate is 0.002 with betas of (0.7, 0.999). The SGD and
Adam parameters were selected for the best performance for N = 16 qubits. The mean costs were computed over 10 simulation
repetitions, and the shaded region is the 95% confidence interval for the mean.

evaluate the ability of the calibrated S to set qubit fre-
quencies precisely. For a quantitative comparison of these
two approaches, see Appendix B.

The general concept behind the learning-based ap-
proach to flux crosstalk calibration is to use an initial esti-

mate for S to target frequencies f⃗target and then measure
the frequencies of the qubits. The difference between the
measured and targeted frequencies gives us insight into
how to adjust S to minimize frequency error. Specifi-
cally, we utilize the linear flux crosstalk relation (Eq. 2)
and the transmon spectrum (Eq. 1) to obtain a cost func-
tion with a well-defined gradient which can be minimized
in a gradient descent optimizer. In Fig. 7, we provide a
flowchart visualization of the calibration process.

We note that the cost function we are minimizing is
convex due to the constrained frequency range for target
frequencies. Although the transmon spectrum is peri-
odic, we restrict our target frequencies to one portion of
the spectrum, allowing for a 100 MHz buffer from the up-
per sweet spot (and an even larger buffer from the lower
sweet spot). With this restriction, assuming reasonable
crosstalk levels of < 10%, we eliminate the possibility of
converting the measured frequency to an incorrect expe-
rienced flux.

For the purposes of this paper, which are to intro-
duce and demonstrate the efficacy and extensibility of the

learning-based approach, we did not optimize end-to-end
calibration time. One way the efficiency of this calibra-
tion protocol could be improved is to learn the crosstalk
matrix iteratively. We could easily modify this protocol
to learn S in batches. Instead of applying all voltages and
measuring all frequencies, we can instead perform a size
m training set with m < M , and then use the resultant
trained S as our new estimate for S for the next training
set. The advantage to this batched approach is that each
iterative S will become closer and closer to the optimal S.
Therefore, the actual qubit frequencies will be closer to
the target frequencies in the training sets, which means
we need to scan over a smaller range of frequencies to
locate our qubits. Since frequency measurements are the
most time-consuming part of this protocol, minimizing
the time per measurement will speed up the protocol.

Appendix E: Crosstalk model

For all simulations of the calibration process for a 16-
qubit array, we used the measured flux crosstalk ma-
trix for the 16-qubit device discussed in this paper. The
crosstalk matrix for this device is shown in Fig. 8A. The
measured crosstalk matrix we used was from a previous
cooldown, but the overall crosstalk matrix changes rela-
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FIG. 7. Flowchart for learning-based protocol We begin with an initial S, which could be the identity or an estimate.
We select target frequencies from a range of ≈ 100 MHz to ≈ 1 GHz off the sweet spot and apply voltages V⃗ targeting these
frequencies. We measure the qubits’ frequencies and convert them to fluxes experienced. After repeating this process M times,
we have a size-M training set of pairs of applied voltages and experienced fluxes. We use the linear flux crosstalk relation to
train each row of S (Sk) by minimizing the mean-squared-error cost function C(Sk) of the measured flux and the estimated
flux in a gradient descent optimizer. The resultant S minimizes the difference between measured and experienced fluxes.

tively little from one cooldown to the next. For the simu-
lation of protocol scaling, we needed a model for crosstalk
to generate realistic crosstalk matrices for larger array
sizes.

One possible way to model crosstalk is to consider the
strength of crosstalk versus the Euclidean distance be-
tween the site of the flux line and the influenced qubit.
For the 16-qubit device, the magnitude of crosstalk vs
Euclidean distance is shown in Fig. 8B.

One compelling reason to model crosstalk in this way
is that once current flows through a local flux line, it
must flow through the superconducting ground plane to
ground. The paths that these currents take through the
chip are unknown and cannot be modeled. We do know,
however, that a current dispensed at the end of a flux line
must flow to the edge of the chip. If we consider a circle
of radius r centered on the end of the flux line, we can as-
sume there is an equal probability of the current flowing
through any point on this circle (namely s/2πr proba-
bility, for an arc of length s). We can therefore assume
that the probability of a current flowing past a point a
distance r from the end of a flux line is proportional to
1/r.

We fit the curve in Fig 8B with a shifted 1/r decay:
1

ax+1+c. This equation is a 1/r decay that passes through

(0, 100%) when c = 0. We obtain fit values of a = 178.2
and c = 0.264. The model qualitatively fits the data,
with the nearest neighbor crosstalk slightly elevated com-
pared to longer-range crosstalk.

To generate crosstalk matrices for larger arrays, we
used this exponential model. Since we do not have ex-
perimental measurements for Euclidean distances beyond

the furthest distance on a 16-qubit array, we used the
standard deviation of the magnitude of all off-diagonal
crosstalk elements for the 16-qubit array: σ = 0.342. For
a given crosstalk element Si,j with i ̸= j, we compute the
crosstalk level ℓ corresponding to the Euclidean distance
between qubit i and qubit j and then pick the magni-
tude of Si,j from a normal distribution N (ℓ, σ). Then,
we randomly multiply the element by ±1.

Appendix F: Frequency Measurement Error Sources

One of the limiting factors in the frequency precision
of our protocol is the measurement error inherent in the
training sets. In each training set measurement, we mea-
sure the frequency of each qubit and convert that to a
flux experienced. The accuracy of this frequency mea-
surement therefore directly influences the frequency error
plateau for the protocol.
We have identified three primary sources of error in our

frequency measurements: spectroscopic measurement in-
accuracies, uncompensated dispersive shifts, and residual
ZZ couplings. We report the estimated error from each
of these sources in Table II. In this section, we discuss
these estimates and their implications.
We measure our qubit frequencies via spectroscopy.

The spectroscopy scans have a frequency step of 0.5MHz
to rapidly scan ftarget±30MHz for each qubit. We fit the
peak to a Lorentzian lineshape. To obtain an estimate
for the error of the fitted spectroscopy peak, we consider
the distribution of fit uncertainties for the size M = 200
initial training set used in our experiment. After remov-
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ing outliers where no peak was found, the mean error in
the fitted peak is 118 kHz. We report the estimated error
from spectroscopic inaccuracies as 120 kHz.

The qubits experience dispersive shifts due to inter-
actions with nearest neighbor qubits via direct capac-
itive coupling and with other qubits in the array via
stray capacitances. We characterize the qubit-qubit cou-
plings before calibrating flux crosstalk, and we use these
coupling strengths and the measured frequency of each
qubit to determine the dispersive shift experienced by
each qubit and compensate for it. From the initial size
M = 200 training set in our experiment, the mean
value of the calculated dispersive shift is approximately
180 kHz.

Given a vector of measured frequencies f⃗meas. and the
qubit-qubit coupling matrix J , we determine the uncou-

pled qubit frequencies f⃗ in the following way. The ele-

ments of f⃗ are the frequencies of the qubits in the case
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FIG. 8. The DC crosstalk matrix (A) The measured
flux crosstalk sensitivity matrix for the 16-qubit flip-chip de-
vice in our lab, rescaled by a factor of 100 such that each
element is a percentage. The average off-diagonal crosstalk
level is < 1%. We use the distribution of crosstalk sensitivity
Si,j versus Euclidean distance between qubit i and qubit j to
generate realistic crosstalk matrices for simulations of proto-
col scaling. (B) The off-diagonal crosstalk versus Euclidean
distance between flux line and qubit can be fitted with a 1/r
decay defined by ℓ = 100

ax+1
+ c, with a = 178.2 and c = 0.264.

Error Source Estimated Error

Spectroscopic Inaccuracy 120 kHz

Uncompensated Dispersive Shift 120 kHz

Residual ZZ Coupling 230 kHz

Total Estimate 280 kHz

TABLE II. Error budget for frequency measurement based
on the known primary sources of uncertainty. Estimates for
average error are reported.

of no qubit-qubit coupling: J = 0. Therefore, we diag-
onalize the matrix f + J , where f is a diagonal matrix

whose entries are f⃗ . The entries of this diagonalized ma-

trix, which are the eigenvalues of f + J , will be f⃗meas.

(although perhaps in a different order).

To find f⃗ , we first compute the eigenvalues λ⃗ of the
matrix f + J and sort them in ascending order. We de-

termine f⃗ by using a Nelder-Mead optimizer to minimize
the cost function:

C(f⃗) =

∣∣∣∣∣∣∣∣λ⃗(f⃗)− f⃗meas.

∣∣∣∣∣∣∣∣2 (F1)

where both λ⃗(f⃗) and f⃗meas. are sorted in ascending order.
This dispersive shift compensation scheme relies on the

accuracy of the characterized J . In practice, we do not
characterize the full matrix J , but instead, only measure
nearest and next-nearest neighbor couplings. Stray ca-
pacitances, however, can exist between any two qubits in
an array. Using the measured frequencies from the size
M = 200 initial training set, we compare the calculated

f⃗ when using J versus using a modified J ′ with stray ca-
pacitances. We set the beyond-next-nearest-neighbor ele-
ments of J ′ to the absolute value of random numbers nor-
mally distributed around zero, with a standard deviation
of σ ∈ J × {0.01, 0.03, 0.05}, where J = 2π × 5.98 MHz
is the mean nearest-neighbor coupling for our device.
The corresponding mean frequency error, assuming J ′

is the true coupling matrix, is ∆f = 49, 122, 164 kHz for
σ = 0.01J, 0.03J, 0.05J . We therefore estimate that the
error due to dispersive shift compensation is 120 kHz.
This error is around 67% of the average dispersive shift
compensation of 180 kHz, which means that the overall
benefits of our dispersive shift compensation are minimal,
given our experimental conditions.

The qubits also have residual ZZ coupling, which leads
to shifts in the qubit frequencies depending on the states
of their neighbors. Assuming the qubits have only three
energy levels, the frequency shift due to residual ZZ cou-
pling between two qubits (1 and 2) is given by:

∆ω1 =
α1 + α2

(∆12 + α1)(∆12 − α2)
J2 (F2)
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where αi is the anharmonicity of qubit i, J is the coupling
strength between the qubits, and ∆12 = ω1 − ω2 is the
frequency detuning between the qubits [38, 39].

From the measured frequencies of the size M = 200
training set used in our experiment, we can find the
mean shift due to nearest-neighbor ZZ coupling. We as-
sume that each anharmonicity is the mean of the anhar-
monicities: αi/2π = −218.4MHz. We also assume that
each nearest neighbor coupling is the mean of the near-
est neighbor couplings, J/2π = 5.89MHz, for our device,
and the coupling between qubits that are not directly
capacitively coupled is 0. We find that the standard de-
viation of the frequency shifts due to ZZ coupling is ap-
proximately 231 kHz. Since next-nearest neighbor qubits
also interact somewhat strongly and non-nearest neigh-
bor qubits also interact via stray capacitances, we believe
this estimate of error (230 kHz) to be conservative.

In Table II, we report the estimated error for each of
these sources, as well as a total estimated error. We
assume these sources of error are uncorrelated and com-
pute the total estimated error by adding in quadrature.
We estimate a total average error of 280 kHz, which
is less than the frequency measurement uncertainty of
σmeas. = 0.5MHz we use in our protocol simulations.
Other potential sources of frequency error are more chal-
lenging to characterize, such as small frequency shifts due
to weak coupling with coherent defects or ZZ coupling
due to higher transmon energy levels. From the conser-
vative error budget discussed above and other potential
sources of error, we believe that σmeas. = 0.5MHz is a
reasonable upper bound for the frequency measurement
uncertainty on our device.

Appendix G: Fast flux crosstalk calibration

We can control our qubits via the local flux lines by
applying DC voltages or baseband fast flux pulses. These
fast flux pulses are square pulses with a cosine ramp and
no modulations. The learning-based protocol described
in this paper can also be used for fast flux crosstalk cal-
ibration. In Fig 9, we report the fast flux crosstalk ma-
trix for our 16-qubit flip-chip device. We find that the
off-diagonal crosstalk levels are much smaller for fast flux
pulses, with most off-diagonal elements having a magni-
tude on the order of 0.01%. The average off-diagonal DC
flux crosstalk level (Fig. 8A) is around 1%, so the fast
flux crosstalk levels are around two orders of magnitude
smaller than DC flux crosstalk levels.

In order to learn the fast flux crosstalk for each qubit,
we tune that qubit to a target frequency using a 100 ns
fast flux pulse and measure the qubit frequency via spec-
troscopy. We then use the same pulse amplitude for the
target qubit, apply flux pulses with random amplitudes
through the other flux lines, and measure the change in
the target qubit’s frequency. The voltages applied and
the changes in the frequency of the target qubit from the
training set that we use for learning the fast flux crosstalk

matrix are shown in Fig. 9.

FIG. 9. The fast-flux crosstalk matrix The measured fast
flux crosstalk matrix for the 16-qubit flip-chip device, rescaled
by a factor of 100 such that each element is a percentage. The
average off-diagonal crosstalk level is approximately two or-
ders of magnitude smaller for fast flux crosstalk than for DC
flux crosstalk. Elements labeled ±0.0 are crosstalk percent-
ages of magnitude < 0.05%. The fast flux microwave line for
qubit 12 was broken, so there is no information for this qubit.

Appendix H: Single-qubit Gate Fidelity

In this paper, we report an experimental median fre-
quency error on our 16-qubit device of ≈ 300 kHz after
learning the crosstalk matrix with a size M = 50 training
set. We now address the effect of this error on single-
qubit gate fidelity.
We would like to be able to arrange the qubits in fre-

quency layouts with high fidelity so that we can perform
quantum simulations and/or computations. If qubit fre-
quencies are off from their target frequencies by over
10MHz (as is the case on our device before learning the
crosstalk), then qubits may interact more or less strongly
than intended. An important thing to note is that after
setting qubits in a frequency layout, we would perform
Ramsey measurements to further refine the qubit fre-
quencies (i.e. ensure we are driving qubits on resonance).
Also, we could repeat the crosstalk learning protocol for
a specific frequency layout to further reduce frequency
errors.
In the event that we do not tune up our drive fre-

quencies, we could consider the impact of the frequency
error on our single-qubit gate fidelities. For an X-gate, a
drive detuning tilts the effective driving field away from
the X-axis in the X − Z plane. In Fig. 10, we can see
the unitary fidelity for ∆f ∈ {0.1, 0.3, 0.5} MHz as we
apply successive 2π rotations around the X-axis, with a
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FIG. 10. Simulations of single-qubit gate fidelity in
the presence of frequency error. The qubit is prepared in
the excited state and then 2π-pulses are successively applied
around the X-axis, in the presence of frequency detuning ∆f .
We assume a drive strength that induces a Rabi frequency of
ωR = 2π · 10 MHz.

pulse amplitude corresponding to a Rabi frequency of
ωR = 2π · 10 MHz. For ∆f < 0.3 MHz, we main-
tain over 95% fidelity with 100 successive 2π-X gates.
We therefore consider 300 kHz to be an acceptable me-
dian frequency error, especially since we can further im-
prove upon this frequency error by performing Ramsey
measurements or learning the crosstalk for a specific fre-
quency layout.

Appendix I: Bias Region Extrapolation

We use the frequency region spanned by 100 MHz to
1 GHz off the sweet spot to learn our crosstalk matrix.
We now explore whether the crosstalk matrix learned in
this region extrapolates to other bias regions.

In Fig. 11, we simulate the protocol’s performance
when evaluated in different bias regions. We still learn
the crosstalk matrix using the standard training region
(100 MHz to 1 GHz off the sweet spot), and then re-
port the frequency error when attempting to set qubit
frequencies to the 5 different bias regions highlighted in
Fig. 11A. For each bias region, we choose frequency vec-
tors that place each qubit in that bias region (i.e. all
voltages are nonzero). We note that in these simulations,
we disregard the detuning conditions normally required
in our experiments.

In Fig. 11B, we see that the performance of the proto-
col is best for the bias region closest to the sweet spot,
which makes sense since the applied voltages are the
smallest. The performance of the protocol decreases the
further the bias region is from the upper sweet spot, with
the worst performance occurring in regions 4 and 5, with
≈ 800 kHz and ≈ 850 kHz median frequency error, re-
spectively, for training set size M = 50.
In Appendix H, we found that a frequency error of

500 kHz impacts gate fidelities, particularly for more
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FIG. 11. Simulation of frequency error in other bias
regions. The crosstalk is learned by placing the qubit fre-
quencies randomly in the standard training region spanned
by 100 MHz to 1 GHz off the sweet spot, and then the er-
ror in setting qubit frequencies is determined for 5 different
bias regions, highlighted in (A). We target random frequency
vectors in each bias region to evaluate the learned crosstalk
matrix. For these simulations, we disregard the detuning con-
ditions normally used in our experiments. In (B), we show
the convergence of frequency error in each bias region as the
training set size increases. The frequency precision is best for
Region 1, closest to the sweet spot, and decreases the further
the bias region is from the upper sweet spot. The medians are
computed over 100 simulation repetitions, and all data points
are shown on the plot.

than 20 successive gates. Therefore, we expect that using
the learned crosstalk matrix from the standard training
region for frequency layouts with qubits primarily placed
in bias regions 4 and 5 will result in worsened computa-
tional performance.
We note, however, that the frequency error in these

regions follows the same convergence pattern as in other
regions while starting from a higher initial error. In this
sense, the learned crosstalk matrix extrapolates to dif-
ferent bias regions. Furthermore, we expect that fre-
quency layouts with different qubits placed in different
bias regions (as described in Fig. 11A) will have a me-
dian frequency error somewhere in between the minimum
and the maximum errors in Fig. 11B. To improve fre-
quency setting precision in other bias regions, we would
recommend repeating crosstalk training for the specific
frequency layouts or bias regions desired. Additionally,
we can perform Ramsey measurements to further refine



16

qubit frequencies.

Appendix J: Single-Qubit Characterization

Before we can conduct the learning-based protocol de-
scribed in this paper, we must perform single-qubit char-
acterizations. One of the essential assumptions of the
protocol is that we can convert accurately between flux
experienced by a qubit’s SQUID loop and its frequency.
This conversion is described by the transmon spectrum
(Eq. 1). In the case of a single qubit, the protocol
relies on the ability to convert between voltage V ap-
plied to its flux line and flux Φext experienced by the
qubit’s SQUID loop. This conversion is described by
Φext = V/V Φ0 + Φoffset, where V Φ0 is the voltage re-
quired to tune the qubit by one magnetic flux quantum
Φ0, and Φoffset is a flux offset.

We determine V Φ0 , Φoffset, f
max, d, and EC by per-

forming qubit spectroscopy. We sweep the voltage V
across the full extent of our tuning range (which in prac-
tice turns out to be approximately ±0.3V Φ0) and mea-
sure the qubit frequency. We fit this curve with Eq. 1,
substituting Φext = V/V Φ0 + Φoffset, where V Φ0 . Natu-
rally, the more data points we take for the spectroscopy
fit, the more precise our fit parameters will become.
We investigate the precision of our fit parameters un-
der the presence of frequency measurement uncertainty
σmeas. ∈ {0.1, 0.5, 1.0} MHz.
In Section K, we investigate how errors in fit parame-

ters impact the convergence of the learning-based proto-
col. From our analysis in this section (Fig. 12), we can
see that we can achieve the required precision in fit pa-
rameters with < 15 frequency measurements per qubit.

Appendix K: Error Analysis

We investigated, via simulation, the effect of error in
the system on the efficacy of the protocol. One key as-
sumption of the protocol is that we can convert between
a qubit’s frequency f and flux experienced by its SQUID
loops Φ using the transmon spectrum, Eq. 1. If the pa-
rameters fmax, d, or EC have significant errors, the pro-
tocol will break down because we will be unable to accu-
rately determine the fluxes experienced by the SQUIDs
to train S (i.e. we won’t have an accurate training set

{V⃗i, Φ⃗
meas
i }i=1:M ). We note that Eq 1 is an estimation,

which is another potential source of error in our experi-
mental results. We assume, however, that the transmon
spectrum is an exact equation for all simulations of pro-
tocol performance.

We simulated the calibration protocol for the 16-qubit
array while varying the standard deviation of error for
these parameters, shown in Fig. 13. We find that the
protocol begins to fail when the standard deviation of
fmax exceeds 0.5MHz, the standard deviation of d ex-
ceeds 1%, or the standard deviation of EC exceeds 10%.

Another key assumption of the protocol is that we can
form an accurate estimate for the flux experienced by the
SQUID loops, given an optimized crosstalk matrix and
the voltages applied. This is the linear crosstalk relation:

Φ⃗ext = (V Φ0)−1SV⃗ + Φ⃗offset (K1)

This assumption breaks down when there are errors in

the measured V Φ0 and Φ⃗offset. Errors in V Φ0 and Φ⃗offset

will render the argument of the cost function inaccurate:

C(Sk) =
1

M

M∑
i=1

∣∣∣∣∣∣(Φ⃗i)k −
[
(V Φ0

k,k)
−1SkV⃗i + (Φ⃗offset)k

]∣∣∣∣∣∣2
(K2)

preventing us from converging to the correct minimum.
We simulated the calibration protocol for the 16-qubit

array while varying the standard deviation of error for
these parameters, shown in Fig. 14. We find that the
protocol fails when the standard deviation of V Φ0 ex-

ceeds 0.1% or the standard deviation of Φ⃗offset exceeds
1%.

Appendix L: Efficient Recalibration

An advantage to the learning-based approach to cali-
bration is that it can be used to efficiently recalibrate the
crosstalk matrix. With a direct measurement approach,
there is no simple way to recalibrate the crosstalk with-
out repeating the measurements over again.
We follow the same procedure, except we use a good

initial guess for S instead of the identity. This will mean
that the qubit frequencies will already be close to their
targets with no additional training, enabling us to per-
form a finer spectroscopy scan with less measurement un-
certainty. In Fig 15, we can see that the frequency error
quickly converges to the median error from Fig 2 (grey
line, assuming M = 30 and measurement uncertainty =
0.5MHz). This means that we can use the same protocol
to recalibrate our crosstalk matrix efficiently.

Appendix M: Training V Φ0 and Φoffset

Another advantage of this learning-based protocol is

that it can be used to efficiently retrain V Φ0 and Φ⃗offset.
For our superconducting devices, the DC flux crosstalk
matrix remains essentially constant throughout an entire
cooldown and also changes minimally from cooldown to
cooldown. The qubits’ V Φ0 and Φoffset, however, can drift
throughout a cooldown. In particular, the flux offsets can
drift substantially.
Once we have learned S, we can use the same learning-

based protocol to retrain V Φ0 and Φ⃗offset. Instead of
optimizing S in the gradient descent optimizer, we can

instead optimize one or both of V Φ0 and Φ⃗offset by min-

imizing C(V Φ0 , Φ⃗offset).
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FIG. 12. Sensitivity analysis of transmon spectrum fits The mean error in (A) fmax (MHz), and the mean percent
error in (B) d, (C) EC , (D) V Φ0 , and (E) Φoffset, versus the number of data points in the spectroscopy sweep for varying levels
of frequency measurement uncertainty σmeas.. The error converges by around 15 measurements. The means are computed over
50 simulation repetitions.

Appendix N: Crosstalk level scaling

The calibration approach outlined in this paper is ap-
plicable to other systems with low to moderate levels of
crosstalk. We simulated the convergence of the proto-
col for a 16-qubit array while varying the magnitude of
the off-diagonal crosstalk elements of the target crosstalk
matrix Starget. For a given off-diagonal crosstalk level ℓ,
we randomly assign each off-diagonal element of Starget

to be ±ℓ. In each simulation repetition, this arrange-
ment of plus and minus changes, but the magnitude of

each off-diagonal element remains fixed.
We find that the protocol breaks down when the off-

diagonal crosstalk levels exceed 10%. For a training
set of size M = 100, the median crosstalk matrix er-
ror Fig. 16D begins to rise after off-diagonal crosstalk
levels reach 6%. While crosstalk matrix error is a po-
tentially useful metric for protocol simulations, it is not
measurable experimentally, as the target crosstalk ma-
trix is unknown. The experimentally measurable quan-
tity, median frequency error Fig. 16C, begins to rise later
after off-diagonal crosstalk levels reach 10%. This pro-
tocol will function well for systems with crosstalk levels
≤ 10%.
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FIG. 13. Effect of error in transmon spectrum parameters on crosstalk precision Simulation of protocol convergence
for varying levels of error in fmax (A,B), d (C,D), and Ec (E,F). The frequency error is shown in (A,C,E) and the Euclidean
norm between the trained crosstalk matrix Sopt. and the actual crosstalk matrix S is shown in (B,D,F). The distribution
over 10 different random realizations is shown using small circles, and the median values are shown using large circles. The
convergence of the protocol is robust to small errors in these parameters but breaks down in the large error limit. The medians
are computed over 10 simulation repetitions, and all data points are shown on the plot. A frequency measurement uncertainty
of 0.5MHz (see Fig. 2) was used for these simulations.
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FIG. 14. V Φ0 and Φoffset error analysis Simulation of protocol convergence for varying levels of error in V Φ0 (A,B) and
Φoffset (C,D). The frequency error is shown in (A,C) and the Euclidean norm between the trained crosstalk matrix Sopt. and
the actual crosstalk matrix S is shown in (B,D). The distribution over 10 different random realizations is shown using small
circles, and the median values are shown using large circles. The convergence of the protocol is particularly sensitive to errors
in V Φ0 , and fairly sensitive to errors in Φoffset. A frequency measurement uncertainty of 0.5MHz (see Fig. 2) was used for
these simulations.
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FIG. 15. Crosstalk matrix recalibration Simulation of
protocol convergence for varying levels of error in the off-
diagonal estimates of the initial crosstalk matrix used at the
start of training. Both the (A) median frequency error and
the (B)median Euclidean norm between the trained crosstalk
matrix Sopt. and the actual crosstalk matrix S converge by
M = 20 to the originally trained median from Fig 2 (grey line,
assuming M = 30 and measurement uncertainty = 0.5MHz).
The medians are computed over 10 simulation repetitions, and
all data points are shown on the plot. A frequency measure-
ment uncertainty of 0.25 MHz was used for these simulations.
Since we already know where the qubits are, we can assume a
finer frequency scan (lower power leading to less power broad-
ening) and therefore less measurement uncertainty.
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FIG. 16. Off-diagonal crosstalk level Simulation of protocol convergence for varying levels of off-diagonal crosstalk in the
target crosstalk matrix Starget. Both the median frequency error (A) and the median Euclidean norm between the trained
crosstalk matrix Sopt. and the actual crosstalk matrix S (B) begin to fail to converge when off-diagonal crosstalk levels exceed
10%. For a training set of size M = 100, the median frequency error (C) and median crosstalk matrix error (D) grow
exponentially for large off-diagonal crosstalk levels. The medians are computed over 10 simulation repetitions, and all data
points are shown on the plot. A frequency measurement uncertainty of 0.5MHz (see Fig. 2) was used for these simulations.
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