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Abstract

The classical Drude model provides an accurate description of the plasma resonance of three-

dimensional materials, but only partially explains two-dimensional systems where quantum me-

chanical effects dominate such as P:δ-layers – atomically thin sheets of phosphorus dopants in

silicon that induce novel electronic properties beyond traditional doping. Previously it was shown

that P:δ-layers produce a distinct Drude tail feature in ellipsometry measurements. However, the

ellipsometric spectra could not be properly fit by modeling the δ-layer as discrete layer of classical

Drude metal. In particular, even for large broadening corresponding to extremely short relaxation

times, a plasma resonance feature was anticipated but not evident in the experimental data. In this

work, we develop a physically accurate description of this system, which reveals a general approach

to designing thin films with intentionally suppressed plasma resonances. Our model takes into

account the strong charge density confinement and resulting quantum mechanical description of a

P:δ-layer. We show that the absence of a plasma resonance feature results from a combination of

two factors: i), the sharply varying charge density profile due to strong confinement in the direction

of growth; and ii), the effective mass and relaxation time anisotropy due to valley degeneracy. The

plasma resonance reappears when the atoms composing the δ-layer are allowed to diffuse out from

the plane of the layer, destroying its well-confined two-dimensional character that is critical to its

novel electronic properties.

I. INTRODUCTION

The plasma resonance is a fundamental property of the AC response of a material - the

frequency where its dielectric function changes sign. While this was first explained in the

context of the classical scattering of electrons by Drude, the plasma resonance survives in

more complicated circumstances, ranging from the two-dimensional limit [1] to fully quantum

mechanical treatments [2]. Indeed, the suppression of the plasma resonance in Au/CdS

nanocomposites came as a surprise [3], and is a consequence of strong mixing between the

states of the metal nanoparticle and the semiconducting nanorod. Here, we determine that

the suppression of the plasma resonance in a single-component material system – a two-

dimensional sheet of doped silicon – arises from strong anisotropy of the electronic structure

in-plane versus out-of-plane.
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Atomic Precision Advanced Manufacturing (APAM) leverages site-selective surface chem-

istry to incorporate dopant atoms into two-dimensional sheets in silicon (δ-layers) with

lateral precision down to the single-atom scale when patterned with scanning tunneling

microscopes on one hand, and density that exceeds the solid solubility limit on the other,

enabling the fabrication of novel devices. Single-atom precision has been used in the fabri-

cation of high-quality quantum bit devices [4–6], and sub-nm precision for analog simulation

of quantum materials concepts[7, 8]. The exceptionally high dopant density produces strong

confinement and a novel electronic structure in silicon [9], and has led to exploration of new

types of classical electronic devices [10–13]. Characterization of their optical response using

infrared-variable angle spectroscopic ellipsometry (IR-VASE) has shown the clear influence

of an APAM phosphorus δ-layer on the mid- and long-wavelength infrared optical response

of silicon, as measured by the change in the reflected light’s polarization [14]. However,

modeling the δ-layer with the complex permittivity of silicon modified by a Drude oscilla-

tor creates a plasma resonance, observed in ion implanted silicon [15], but never in APAM

material over an extended range of wavelengths. While the broad tail could be well fit by

the Drude model, the experimental absence of the predicted plasma resonance calls into

question the accuracy of the model and extracted sample parameters.

Thus, developing a new model of the optical response of APAM materials is necessary to

fully understand the unique optical properties of ultra-doped silicon, helping to define their

potential for silicon optical devices. Here we show that the calculation of the electromagnetic

response using a quantum mechanical description of a layer of free charge within a dielectric

stack correctly reproduces the ellipsometric data from the δ-layer. With the revised model,

we explain how the lack of a plasma resonance emerges as a consequence of confinement on

the out-of-plane wavefunctions and the anisotropic carrier effective masses and relaxation

times. We show the dependence of spectral features on dopant layer properties, such as

electronic width of the δ-layer and relaxation, obtaining values for these parameters consis-

tent with those extracted from atom-probe tomography and transport experiments [16–18].

Additionally, we identify and explain the re-emergence of a plasma resonance in sufficiently

diffused layers. Practically, the combination of ellipsometry and this new theoretical ap-

proach provides a straightforward, non-destructive way to characterize the thickness of a

δ-layer. More broadly, this work identifies a general approach to suppressing, e.g. unde-

sirable, plasma resonances in thin films through careful choice of electronic structure and
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dimensionality.

II. MODELING

Spectroscopic ellipsometric data depend on the polarization dependent reflectivity re-

sponse of a material, and require a suitable model for the material’s optical response in

order to properly interpret the results and understand the properties of its constituents.

Typically, heterogeneous media can be represented as stacks of discrete homogeneous layers

characterized by their bulk dielectric behavior. This approach works well, even for very thin

layers down to a few nanometers or less [19–21]. However, in the present case we are con-

sidering potentially atomically thin materials that behave qualitatively differently from thin

but nonetheless bulk 3D materials. To address this we will refine the conventional approach

in two ways. First, we treat the δ-layer as a defect layer within a dielectric slab, rather than

a distinct material layer [22, 23]. As such, it will be described by a spatially-dependent con-

ductivity σ(q, z), where z is the growth direction and q the in-plane wavevector, rather than

a finite region associated with a spatially uniform permittivity function ϵ(q) [24]. Second,

while the ellipsometry spectra will be computed classically from Maxwell’s equations, the

function σ(q, z) will be determined from a quantum mechanical description of the δ-layer,

based on its observed electronic structure (Fig. 1).

A. P:δ-layer Electronic Structure

The conduction band of silicon comprises six degenerate valleys; substitution of silicon

with phosphorus atoms populates the conduction band with electrons. A sufficiently dense,

uniform phosphorus δ-layer breaks the translational symmetry in the direction perpendicular

to the layer, creating confined states that manifest as lower-in-energy subbands. Cartoon

illustrations of the resulting two-dimensional (2D) band structure are shown in Fig. 1. Bands

arising from the longitudinal valleys appear at the Γ points and those originating from

the transverse valleys appear away from Γ and are commonly labeled as ∆ bands. The

Γ subbands come in nearly degnerate pairs (one from each longitudinal valley) – usually

split by a few tens of meV – with each pair separated by > 200meV for high dopant

densities/confinements. The ∆ subbands appear higher in energy, though their location
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(a) (b)

FIG. 1. Cartoon schematics of typical band structures of phosphorus δ-layers in silicon [9, 25–27]

highlighting the qualitative features presently of interest. The δ-layer, characterized by a areal

density of phosphorous atoms Np, generates a confining potential which creates localized bands

crossed by a Fermi energy below the silicon conduction band. As shown experimentally[27], the

density and confinement of phosphorus atoms together control both the band splitting and the type

of carriers composing the electronic system. In poorly confined δ-layers (a), the energy splitting

of the bands is relatively weak, so that ∆ bands (red), originating from the transverse valleys in

silicon, are populated by carriers, along with multiple pairs of Γ bands (blue) originating from the

two longitudinal valleys, even for lower areal densities of phosphorous. In highly confined layers (b),

the gap between subbands is larger, so that carriers populate a single pair of Γ bands and occupy

∆ bands at only higher areal densities.

varies considerably depending on the density and spatial distribution of dopants [25, 26].

In more diffuse layers, the ∆ and Γ bands are closer in energy and carriers will generally

populate both (Fig.1(a)). On the other hand, for atomically thin δ-layers, carriers will first

fill the lowest pair of Γ bands (Fig.1(b)) [9, 25–27], with high densities required to begin

filling the ∆ bands. However, due to their shallower dispersion, the ∆ bands will fill more

rapidly with increased doping, so that there is significant population residing in these bands

at high densities.

B. δ-layer AC Conductivity

We model the δ-layer as resulting from a vertically oriented confining potential against a

homogeneous background within the effective mass approximation [28]. It is important to
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note that we are interested in the full 3D analysis of system physics. While the translational

invariance prevails in the plane of the layer, it is broken in the perpendicular (ẑ) direction;

we will represent the in-plane degrees of freedom in momentum space, while retaining the

ẑ coordinate in real space. The eigenstates and energies of the non-interacting Hamiltonian

H0
v = H

0,∥
v +H0,⊥

v are then defined as

ψvn(k, z) = eik·rψvn(z) = eik·r
〈
z
∣∣v, n〉

Evn(k) = εvn +
1

2

(
k2x
mvx

+
k2y
mvy

)
(1)

where n indexes the eigenstates of H0,⊥, v indexes the valleys Γ and ∆, and mvx, mvy

are the in-plane effective masses for valley v, which may be silicon’s transverse effective

mass m⊥ or longitudinal effective mass m∥ depending on the valley. Coupling between

valleys is relatively small, including the coupling between the two orginally degenerate Γ

valleys, and will be taken to be zero for simplicity. For convenience we define in each valley

|z⟩ = ψ⃗v(k, z) =
∑

n ψvn(k, z)
† |v, n⟩.

Within the Kubo-Greenwood formalism for a non-interacting system, the two-point,

frequency-dependent conductivity tensor σij may be written as

σij(ω, r, r
′) = ie2

∑
mn

nF (En)− nF (Em)

En − Em

⟨m| Ji(z) |n⟩ ⟨n| Jj(z′) |m⟩
ω + En − Em + i

τ

(2)

where nF (E) is the Fermi function, Ĵ (z) is the current density operator, n and m index

states of the system, and τ is infinitely large.

The sum over states can be broken into sums over valleys (v), in-plane wavevectors (k),

and bands (n, m), and the expression can rewritten in terms of a wavevector (q) for the

in-plane degrees of freedom rather than coordinates as

σij(ω,q, z, z
′) = ie2

∑
vmn

∫
dk

(2π)2
nF (Evn(k))− nF (Evm(k+ q))

Evn(k)− Evm(k+ q)

× ⟨m,k+ q| Ji(z) |n,k⟩ ⟨n,k| Jj(z′) |m,k+ q⟩
ω + Evn(k)− Evm(k+ q) + i

τv

where z, z′ are out-of-plane coordinates. In what follows we will incorporate interactions

and many-body effects by treating τ as finite and roughly corresponding to the relaxation

time in the δ-layer. While this violates particle conservation[29–31] in general, in the long-

wavelength limit that is relevant here it is consistent with the corrected expression of [30]
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and yields an appropriate expression for our purposes[32]. We note that there are distinct

relaxation times for the two valleys, τΓ and τ∆. As shown in [33], the relaxation time

derived from the expression for the self-energy includes a dependence on the density of

states and Fermi wavevector kF of the bands involved in scattering for a given impurity

potential as τ ∝ (kF )2

m
. This is important since we are considering valleys with different

electronic structure; while this factor is normally absorbed into the overall expression for

the relaxation time and need not be considered explicitly, it must appear in our expression.

Specifically, we will write the relaxation times in terms of a baseline τ , so that τΓ = τ and

τ∆ =
√

m⊥
m∥

(
kF∆
kFΓ

)2

τ . Taking the long-wavelength limit q → 0

σxx(ω, z, z
′) =

∑
vn

∫
dk

(2π)2
∂nF
∂Evn

k2x
m2
vx

|ψvn(z)|2 |ψvn(z′)|2

ω + i
τv

(3)

σzz(ω, z, z
′) =

∑
v,n̸=m

∫
dk

(2π)2
nF (Evn(k))− nF (Evm(k))

Evn(k)− Evm(k)

× 1

m2
vz

(
ψvn

∂ψ∗
vm

∂z
− ψ∗

vm
∂ψvn

∂z

)(
ψvm

∂ψ∗
vn

∂z′
− ψ∗

vn
∂ψvm

∂z′

)
ω + Evn(k)− Evm(k) +

i
τv

where we have used the fact that

⟨m,k| Ji(z) |n,k⟩ =

δnmkx |ψvn(z)|2mvx

, δnm
ky |ψvn(z)|2

mvy

,

(
ψvn

∂ψ∗
vm

∂z
− ψ∗

vm
∂ψvn

∂z

)
mvz

 . (4)

Since we expect the wavefunctions to be very narrow compared to the variation in the

electric fields under consideration we will integrate over the second out-of-plane coordinate

to yield a local conductivity function. Additionally, in order to obtain a simple form for the

conductivity, we will assume that the out-of-plane wavefunctions ψvn(z) can be approximated

as harmonic oscillator eigenstates with energies εvn = ωv(n−1/2). Under these assumptions,

the above becomes

σxx(ω, z) = e2n2D

∑
vn

χvn
mvx

|ψvn(z)|2

ω + i
τv

σzz(ω, z) = e2n2D

∑
vn

χvn
mvz

|ψvn(z)|2
ω + i

τv

(ω + i
τv
)2 − ω2

v

where χvn are the fractions of the total density in the indexed state.

We consider two limits of interest. First, the conventional case when confinement is poor

so that the system can be described essentially as isotropic and the electronic structure is
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essentially bulk-like, so that ω∆ and ωΓ are small approaching zero, and τ∆ = τΓ. We then

have the conventional Drude model

σ(ω, z) =
ie2

mSi

f(z)

ω + i 1
τ


1 0 0

0 1 0

0 0 1

 (5)

with the density modulated by a smooth envelope function f(z). Unless otherwise noted,

take f(z) to be Gaussian with its width wDL corresponding to the standard deviation and

taken as a free parameter.

Second, to represent δ-layers with high carrier densities [27] in which only the lowest pairs

of bands in each valley sector are occupied, we take χ∆ = χΓ and obtain

σ(ω, z) =ie2N(z)


1

2

|ψΓ(z)|2

ω + i 1
τΓ


1
m⊥

0 0

0 1
m⊥

0

0 0 1
m∥

(
ω+i 1

τΓ

)2

(
ω+i 1

τΓ

)2
−ω2

Γ

 (6)

+
1

2

|ψ∆(z)|2

ω + i 1
τ∆


1
2

(
1
m⊥

+ 1
m∥

)
0 0

0 1
2

(
1
m⊥

+ 1
m∥

)
0

0 0 1
m⊥

(
ω+i 1

τ∆

)2

(
ω+i 1

τ∆

)2
−ω2

∆




This model is anisotropic due to the difference in longitudinal and transverse effective masses,

the difference in relaxation times for the valleys Γ and ∆, and the confinement introducing

the transition frequency ωΓ into the out-of-plane response. The standard deviations of the

Gaussian density contributions |ψΓ1(z)|2 and |ψ∆1(z)|2 are naturally determined by ωΓ and

ω∆; we will consider the associated width parameter to be wDL = 1√
2m∥ωΓ

. Approximating

kF∆ as that of an isotropic band with m =
√
m⊥m∥ and using the condition χ∆ = χΓ, we find

that
(
kFΓ
kF∆

)2

= 2 and τ∆ ≈ 4.5τ . We will consider these two models to assess the impact of

electronic structure on ellipsometry spectra; specifically Model I will represent poor-quality

case where the energy spacing of bands is small so that many bands in each valley are

occupied, while Model II will represent the high quality case where only the lowest lying

bands of each valley are occupied and the system is properly a δ-layer.
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C. Ellipsometry

For ellipsometry, we are interested in the spectra

Ψ(ω) = tan−1

∣∣∣∣rprs
∣∣∣∣

∆(ω) = Im ln

(
rp
rs

)
so that

rp
rs

= tan (Ψ(ω)) ei∆(ω)

where rs and rp are the reflection coefficients of s-polarized and p-polarized incident light,

respectively. Since these quantities correspond to the magnitude (Ψ) and phase (∆) of the

ratio of the reflection coefficients, they contain information about the dielectric behavior of

a material but are insensitive to the strength of the probing field. To simulate these spectra

requires that we solve Maxwell’s equations for a sample described by σ(ω, z) to obtain the

reflection coefficients. For the solution to Maxwell’s equations we generalize the conventional

transfer matrix approach to continuously varying media. Assuming in-plane translational

invariance, we have (
iq+ ẑ

∂

∂z

)
×B(ω, z) =

1

c2
(σ(ω, z) + iω)E(ω, z)(

iq+ ẑ
∂

∂z

)
× E(ω, z) = −iωB(ω, z).

The response of the system is defined by the conductivity σ(ω, z) and, as in the trans-

fer matrix method, we solve for the incident and reflected fields by working backwards

from the transmitted field. For an angle of incidence θ the incoming wavevector is qI =

ω
c
[sin(θ), 0, cos(θ)] and the wavevector of the fields transmitted into the silicon substrate is

qT = ω
c
[sin(θ), 0, nSi cos(θ)]. Then the “initial” conditions of the fields transmitted are, for

s-polarized light

ET = [0, 1, 0]E0

BT =
ω

c2
[
qTz , 0,−qTx

]
E0

and for p-polarized light

ET =
c

ω

[
−qTz , 0, qTx

]
E0

BT =
1

c
[0, 1, 0]E0,
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where E0 is an arbitrary field strength. In these cases Maxwell’s equations reduce to

∂Ey
∂z

= iωBx(z)

∂Bx

∂z
=

[
1

c2
(iω + σyy(z))−

iq2x
ω

]
Ey(z)

and

∂Ex
∂z

= −
[
iω +

c2q2x
iω + σzz(z)

]
By(z)

∂By

∂z
= − 1

c2
(iω + σxx(z))Ex(z)

for s-polarized and p-polarized light, respectively. Solving these we obtain the total field,

which is easily decomposed into the incident and reflected fields, allowing us to compute the

reflection coefficients and ellipsometric spectra.

III. SAMPLE STRUCTURE AND COMPOSITION

The samples under consideration have the structure and composition shown schemati-

cally in Fig. 2 and were prepared following previously published methods [14, 34, 35]. A

phosphorus δ-layer is deposited by exposing a silicon (100) surface to phosphine in a vacuum

chamber and annealing to incorporate the phosphorus. This may be followed by deposition

of a locking layer[17, 35], though the samples in this paper were produced without one. After

this a “capping” layer of epitaxial silicon is deposited on top to activate the dopants, with

a thin layer of SiO2 subsequently formed upon exposure to air. Variations in the substrate

temperature during silicon epitaxy[36] can be used to tune the sharpness of the phosphorus

concentration profile. The epitaxial cap is known to be imperfect, containing disorder and

contaminants, but is compatible with device and characterization sample creation. The base

is modeled as undoped silicon, while the capping layer is treated as silicon plus a uniform,

low density Drude metal. The SiO2 is modeled with a static dielectric constant and we do

not attempt to fit the known features originating from phonons.
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FIG. 2. The composition of samples under investigation. The δ-layers (red) are deposited on a

silicon substrate (dark blue), upon which an additional layer of silicon (light blue) is deposited.

This “cap” frequently contains significant impurity/defect density and will be modeled as such. On

top of the stack a thin layer (∼ 2nm) of SiO2 (grey) forms, the thickness of which varies slightly

from sample to sample.

The overall conductivity function of the stack is then

σ(ω, z) = σSi(ω, z) + σCAP(ω, z) + σSiO2(ω, z) + σDL(ω, z)

σSi(ω, z) = σ0,Si
ω2
Si

ω2 + ω2
Si

θ (z − wCAP − wSiO2)


1 0 0

0 1 0

0 0 1



σCAP(ω, z) =
e2nCAP

mCAP

1

ω + i 1
τ

[θ (z − wSiO2)− θ (z − wCAP − wSiO2)]


1 0 0

0 1 0

0 0 1



σSiO2(ω, z) = σ0,SiO2 [θ (z)− θ (z − wSiO2)]


1 0 0

0 1 0

0 0 1



where σSi and σSiO2 are the low-frequency conductivities of Si (fit using δ-layer-free samples
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(a) (b)

FIG. 3. Comparisons of simulations of ellipsometric spectra of hypothetical samples of the kind in

Fig. 2 containing clean caps and high-density (1014cm−2) δ-layers. As described in Section IIC, Ψ

and ∆ are related to the magnitude and phase difference, respectively, of the ratio of the p and s

reflection coefficients. (a) A classical, isotropic Drude model with a boxcar profile (Drude), Model

I, and Model II, for characteristic electronic δ-layer widths wδ of 0.5nm (top) and 4.0nm (bottom).

(b) Model II for varying relaxation times τ and wδ = 0.5nm.

due to slight process variation) and SiO2 (based on a assumed relative permittivity of 3.6),

respectively, ωSi is a frequency associated with interband transitions in silicon (also fit using

δ-layer-free samples), nCAP is the carrier density in the capping layer, mCAP is the overall

conductivity effective mass of such carriers (we use 0.28 for n-type and 0.36 for p-type),

wCAP and wSiO2 are the thicknesses of the two layers, τ is the relaxation time in the capping

layer which we will take to be the same as τ for δ-layers, and σDL refers to a δ-layer, if

present, described by Model I or II.

In order to understand the impact of the differences in the models, we will first compare

the spectra of hypothetical stacks. We will include for reference a conventional 3D Drude

model description of the δ-layer (i.e., a version of Model I with a boxcar profile for f(z)). We

assume in all cases carrier sheet density n2D = 1014cm−2, dCAP = 50nm, dSiO2 = 2nm, and

ωSi = 3.5eV. In Fig. 3(a), these three models are shown for τ = 10fs and varying electronic

12



δ-layer thicknesses.

All three models share similar overall spectral features: as the frequency drops below

about 2000cm−1, Ψ and ∆ begin to sharply increase and decrease, respectively. However,

the results from these models are distinguishable. In the conventional Drude model, the

plasma resonance is clearly visible even for the short relaxation time used, whereas under

Model I, due to the smooth envelope function, the plasma resonance is substantially muted,

though still distinct. The envelope function modulates the carrier density over the δ-layer,

producing a range of plasma frequencies associated with the δ-layer. We note that as the

envelope becomes wider, the changing density distribution causes the plasma resonance shift

to lower frequencies; rather than a peak, the plasma resonance creates an elbow-like feature

in both spectra. In samples well-described by Model I, this will allow determination of

electronic δ-layer thickness unless τ is particularly short (∼ 1fs). Model II shows a more

pronounced effect with a missing plasma resonance feature. In this case the much larger

longitudinal effective mass for the out-of-plane conductivity of the Γ valley significantly

diminishes its contribution, meaning the reflectance of both the s- and p-polarized light

is primarily dependent on the in-plane conductivity. The ratio rp/rs is therefore much

less impacted by the plasma resonance, despite producing a clear Drude tail. While the ∆

valley carriers have smaller effective mass in the out-of-plane direction (due to the transverse

component), here the much shorter τ suppresses the plasma resonance feature. As a result of

the lack of plasma resonance, the spectra for Model II are largely insensitive to the thickness

(and band energy differences ωΓ) at the given τ ; in the following we provide the model fit

for this parameter with the understanding that it should not be taken as being particularly

precise in this regime. However, we emphasize that this insensitivity of Model II to thickness

is contingent upon the applicability of Model II, and therefore still serves to indicate that the

layer is very thin and well-confined. Overall, these results suggest that ellipsometry, unlike

other approaches, is capable of straightforwardly characterizing δ-layer properties such

as thickness and relaxation time both nondestructively and without the need for contacts

required for transport measurements.

The plasma resonance feature is not absent in general. In Fig. 3(b) we show Model

II for different values of τ but the same thickness and ωΓ. We see that longer relaxation

times allow a plasma resonance feature to become visible, in addition to sharpening the

divergences at low frequencies. Importantly, the combination of depth and shape of the
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FIG. 4. ∆ (blue) and Ψ (red) ellipsometric spectra for a sample with no deposition of a δ-layer taken

at a 65◦ angle of incidence. Dark lines correspond to the computed spectra, while noisy, lighter

lines are the experimental spectra. The carrier density in the cap, which is 20nm thick, is found

to be 2.5− 3.2× 1018/cm3 with τ = 16fs, and the SiO2 layer is 2.7nm thick. Features around 1000

cm−1are due to vibrational resonances in SiO2

∆ spectrum strongly constrain n2D and τ . While increases in n2D and τ can have similar

impacts on the ∆ spectrum, they have opposite impacts on Ψ. This allows us to determine

these two parameters quite accurately when the rest of the sample is clean. Thus the

low frequency behavior is critical to accurate fitting, as together Ψ and ∆ here strongly

constrain the carrier density and relaxation time describing the δ-layer. Importantly, while

longer relaxation times allow for the return of a plasma resonance, it is easy to distinguish

from plasma resonance features in the case of Model I. The comparatively shorter relaxation

times at which a similar feature appears under Model I causes the divergence in ∆ to be

smoothly cut off, while in the case of Model II the sharp decrease in ∆ continues to much

lower angles and frequencies. Thus, the relationship between the low and high frequency

behavior is an indicator of the Model that most accurately describes the material.

This analysis suggests that the suppression of the plasma resonance in ellipsometry is a

consequence of the quantum effects of confinement and signals the breakdown of the classical

limit of the Drude model, even accounting for a more realistic density profile. In this sense

the suppression of the plasma resonance is a signature of a true δ-layer, distinguishing it

from poorly confined δ-layers, which ought to show a plasma resonance feature, even at

small τ .

We now evaluate the success of the models in fitting the elliposometry results for several

samples with 1/4ML deposited phosphorus, but different growth conditions for the capping
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silicon, some of which maintain the sharp doping profile, and others of which promote

diffusion. We first consider a sample with no δ-layer to establish a baseline. No phosphorus

was incorporated and a 20 nm cap was deposited 300◦C at a rate of 0.5nm/min. In Fig. 4 the

experimental ellipsometry results are plotted with the best fit (since there is no δ-layer, the

models produce the same result). Ψ is well-described by bulk silicon with a modest carrier

concentration in the cap, while ∆ features a negative slope which can be attributed to the

silicon dioxide layer. Due to the low carrier density, there are no plasma resonance features

in the frequency range considered. There are deviations of the experimental data from the

model between 800cm−1and 1500cm−1and for Ψ that are consistent across samples, though

their magnitude varies. These are reflected in ∆ as well as slightly shifted frequencies. These

are likely due to the impact of SiO2, as they are consistent with known phonon resonances

and their magnitude appears to be correlated to its thickness. While we will not attempt to

fit these features, we will deemphasize the response in these frequency ranges in attempting

to fit δ-layer data.

In Fig. 5 we show the data for a sample where dopant incorporation and deposition of

the cap layer has been done in a way that promotes adatom-mediated diffusion, and spreads

the 1/4 ML of phosphorus throughout the cap during growth. In this case phosphorus was

incorporated at 300◦C, which is below the temperature at which phosphorus is optimally

incorporated[37], thus leaving excess phosphorus to segregate during cap growth. A 20

nm cap was deposited 300◦C at a rate of 0.2nm/min, with this relatively slow growth rate

selected to provide time for adatom-mediated diffusion. Here, the 3D doping profile has

resulted in the appearance of a distinct elbow-like feature at low frequency in the ellipsometry

data (Fig.5(a)) - the plasma resonance. Model I with a moderately thick δ-layer (6nm) and

substantial nCAP is able to fit the data quite well, reproducing the elbows of both Ψ and ∆,

and indicating significant diffusion of carriers away from the intended δ-layer. The notable

deviations at low wavenumber can be attributed to the SiO2-originating signal [38] seen

in the δ-layer-free sample. The best fit for Model II yields a very sparse δ-layer; since a

δ-layer under Model II cannot provide an elbow-like feature, this spectral feature must be

generated almost entirely by a uniform carrier density in the cap. The fit is nonetheless

still fairly good, which is not particularly surprising since the two cases are actually quite

similar physically: the overall carrier density profile in Model I contains a significant uniform

contribution from the cap and the suggested δ-layer thickness means that it is diffused over
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(a) (b)

FIG. 5. (a) Elliposometry spectra for a second sample with an intentionally diffused δ-layer –

corresponding to a carrier density of about 1.6 × 1014cm−2) – taken at a 65◦ angle of incidence.

The fit in the top panel is for Model I and yields an n-type carrier density in a 20nm thick

cap of 1.4 × 1019cm−3, a carrier density in a 6nm δ-layer of 6.2 × 1013cm−2, τ = 11.0fs, and

an SiO2 thickness of 2.7nm. In the bottom panel, the fit to Model II yields a carrier density in

the 20nm thick cap of 3.8 × 1019cm−3 (assuming n-type carriers), a carrier density in a 0.9nm

δ-layer (ωΓ = 50meV) of 1.2 × 1013cm−2, τ = 10.4fs, and an SiO2 thickness of 2.8nm. Arrows

indicate the region where the “elbows” appear in the spectra. (b) The SIMS analysis for sample

showing densities of phosphorus along with Model I and Model II fits for the carrier densities in

the δ-layer and cap. Due to the resolution limit of the SIMS analysis, the fitted densities have been

convolved with a Gaussian (FWHM=3.5nm) to aid comparison.

a considerable portion of the cap. This is borne out by the SIMS analysis (Fig. 5(b)), which

shows significant phosphorus density in the cap in addition to a broad peak at the depth of

the intended δ-layer. Overall the modeling accurately reflects the samples nature as a poorly

confined dopant-layer. For both models the total sheet density from the cap and δ-layer is

∼ 0.9× 1014cm−2, about half of the intended δ-layer density.

Incorporating dopants and growing the capping silicon under different conditions can

produce δ-layers with significantly tighter confinement of the dopant atoms. For this sample
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(a) (b)

FIG. 6. (a) Elliposometry spectra for a third sample with an intended 1/4ML δ-layer taken at a 60◦

angle of incidence. The fit in the top panel is for Model I and carrier density in a 75nm thick cap

of 2× 1019/cm−3mCAP, a carrier density in a 0.4nm δ-layer of 1.04× 1014cm−2, τ = 10.1fs, and an

SiO2 thickness of 2.1nm. A double arrow indicates the expected location of the plasma resonance

feature. In the bottom panel, the fit to Model II yields the same carrier density in the 75nm thick

cap (5.6−7.2×1018cm−3), a carrier density in a 0.26nm δ-layer (ωΓ = 550meV) of 8.8×1013cm−2,

τ = 12.8fs, and an SiO2 thickness of 2.1nm. (b) The SIMS analysis for sample showing densities

of phosphorus along with fitted densities for Model II of carriers in the δ-layer and cap, assuming

p-type carriers in the latter.

phosphorus was incorporated at 380◦C, which is near the temperature at which phosphorus

is optimally incorporated [37], thus minimizing excess phosphorus available for segrega-

tion during cap growth. A 75nm cap was deposited at 300◦C at a relatively fast rate of

0.75nm/min to suppress adatom-mediated diffusion. In Fig. 6(a) we see spectra with no ob-

vious elbow at low frequency, suggesting a much narrower δ-layer with reduced population

of the ∆ valleys. Fits for both models corroborate this, clearly indicating a subnanometer

carrier distribution and a well-confined δ-layer. However, Model I produces a distinct plasma

resonance feature in both Ψ and ∆ at ∼ 5000cm−1. Model II correctly results in smooth

spectra in this regime, matching the experimental spectra extremely well. The superior fit of
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Model II is consistent with the notion that the anisotropy introduced by confinement effects

is necessary to describe well-confined δ-layers. Both models indicate some carrier density

in the cap, consistent with other results using this process. The SIMS analysis (Fig. 6(b))

corroborates this, showing a very narrow resolution-limited[17, 18] peak in the phosphorus

density that is matched by the profile of the Model II fit. The cap carrier density, which is

comparable to the sample with no phosphorus doping in Fig. 4, primarily originates from

unintended aluminum dopants [39], with some contribution from the phosphorus tail of the

δ-layer. The carrier density of the δ-layer yielded by the model is again about half of the

intended density. We note that the density obtained from Hall measurements is around

1.8 × 1014cm−2, consistent with the targeted carrier density and suggesting that the ellip-

sometry is systematically underestimating the carrier density by a factor of about two. This

can be considered good agreement for ellipsometry, and the systematic nature of the error

could allow for accurate estimation of carrier densities from ellipsometry.

IV. CONCLUSION

We have derived a physically realistic model for the AC conductivity of P:δ-layers, and

used it to model the ellipsometry spectra of multiple samples containing δ-layers of varying

thickness by taking into consideration the quantum confinement of carriers in the P:δ-layer.

We obtain very good fits, resolving the previously unexplained lack of plasma resonance

features that would be expected from a classical Drude model, which is due to the sharp-

ness of the charge density profile and valley degeneracy producing an effective mass and

relaxation time anisotropy. As such, the suppression of the plasma resonance – to the point

of elimination in the considered samples – serves as a signature of well-confined δ-layers

and two-dimensional physics. As a δ-layer widens and diffuses out, essentially ceasing to

be a δ-layer, confinement effects weaken and the plasma resonance feature reappears as an

elbow-like feature in the spectra, with its position roughly corresponding to the width of the

δ-layer. Finally, we predict that doubling the relaxation time in well-confined δ-layers will

cause the plasma resonance to reappear. In combination with a very sharp Drude tail asso-

ciated with longer relaxation times, this would provide a unique signature of well-confined

δ-layer that cannot be reproduced by a Drude metal type layer. The reappearance of this

plasma feature would furnish additional information about the δ-layer’s electronic structure,
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much as it does in much thicker layers having a plasma resonance. Our demonstration that

ellipsometry spectra can be effectively modeled and used to non-destructively assess P:δ-

layer quality and characteristics can be applied as part of a general approach to suppress or

enhance plasma resonances in engineered thin films as desired.

V. ACKNOWLEDGMENTS

We gratefully acknowledge helpful conversations with Andrew Baczewski and Paul

Davids. This work was supported by the Laboratory Directed Research and Develop-

ment Program at Sandia National Laboratories under project 213017 and was performed,

in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy

Sciences user facility. This article has been authored by an employee of National Tech-

nology & Engineering Solutions of Sandia, LLC under Contract No. DE-NA0003525 with

the U.S. Department of Energy (DOE). The employee owns all right, title and interest in

and to the article and is solely responsible for its contents. The United States Govern-

ment retains and the publisher, by accepting the article for publication, acknowledges that

the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide

license to publish or reproduce the published form of this article or allow others to do

so, for United States Government purposes. The DOE will provide public access to these

results of federally sponsored research in accordance with the DOE Public Access Plan

https://www.energy.gov/downloads/doe-public-access-plan This paper describes objective

technical results and analysis. Any subjective views or opinions that might be expressed in

the paper do not necessarily represent the views of the U.S. Department of Energy or the

United States Government.

[1] D. Shah, M. Yang, Z. Kudyshev, X. Xu, V. M. Shalaev, I. V. Bondarev, and A. Boltas-

seva, Thickness-dependent drude plasma frequency in transdimensional plasmonic TiN, Nano

Letters 22, 4622 (2022).

[2] B. S. Mendoza and W. L. Mochán, Ab initio theory of the drude plasma frequency, Journal

of the Optical Society of America B 38, 1918 (2021).

19



[3] E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-

Kasakarage, I. Nemitz, and M. Zamkov, Suppression of the plasmon resonance in Au/CdS

colloidal nanocomposites, Nano Letters 11, 1792 (2011).

[4] H. Buch, S. Mahapatra, R. Rahman, A. Morello, and M. Y. Simmons, Spin readout and

addressability of phosphorus-donor clusters in silicon, Nature Communications 4, 2017 (2013).

[5] Y. He, S. K. Gorman, D. Keith, L. Kranz, J. G. Keizer, and M. Y. Simmons, A two-qubit

gate between phosphorus donor electrons in silicon, Nature 571, 371 (2019).

[6] T. F. Watson, B. Weber, Y.-L. Hsueh, L. C. L. Hollenberg, R. Rahman, and M. Y. Simmons,

Atomically engineered electron spin lifetimes of 30 s in silicon, Science Advances 3, e1602811

(2017).

[7] X. Wang, E. Khatami, F. Fei, J. Wyrick, P. Namboodiri, R. Kashid, A. F. Rigosi, G. Bryant,

and R. Silver, Experimental realization of an extended fermi-hubbard model using a 2d lattice

of dopant-based quantum dots, Nature Communications 13, 6824 (2022).

[8] M. Kiczynski, S. K. Gorman, H. Geng, M. B. Donnelly, Y. Chung, Y. He, J. G. Keizer, and

M. Y. Simmons, Engineering topological states in atom-based semiconductor quantum dots,

Nature 606, 694 (2022).

[9] F. Mazzola, C.-Y. Chen, R. Rahman, X.-G. Zhu, C. M. Polley, T. Balasubramanian, P. D. C.

King, P. Hofmann, J. A. Miwa, and J. W. Wells, The sub-band structure of atomically sharp

dopant profiles in silicon, npj Quantum Materials 5, 34 (2020).

[10] B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer, T. C. G. Reusch, D. L. Thompson,

W. C. T. Lee, G. Klimeck, L. C. L. Hollenberg, and M. Y. Simmons, Ohm’s law survives to

the atomic scale, Science 335, 64 (2012).

[11] D. R. Ward, S. W. Schmucker, E. M. Anderson, E. Bussmann, L. Tracy, T.-M. Lu, L. N.

Maurer, A. Baczewski, D. M. Campbell, M. T. Marshall, and S. Misra, Atomic precision

advanced manufacturing for digital electronics, Device Failure Analysis 5, 4 (2020).

[12] T.-M. Lu, X. Gao, E. M. Anderson, J. P. Mendez, D. M. Campbell, J. A. Ivie, S. W. Schmucker,

A. Grine, P. Lu, L. A. Tracy, R. Arghavani, and S. Misra, Path towards a vertical tfet en-

abled by atomic precision advanced manufacturing, in 2021 Silicon Nanoelectronics Workshop

(SNW) (2021) pp. 1–2.

[13] J. P. Mendez and D. Mamaluy, Conductivity and size quantization effects in semiconductor

δ-layer systems, Scientific Reports 12, 16397 (2022).

20



[14] A. M. Katzenmeyer, T. S. Luk, E. Bussmann, S. Young, E. M. Anderson, M. T. Marshall,

J. A. Ohlhausen, P. Kotula, P. Lu, D. M. Campbell, T.-M. Lu, P. Q. Liu, D. R. Ward, and

S. Misra, Assessing atomically thin delta-doping of silicon using mid-infrared ellipsometry,

Journal of Materials Research 35, 2098 (2020).

[15] J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, Infrared plasmons on heavily-doped

silicon, Journal of Applied Physics 110, 043110 (2011).

[16] S. Shamim, S. Mahapatra, G. Scappucci, W. M. Klesse, M. Y. Simmons, and A. Ghosh, Spon-

taneous breaking of time-reversal symmetry in strongly interacting two-dimensional electron

layers in silicon and germanium, Physical Review Letters 112, 236602 (2014).

[17] J. G. Keizer, S. Koelling, P. M. Koenraad, and M. Y. Simmons, Suppressing segregation in

highly phosphorus doped silicon monolayers, ACS Nano 9, 12537 (2015).

[18] J. A. Hagmann, X. Wang, P. Namboodiri, J. Wyrick, R. Murray, M. D. Stewart, R. M. Silver,

and C. A. Richter, High resolution thickness measurements of ultrathin si:p monolayers using

weak localization, Applied Physics Letters 112, 043102 (2018).

[19] J. A. Woollam and P. G. Snyder, Fundamentals and applications of variable angle spectroscopic

ellipsometry, Materials Science and Engineering: B 5, 279 (1990).

[20] T. E. Tiwald, D. W. Thompson, J. A. Woollam, W. Paulson, and R. Hance, Application of

IR variable angle spectroscopic ellipsometry to the determination of free carrier concentration

depth profiles, Thin Solid Films 313-314, 661 (1998).

[21] S. Yoo and Q.-H. Park, Spectroscopic ellipsometry for low-dimensional materials and het-

erostructures, Nanophotonics 11, 2811 (2022).
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