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We propose a hetero-homodyne receiver for quantum illumination (QI) target detection. Unlike
prior QI receivers, it uses a cascaded positive operator-valued measurement (POVM) that does not
require a quantum interaction between QI’s returned radiation and its stored idler. When used
without sequential detection its performance matches the 3dB quantum advantage over optimum

classical illumination (CI) that Guha and Erkmen’s [Phys. Rev.

A 80, 052310 (2009)] phase-

conjugate and parametric amplifier receivers enjoy. When used in a sequential detection QI protocol,
the hetero-homodyne receiver offers a 9 dB quantum advantage over a conventional CI radar, and
a 3dB advantage over a CI radar with sequential detection. Our work is a significant step forward
toward a practical quantum radar for the microwave region, and, more generally, emphasizes the
potential offered by cascaded POVMs for quantum radar.

I. INTRODUCTION

Quantum radars use resources unavailable to their clas-
sical counterparts, principally entanglement, to obtain
improved remote-sensing performance at the same trans-
mitted energy, see Refs. [I-3] for recent reviews. To
date, the only quantum radar protocol whose target-
detection performance is predicted to exceed that of its
best classical competitor is Tan et al’s quantum illu-
mination (QI) [4]. QI with optimum reception offers
a 6dB quantum advantage in error-probability expo-
nent for detecting a weakly-reflecting target embedded in
high-brightness (many photons/s-Hz) background noise.
This advantage only occurs in a lossy, noisy setting that
destroys the initial entanglement between QI’s transmit-
ted signal and its stored idler. In particular, Nair [5]
has shown that in the absence of noise conventional
coherent-state radar closely approximates the target-
detection performance of the optimum quantum radar of
the same transmitted energy. So, because daytime back-
ground light at near-visible wavelengths has extremely
low brightness, e.g., 107% photon/s-Hz at 1.55 um wave-
length [6], Tan et al’s QI attracted little interest from
the radar community until Barzanjeh et al. [7] described
how it might be used at microwave wavelengths, where
high-brightness background noise is the norm and QI’s
quantum advantage could help in detecting stealth tar-
gets.

Tan et al.’s QI relies on the nonclassical phase-sensitive
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cross correlation between the brightness-Ng signal and
idler beams produced by a spontaneous parametric
downconverter (SPDC), viz., signal and idler consist-
ing of M > 1 independent and identically-distributed
(iid) mode pairs in two-mode squeezed-vacuum (TMSV)
states. The TMSV’s nonclassical cross correlation,
/Ns(Ng + 1), greatly exceeds the classical limit, Ng,
in low-brightness (Ng < 1) operation, and disappears
as Ng grows without bound. Furthermore, because con-
ventional interference techniques are incapable of detect-
ing phase-sensitive correlation [1], the first proposed re-
ceivers [8] for obtaining any quantum advantage from QI
used parametric amplifiers to convert phase-sensitive cor-
relation into phase-insensitive correlation prior to detec-
tion by conventional techniques. These proposals—Guha
and Erkmen’s parametric amplifier (PA) and the phase-
conjugate (PC) receivers—deliver at most a 3dB quan-
tum advantage in error-probability exponent, and to do
so they require a quantum memory capable of losslessly
storing the idler’s high time-bandwidth product quantum
state for the roundtrip radar-to-target-to-radar propaga-
tion delay. So far, however, only 20% quantum advan-
tage has been demonstrated in optical wavelength (with
high-brightness noise injection) [9] and microwave wave-
length [10] table-top experiments.

The first explicit architecture for obtaining QI’s full
6dB quantum advantage was the feed-forward sum-
frequency generation receiver [11], whose implementation
requires an as yet unavailable single-photon nonlinearity
as well as a quantum memory for idler storage. A more
recent architecture, the correlation-to-displacement re-
ceiver [12], circumvents the need for a single-photon non-
linearity, but requires a lossless M x M programmable
beam splitter with M > 1—which will be a daunting
implementation task at microwave wavelengths—as well
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FIG. 1. Sketch of the Tan et al.’s QI protocol with hetero-
homodyne reception. A signal-idler system is initialized in an
M mode-pair TMSV state, with each signal and idler mode
containing Ns < 1 photons on average. The signal is sent to
test for the presence of a weakly-reflecting (roundtrip trans-
missivity k < 1) target embedded in high-brightness back-
ground noise (Np > 1 photons/s-Hz). The hetero-homodyne
receiver measures the cross correlation between the returned
radiation and the idler. Because the low-brightness TMSV
mode pairs’ phase-sensitive cross correlation y/Ng(Ng + 1)
greatly exceeds the classical limit Ng, QI outperforms clas-
sical illumination in this regime even though loss and noise
have destroyed the TMSV states’ initial entanglement. het:
heterodyne. hom: homodyne. FF: feed-forward.

as the aforementioned quantum memory for idler stor-
age. Were available technology capable of realizing such
QI receivers, the ultimate performance for Tan et al.’s
target-detection scenario would be obtained, because the-
ory [13-19] has proven the optimality of the M mode-pair
TMSV state for that setting.

This paper reports a significant advance for microwave
QI, and, more generally, emphasizes the potential of-
fered by cascaded positive-operator valued (POVM) mea-
surements for quantum radar. First, motivated by
Shi et al. [12]’s coherence-to-displacement conversion and
Shapiro’s use of sequential detection [20] to break Nair’s
performance limit on noise-free target detection [5], we
propose a hetero-homodyne receiver for QI, a cascaded
POVM that, unlike prior QI receivers, does not need a
quantum interaction between QI’s returned radiation and
its stored idler, see Fig. 1. Our receiver achieves a 3dB
advantage over the optimum receiver for Tan et al.’s QI,
i.e., 9dB better than a conventional classical radar.

We will start our development in Sec. II with a review
of classical versus quantum illumination without sequen-
tial detection. Next, in Sec. III, we will describe our
hetero-homodyne receiver and show that it is a cascaded-
POVM variant of the PC receiver which achieves the
same 3 dB quantum advantage over classical illumination
(CI) when sequential detection is not employed. Sec-
tion IV introduces sequential detection and shows how
it affords 6 dB performance gains to both CI and our

hetero-homodyne QI when they operate at low single-
trial signal-to-noise ratio within the asymptotic regime of
interest, i.e., detecting the presence of a weakly-reflecting
target embedded in high-brightness background noise. In
Sec. V we report simulation results for CI and QI sequen-
tial detection that illustrate the distribution of the num-
ber of trials needed by these receivers and compare er-
ror probabilities obtained from simulations to the earlier
asymptotic results. We wrap up with Sec. VI’s summary
of what was accomplished plus some additional issues re-
garding the hetero-homodyne receiver and its use with
sequential detection.

II. CLASSICAL VERSUS QUANTUM
ILLUMINATION

The target-detection scenario of interest is the follow-
ing. A positive-frequency, y/photons/s-units, quantum
field operator E‘s(t)e_iWOt with center frequency wg has
its excitation time-limited to t € To = [0,7] and (ap-
proximately) bandlimited to B > 1/T Hz. This signal
field interrogates a region of space at range R in which
there may (hypothesis H; ) or may not (hypothesis Hyp) be
a weakly-reflecting target embedded in always-present,
high-brightness background radiation. For ¢t € Tp =
[2R/c,2R/c + T, the returned radiation collected from
that region, after bandlimiting to B Hz about wg /27, is
then

Bp(t)e™ " = B (e, (1)
under Hy, and
ER(t)eiiwot =

VA e Bs(t —2R/c) +VI—r ER (B)le™ ™, (2)

under H;. Here: c¢ is light speed; 0 < kK < 1 is
the roundtrip radar-to-target-to-radar transmissivity; 6
is the target return’s phase delay; and the background
noise’s baseband field operators, Eg)) (t) and Eg)(t), are
in zero-mean Gaussian states that are completely char-
acterized by their fluorescence spectra [21],

SEhw = [ar EP e+ DEP O, @)

for k=0, 1, with [22]

Np > 1, for |w|/2m < B/2,
s = { @

0, elsewhere,

and
Np/(1 — k), for |w|/2m < B/2,
S = {

0, elsewhere.

(5)

For simplicity, we shall assume equally-likely hypothe-
ses, set the phase delay 6 to 2woR/c [23], and take er-
ror probability to be our performance metric. In CI,



minimum error-probability operation for a given average
transmitted photon number,

T
Nr= [ BN OES®). (6)
0

is achieved using coherent-state radiation |Eg(t))s [24]
with

T
/0 dt|Es(6)]? = N (7)

The quantum Chernoff bound [25] on optimum CI’s error
probability, easily evaluated using results from Pirandola
and Lloyd [20], is

Pr(e)oy < e "Nt/4Ne /9, (8)

This bound is exponentially tight in increasing signal-to-
noise ratio, SNR = kNp/Np. Indeed, homodyne detec-
tion realizes

Pr(e)¢f™ = Q(v/SNR/2) <

SR (9)

where
Q(x) = /oody e_yZ/Q/\/ﬂ7 (10)

and so is the optimum CI receiver when Ng < 1, k < 1,
and Np > 1, which is our asymptotic regime of interest.

Tan et al’s QI carves duration 7', bandwidth B >
1/T signal and idler pulses from an SPDC’s outputs. In
annihilation-operator mode expansions, their baseband
field operators are

7127rmt/T
Z as,, —r (11)
and
. > €i27rmt/T
Er(t)= ) &ImT, (12)

for t € Ty, and their excited mode pairs, {(as,,,ar,, ) :

—(M-1)/2<m < (M-1)/2} with M > 1 an odd mte—
ger, are in iid TMSV states with average photon number
Ng <« 1 in each mode, and M Ng = Np. The signal in-
terrogates the region of interest, as in CI, while the idler
is retained for a joint measurement with the returned
radiation. Because this QI setup still involves Gaussian
states, the optimum QI receiver’s Chernoff bound is eas-
ily found to be

Pr(e)gr < e "MNs/Ne jo (13)

whose error-probability exponent is 6 dB higher than that
of optimum CI. For the PA and PC receivers, Guha and
Erkmen [8] show that

Pl"( ) NPI“( )PC < —nMNS/2NB/2 (14)
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FIG. 2. Schematic of the hetero-homodyne receiver. Thick
arrows represent quantum microwave fields. Thin arrows rep-
resent baseband signals that are conditioned on the outcome
of the heterodyne measurement.

are the relevant Chernoff bounds. A central limit theo-
rem argument, justified by M > 1, gives

Pr(e )QI ~ Pr(e )QJ ~Q(vkMNg/Np),  (15)

e., these receivers achieve a 3dB quantum advantage
over optimum CI.

III. THE HETERO-HOMODYNE RECEIVER

Figure 2 shows a schematic of the hetero-homodyne
receiver. The T-s-duration returned radiation—shown
by its positive frequency field operator—undergoes ideal
(unit quantum efficiency, bandwidth B) heterodyne de-
tection to an intermediate frequency wyrp. In-phase
(I) and quadrature (@) demodulation results in the
complex-valued measurement outcome Fg(t) whose clas-
sical statistics are those of the positive operator-valued
measurement (POVM) Eg(t) [27]. That measurement
outcome then does I and —@ modulation [28] of a mi-
crowave local oscillator (LO) field, Ero(t)e ™!, with

Ero(t) in the coherent state | ELo(t)) with mean field

=4/ PLo/T for t € Tg. (16)

The resulting LO field, Eio (t)e™o! is used for ideal (unit
quantum efficiency, bilateral bandwidth B) homodyne
detection of the idler field, which has been held in a quan-
tum memory for 2R/¢, the range delay to the region of
interest. Conditioned on the heterodyne detector’s out-
put, Ef o (t) will be in a coherent state with conditional

(Ero(t)) = Evol(t



E[Efo(t) | Er(t)] < Eg(t), fort € Tp.  (17)

Consequently, the homodyne detector’s output, condi-
tioned on the heterodyne detector’s output, is—with a
convenient normalization—a measurement of the observ-
able Re[ERr(t)Er(t — 2R/c)] for t € Tgr. The sufficient
statistic ¢ for the minimum error-probability processor
based on knowledge of the heterodyne detector’s out-
put and the observable measurement is the integral of
the homodyne output over Tg, and the minimum error-
probability decision is a simple threshold test, as shown
in Fig. 2. The derivation of this optimum decision strat-
egy is given in Appendix A; what follows is a simplified
performance analysis that assumes Ng < 1, k < 1, and
Np > 1, and uses M > 1 to justify a central limit theo-
rem approximation.

To understand the hetero-homodyne receiver, it helps
to use the mode expansions given -earlier. Het-
erodyne detection of the mth excited return mode,
ag,, e 2mm=2R/)/TT for t € Tp and —(M —1)/2 <
m < (M — 1)/2, followed by I and @ demodulation,
yields outcomes equal to the real and imaginary parts of
the ar,, POVM. Defining ar,, to be the complex num-
ber assembled from those outcomes, we get the baseband
waveform

(M-1)/2 —i2rm(t—2R/c)/T

S oan,© s (18)

m=—(M—1)/2

ER(t—QR/C) =

as the classical signal applied to the I and —@) modula-
tor. That modulator transforms the coherent-state local
oscillator’s mean field Fr,o(t) to

(M-1)/2 —i2rm(t—2R/c)/T

Y oa,C o= ,(19)

m=—(M—1)/2

Ejo(t) o

for t € TR, conditioned on the heterodyne detectors’ out-
put. Moreover, under that conditioning, Ef (t) remains
a coherent-state field. Thus, under that conditioning,
integrating the homodyne detector’s output over T is
(with a convenient normalization) a measurement of

i= / dt Re[Er(t) By (t — 2R/0)] (20)
Tr

(M—1)/2

= X

m=—(M-1)/2

Re(aRmdlm). (21)

The essence of the hetero-homodyne receiver is revealed
by this result: the sufficient statistic measures the phase-
sensitive cross correlation between the returned radia-
tion and the stored idler, viz., QI’s signature of target
presence. At this point, QI performance analysis for the
hetero-homodyne reception is easy, as we now show.

Let {¢,} be the classical outcomes of the
{Re(ag,, as, )} measurements. Then, given the true

hypothesis and the heterodyne detector’s outputs, the
fluctuating parts of the {{,,},

Alyy =l — E(ly, | HkHa'Rn‘L)’ (22)

are iid zero-mean Gaussian random variables. It follows
that the {¢,,} are statistically independent Gaussian ran-
dom variables given the true hypothesis and the {ag,, }.
(See Appendix A for details of the projected idler states
created under Hy and H; by heterodyne detection of the
returned radiation.) Now, because the {ag,, } are iid un-
der Hy and H;, we have that the {{,,} are iid given the
true hypothesis. So, because M > 1, the central limit
theorem implies that ¢ is Gaussian distributed given the
true hypothesis.

For Ng < 1,k < 1,and N > 1, the { measurement’s
outcome has conditional means

E[¢| Ho] =0, (23)
and
E[(| Hi] ~ M/sNs, (24)
and conditional variances
Var[¢ | Hy| =~ Var[¢ | Hy] = MNg/4; (25)

see Appendix A for the exact results. It follows that the
minimum error-probability decision rule is to decide H;
when

{>~=M+/kNg/2 (26)

and decide Hy otherwise. This rule’s error probability is

Pr(e) ~ Q(v/MkNg/Ng) < e MnNs/2Nz 9 (97)

whose error-probability exponent is 3 dB better than that
of the best CI radar with Np = M Ng.

It is no accident that the hetero-homodyne receiver
achieves the same performance as Guha and Erkmen’s
PC receiver. As seen in Fig 2, heterodyne detection fol-
lowed by I and —@ modulation realizes the phase con-
jugation operation needed to convert the phase-sensitive
cross correlation between the returned radiation and the
idler into a quantity measurable via homodyne detection.
The PC receiver uses a parametric amplifier to accom-
plish phase conjugation that permits the phase-sensitive
cross correlation to be observed via conventional second-
order interference. The hetero-homodyne receiver differs
from the PC receiver in that the latter measures a POVM
on the joint Hilbert space of the returned radiation and
the idler, whereas the former measures a POVM on the
Hilbert space of the returned radiation and uses the out-
come of that measurement to choose the observable that
will be measured on the idler. As a result, the hetero-
homodyne receiver suffers less added quantum noise from
its conjugation operation than does the PC receiver from
its conjugation operation, but both amounts are incon-
sequential in the asymptotic regime of interest wherein



Ng <« 1, k < 1, and Ng > 1; see Appendix B for the
details. Note that QI’s hetero-homodyne, PC, and PA re-
ceivers all require knowledge of the target return’s phase
delay 6, which is an issue we shall return to later, as well
as a quantum memory to store the idler for the roundtrip
range delay 2R/c.

It might seem that the hetero-homodyne receiver’s re-
quiring a quantum memory for idler storage could be cir-
cumvented by: (1) heterodyning the idler, (2) delaying
(by 2R/c¢) the classical outcome of that measurement,
(3) using that delayed signal to I and —@Q modulate the
LO that homodynes the returned radiation, and (4) per-
forms the likelihood-ratio test (LRT) on the homodyne
output. As shown in Appendix C, this approach fails to
offer any quantum advantage owing to the idler’s state
being dominated by quantum noise, whereas the returned
radiation’s state is dominated by classical noise.

IV. CI AND QI WITH SEQUENTIAL
DETECTION

Wald [29] originated the sequential probability-ratio
test (SPRT) as an alternative to the standard (LRT) used
for fixed-length data. Consider observation of a random
vector x that has conditional probability density func-
tions (pdfs) px|m, (X | Hy) for k= 0,1. The LRT

say Hi

_ pxm (X[ Hy) >
px‘Ho(X | HO) <

say Ho

7, (28)

with n = Pr(Hy)/Pr(H;) minimizes the error probabil-
ity. Alternatively, n can be chosen to ensure that the
miss probability, Py; = Pr(decide Hy | Hy true), is min-
imized subject to the false-alarm probability constraint
Pp = Pr(decide H; | Hy true) < a.

In a non-adaptive SPRT, a sequence of iid random vec-
tors, {x, : n =1,2,...}, are available, and desired maxi-
mum values o and 8 have been set in advance for Pr and
Py, respectively. From «, §, thresholds A = (1 — )/«
and B = (1—«)/f can be set [29] such that the following

protocol guarantees Pr < a and Py < 3:
1. Define z,, = {x1,X2,...,Xn}.

2. For n = 1,2,..., until the protocol terminates,
compute A, (Z,).

3. If A, (Z,) > A, declare Hy and terminate.
4. It A, (Z,) < B, declare Hy and terminate.
5. If B< A, (Z,) < A, increment n and continue.

Furthermore, at low single-trial SNR Ref. |
Pr ~ «a and Py = 5.

To exhibit the benefits offered by sequential detection,
we shall assume Ng < 1, k < 1 and Ng > 1, and ap-
ply the SPRT protocol to CI using homodyne detection

] shows that

and to QI using hetero-homodyne detection. For each
transmission, the CI transmitter will employ a coherent
state |v/MgNg). The QI transmitter, on the other hand,
will employ Mg iid TMSV mode pairs with average pho-
ton number Ng in each signal and idler. For both sys-
tems we assume Mg > 1 and kMgNg/Np < 1 [30] and
evaluate the average number of transmissions—hence the
average transmitted photon number—under the assump-
tions of equally-likely hypotheses and a = f3, i.e., equal
false-alarm and miss probabilities. Within this operating
regime, the results we seek follow readily from Ref. [29].

Consider first CI's SPRT. On each transmission
the homodyne receiver’s sufficient statistic, K%‘m’, is a
conditionally-Gaussian random variable with conditional
means

E[¢S" | Hoy] =0 (29)
and

E[¢ST | Hy] = Ms\/kNg, (30)

and conditional variances
Var[¢S1 | Hy] = Var[¢ST | Hy ] = MgNg/2.  (31)

Let K¢y be the number of trials at which the SPRT pro-

tocol terminates. From the result in Sec. 5.4.5 of Ref. [29],
we have that

E[Kcr | Hol ~E[Kor | Hi] (32)

~ Npln[(1 —a)/a](1 —2a)/kMsNg,  (33)

under our assumption of low single-trial SNR. It then
follows that the average number of transmissions is

(Ker) = NgIn[(1 — a)/a](1 — 2a)/kMsNg,  (34)

and the average number of transmitted photons is
NZPRT = (K1) Mg Ns.

With « = f, our CI SPRT is guaranteed to have
Pr(e) < «, and this bound is tight at low single-trial
SNR [29]. So, for operation at Pr(e) < 1, we can use

Pr(e) ~ e~ "NFT/ANs (35)

for LRT-based CI target detection, i.e., without sequen-
tial detection a low error probability requires

NERT  _4NpIn[Pr(e)]/x (36)

photons on average. SPRT-based CI target detection,
however, achieves the same low error probability with

NpPHE = NpRT /4, (37)

viz., a 6dB sequential-detection advantage in error-
probability exponent. Putting aside operational consid-
erations regarding sequential detection’s practicality for
radar target detection—see Ref. [20] for some discussion



of these considerations—this CI sequential-detection ad-
vantage matches the quantum advantage of the yet-to-
be implemented optimum quantum receiver for QI with-
out sequential detection. Thus, if sequential detection is
suitable for radar target detection, there should be lit-
tle interest in further pursuit of Tan et al. QI without
sequential detection.

Now consider SPRT-based QI target detection using
the hetero-homodyne receiver. Similar to what we have
done earlier for QI without sequential detection, we can
use Ng < 1, k < 1, Ng > 1, and Mg > 1, to justify
approximating the receiver’s single-trial sufficient statis-
tics, {¢91}, as iid conditionally-Gaussian random vari-
ables with conditional means

E[¢3" | Ho] =0 (38)
and
E[(3' | Hy] ~ Ms+/kNGg, (39)
and conditional variances
Var[(91 | Hy] =~ Var[¢2 | H)| ~ MsNp/4.  (40)

Then, because we again have low single-trial SNR, we can
parallel what we did for SPRT-based CI and find that

NEPRT = NERT /4 (41)

where the left-hand side is the average number of trans-
mitted photons needed to achieve a particular error
probability using hetero-homodyne QI reception with an
SPRT, and the right-hand side is the average number
of transmitted photons needed to realize that same er-
ror probability using hetero-homodyne reception with
a single-transmission LRT. Here too there is a 6dB
sequential-detection advantage in error-probability expo-
nent for SPRT QI versus LRT QI. Also, as was the case
for LRT QI versus LRT CI, we find that SPRT QI has
a 3dB quantum advantage over SPRT CI. Note that
compared to conventional (non-sequential) CI, hetero-
homodyne QI with sequential detection provides a 9dB
quantum advantage.

V. SIMULATION RESULTS

Here we present sequential-detection simulation results
for CT and QI illustrating the probability distributions for
their number of required trials and comparing their error
probabilities with those of their non-sequential counter-
parts.

Figure 3 shows the probability distributions for the
number of SPRT trials used by CI and QI assuming
Nsg = 0.01, k = 0.01, Ng = 100, Mg = 10°, and
a = B = 107* with each distribution being gener-
ated from 10° simulated experiments for each hypothesis.
These parameter values imply operation at the edge of

EE QI

0.020 cI

0.015 -
)
= 0.010 .
0.005 -
0.000 - .
0 50 100 150 200 250
number of trials K
FIG. 3. Simulated probability distributions for the number

of SPRT trials used by CI and QI assuming Ns = 0.01, k =
0.01, Ng = 100, Mg = 10°, and @« = 8 = 107*. Each
distribution was generated from 10° simulated experiments
for each hypothesis.

low single-trial SNR, viz., MkNg/Np = 0.1, thus appre-
ciable deviations from asymptotic behavior might occur.
So, because

Pr§pgr(e) ~ e~ HKonMsals/No (42)

in this regime, we expect (Kcy) ~ 92 for Priipr(e) ~
a = B = 107%, which is in good agreement with the
simulation result (Kcy) = 95. The simulation gave
log,o[PrSigr(e)] = —4.13 4 0.073 with 95% confidence,
implying 6.21 x 1075 < Pr{ipr(e) < 8.70 x 1072, in good
agreement with theory given that this example is at the
edge of the low single-trial SNR regime.

Turning now to the QI case,

Prdpp(e) ~ ¢ 2an M/ (43)
leads us to expect (Kqr) ~ 46 for PrglfRT(e) ra=pf=
104, which is in good agreement with our simulation re-
sult (Kgr) = 49. The simulation gave loglo[PrgP{RT(e)} =
—4.17 + 0.077 with 95% confidence, implying 5.66 x
1075 < Priipr(e) < 7.93 x 1075, Again we see good
agreement with theory given operation is at the edge of
the low single-trial SNR regime.

Figure 4 compares the error probabilities of non-
sequential and sequential CI and QI versus their average
number of transmitted signal photons, Np. All assume
Ng =0.01, k = 0.01, and Ng = 100 with CI using homo-
dyne detection and QI using hetero-homodyne detection.
The solid curves are theoretical results from Egs. (9) and
(27) for CI and Q], respectively. The points are sequen-
tial results from 10° experiments for each hypothesis us-
ing Mg = 10° with o = 8 =1071,1072,1073, 104, and
1075, The dashed curves were obtained as follows. For
sequential CI we used Pr§fpr(e) ~ o in Eq. (34) and
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FIG. 4. CI and QI error probabilities versus average num-
ber of transmitted signal photons, N, assuming Ns = 0.01,
= 0.01, and Np = 100. The solid curves are theory results
from Egs. (9) and (27) for non-sequential CI with homodyne
detection and non-sequential QI with hetero-homodyne detec-
tion, respectively. The points are simulated error probabili-
ties for sequential CI with homodyne detection and sequen-
tial QI with hetero-homodyne detection with Mg = 10° for
a=p8=10"110"2,10"3,10"*, and 107°. Each point was
generated from 10° simulated experiments for each hypothe-
sis. See the text for how the dashed curves were obtained.

solved for (Kop) as a function of Prigr(e). Then we
plotted Pr§frr(e) versus

NT%NBHI

[1- P;rjgéme)]] (L= 2Piien ()]
Prgprr(e) K

Sequential QI’s dashed curve was obtained, using its 3dB
energy advantage over sequential CI, from

1- Pré?ém(en] [1 - 2Prpr(e)]
Prdipr(e) 2

Examination of Fig. 4 shows excellent agreement be-
tween theory and simulation for sequential CI and QI,
with the large 95% confidence interval for o = 8 = 107°
being due to our using only 105 experiments for each hy-
pothesis in the simulations. Figure 4 also confirms the
6 dB error-exponent advantage that sequential CI and se-
quential QI enjoy over their non-sequential counterparts.

NT ~ NB In (45)

VI. DISCUSSION

Our paper has made two significant advances for mi-
crowave QI: (1) it proposed the hetero-homodyne re-
ceiver, whose non-sequential performance matches that
of the Guha and Erkmen’s PA and PC receivers in QI’s
usual Ng < 1, Kk < 1, Ng > 1, M > 1 operating regime,
but exceeds their performance outside this regime; and

(2) it showed that sequential detection, at low single-
trial SNR in QI’s usual operating regime, provides a 6 dB
increase in error-probability exponent for both CI ho-
modyne detection and QI hetero-homodyne detection as
compared to their non-sequential counterparts. In ad-
dition, it showed that cascaded POVMs—of which the
hetero-homodyne receiver is an example—should be con-
sidered for quantum radar.

Advance (2) demonstrates that Tan et al.’s TMSV QI
does not saturate what can be gained from using entan-
glement for target detection in a lossy, noisy environment
despite the optimality proofs from Refs. [13-19]. That
demonstration begs the question of why it does not con-
tradict those proofs. The answer is simple. Those proofs
assume pure-state, signal-idler pulses with fixed time du-
ration, whereas sequential detection employs a random
number of fixed-duration pulses making its overall time
duration random.

Three other questions that immediately arise are: (1)
whether the MS mode-pair TMSV states are optimum for
hetero-homodyne reception using our sequential proto-
col; (2) whether known optimum QI receivers for single-
pulse operation can increase their 6 dB quantum advan-
tage by employing them in the sequential protocol; and
(3) for either single-pulse receiver, whether our form of
the sequential protocol can be improved. With regard to
the first question, we suspect that TMSV states are op-
timal for the hetero-homodyne reception’s non-adaptive
SPRT, but a different answer might emerge from recent
work on quantum sequential detection [31]. The answer
to the second question is a definite yes. Replacing the
hetero-homodyne receiver with either the feed-forward
sum-frequency generation receiver [11] or the coherence-
to-displacement receiver [12] improves the SNR on each
pulse by 3dB in comparison with hetero-homodyne re-
ception. So, operating at low single-pulse SNR, these op-
timum receivers will accrue an additional 6 dB quantum
advantage over their non-sequential counterparts, as can
easily be proved by paralleling the calculation we did for
hetero-homodyne reception’s SPRT. Of course, this per-
formance gain comes at the expense of vastly more com-
plicated single-pulse receivers. For the third question we
note that sequential use of the hetero-homodyne receiver
or the optimum QI receivers might increase their quan-
tum advantages by letting their k" transmitted pulse
employ a brightness, Ng(k), that depends on the like-
lihood accumulated from the prior measurements in a
manner that minimizes the average number of pulses
needed to reach convergence. We leave exploration of
this possibility for future work.

At this point it behooves us to address some additional
issues regarding the hetero-homodyne receiver and its use
with sequential detection. On the negative side are its
continuing need for knowledge of the target’s phase de-
lay and its requiring a quantum memory for idler storage.
Conventional (non-sequential) CI with homodyne detec-
tion has no idler to store, but it has the same need for
phase-delay information. That said, CI target detection



employing heterodyne detection, plus matched filtering
and envelope detection at the intermediate frequency, ob-
viates the need for phase-delay information and suffers
only ~3dB loss in error-probability exponent [32]. Non-
sequential QI with a dual hetero-homodyne receiver that
homodynes both quadratures and incoherently combines
their outputs offers insensitivity to the target’s phase de-
lay, but it suffers a 3dB SNR loss from its 50-50 split-
ting of the stored idler and therefore fails to provide any
quantum advantage.

On the positive side for sequential hetero-homodyne
QI is its less demanding bandwidth requirement. In par-
ticular, a low QI error probability, Pr(e) < 1, requires

B ~ —2NpIn[Pr(e)]/cNsT (46)
for non-sequential operation and
Bg ~ —NpIn[Pr(e)]/2kNsT(Kqr) < B (47)

for sequential operation at the same pulse duration. Be-
cause we are operating with Ng < 1, kK < 1 and N > 1,
both of these bandwidth requirements will be demanding
in the microwave region [33], but that for sequential op-
eration will be substantially less so. In fairness, we must
note that error probability at fixed kNg/Np is deter-
mined by time-bandwidth product, and the sequential
approach’s relaxed bandwidth requirement comes from
its using a total time duration in excess of (Kqr)T as
compared to non-sequential operation’s T's duration. So
non-sequential operation that does coherent processing
of M/Mg bandwidth-Bg pulses would use a total time
duration equal to the sequential system’s average time
duration. In that case, although both systems use the
same effective time-bandwidth product, the multi-pulse
non-sequential system would have 6 dB lower SNR than
its sequential counterpart, as seen in Sec. IV.

A final point worth noting is that the hetero-homodyne
receiver does not circumvent QI’s single-bin-interrogation
limit, i.e., for best performance its receiver’s joint mea-
surement must be made on returned radiation from a sin-
gle azimuth-elevation-range-Doppler-polarization bin [1].
Hence, the total time duration spent probing that bin
must be short enough to freeze the target’s motion. Se-
quential detection’s entailing longer interrogation times
than non-sequential (single-pulse) operation exacerbates
this problem for detecting airborne targets, and espe-
cially so when it utilizes far more than its average num-
ber of pulses; see Sec. V’s distributions for the number
of trials needed. However, hetero-homodyne reception
is applicable to tasks that are not plagued by the pre-
ceding limits on its use in quantum radar. Indeed, we
believe its non-adaptive form is immediately relevant to
the phase estimation, entanglement-assisted communica-
tion, and general thermal-loss channel pattern hypothesis
testing considered by Shi et al. [12]. For example, hetero-
homodyne reception’s same non-sequential LRT can be
used, with v = 0, for entanglement-assisted binary phase-
shift keyed communication.

In conclusion, we believe the hetero-homodyne receiver
we have proposed both pushes microwave QI target de-
tection closer to fruition and underscores the need for
continued research into quantum radar.
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Appendix A: Likelihood-Ratio Test for
Hetero-Homodyne Reception

Our first task, in this appendix, is to show that with
ERg(t) for t € T being the classical random process out-

come from heterodyne detection of Eg(t), and

(= | dtRelEr(t)E;(t —2R/c)]
Tr

(A1)

being an observable obtained from homodyne detection
of Er(t — 2R/c) using a local oscillator whose mean
field is proportional to E};(t), then the LRT for hetero-
homodyne QI’s minimum error-probability decision be-
tween equally-likely target absence and presence reduces
to threshold test

say Hy
¢ 2 y=MaNs/2 (A2)
say Ho

where £ is the outcome of the ¢ measurement and opera-
tion is in QI’s usual asymptotic regime, Ng < 1, k < 1,
N > 1, and M > 1. The second task, for this ap-
pendix, is to validate the threshold test’s error probabil-
ity expression given in Sec. III.

Given the true hypothesis, the M mode pairs,
{(ér,,,ar,,)}, comprising Egr(t) and Er(t — 2R/c) are
iid. Thus it suffices to start with just a generic mode
pair, (ag,ar), to accomplish our tasks. The pair’s joint
density operator, ﬁgl) , given hypothesis Hj is true, is
completely characterized by its normally-ordered form,

(k)

P arsar) = rlag| flarldlslar)lar)r,  (A3)

where |ag)r and |a); are coherent states of the ar and
ar modes. The conditional state of the ar mode under



Hy,, given that heterodyne detection of the ar mode has
resulted in outcome apg, is completely characterized by
its normally-ordered form

(K
rlarl rlarlpptlar)rlar) r

rlarlplar)

k
plinlar | ar) =

o (Ad)

where pAgf) is the reduced density operator of the ar mode

under hypothesis H.

For Tan et al’s target detection scenario, both the
numerator and denominator in Eq. (A4) represent zero-
mean Gaussian states. Under hypothesis Hy, the ag and
ar modes are in a product of thermal states with av-
erage photon numbers Np and Ng, respectively. Thus

p(I%(a 1 | ar) is a thermal state with average photon num-

ber Ng, which can be approximated by the vacuum state

when Ng < 1. Under hypothesis Hy, however, the agr
- (1) )

and a; modes are correlated, as seen from pp;(ag,ar)’s

covariance matrix,

(1) (1)
A(l) _ AR ARI (A5)
RI (T ’
(Agp)™ As
where
1 Nsg+ Np+1 0
Ag>—{“ s+ Np ] (A6)
2 0 #Ng + Ng + 1
N,
~ TB IQ, (A7)
A(l} _ 1 kNg(Ng +1) 0 (A8)
RE2 0 —/rNs(Ns + 1)
1 kN, 0
~ 5 § (A9)
2 0 — KNS
and
Ay = Ns; LB 152 (A10)

with I being the 2 x 2 identity matrix.
Standard results for jointly-Gaussian random variables

now gives us that p(ll‘g%(a 1 | ar)/m is the probability den-
sity for a 2D Gaussian random vector,

a — [ Re(ar) } 7

Tan(a) (A11)

with mean value (using the obvious definition for ar)
Elar | Hi,an] = (A (AR)) "an, (A12)

kNg(Ns+1)[1 O
 kNs+Np+1 |0 -1

N\/KNS 1 0 a
TN o -1]°®

} ar (A13)

(A14)

and covariance matrix

AL = A0 — (AG)T(AR) 1AL (A15)
(Ng+1)(Ng+1) I,
— ~ —. Al
2(kNs + Np+1) 27 2 (AL6)

Stated succinctly, these results imply that in QI’s asymp-
totic regime ﬁ(fﬂ? is the coherent state |(v/kNg/Ng)af)1,

where ag is the outcome of heterodyne detecting the ar
~(0)
PR

Given ag, let a7, be the LO mode that beats against
the a;y mode during homodyne detection. Under that
conditioning the LO mode is in a coherent state |af )
with ajo o a}. Thus, with the appropriate normal-
ization, the homodyne output a’lr can be taken to be
Re(agar), where the a; mode is in the vacuum state if the
target is absent and the coherent state |(vkNg/Np)afk) 1
if the target is present. Armed with this information we
can now evaluate the LRT for hetero-homodyne QI. We
start from

mode, while is the vacuum state.

, say Hi
Pag|H, (OR | Hl)pa’lr\Hl,aR(a[T | Hi,ar) > )
Parito(@r | Ho)pa, |Hoan (e, | Hoar) < 7
Ho
(A17)

where the threshold value assumes equally-likely target
absence and presence. Substituting in the probability
densities, taking logarithms of both sides, and rearrang-
ing terms reduces the LRT to

say Hi
/ > VkNg 2
. A18
a['r' < 2NB |aR| ( )
Ho

for a decision based on one mode pair. Summing over all
M mode pairs, this threshold test becomes the result we
are seeking, viz.,

say Hi
> kN,

¢ = YEYS [ Bt ~ My/kNg/2, (A19)
< 2Np Uty

Ho

where the approximation is due to M > 1 and the law
of large numbers. So, to validate the error probability
expression from Sec. 111, it only remains for us to verify
the asymptotic-regime conditional means and variances
of ¢ given the true hypothesis. Here, for completeness, we
will postpone assuming Ng < 1, K < 1, and Np > 1 so
that general results are available for use in Appendix B.

Using mode expansions for Er(t) and E;(t — 2R/c),
we have that

(M—-1)/2
é = Z Re(aRm &[m), (AQO)
m=—(M-1)/

2



from which our earlier results immediately give

E(C | Ho) =0, (A21)
and
(M-1)/2
K,Ns(NS + 1) 9
E(|H)= Y  Re|YX——"—"F—"(ag,|*)
me— (M 1)/2 kNg+ Np+1
(A22)
:M\/KNS(NS—Fl)zM kNg, (A23)

which reproduce the conditional means given in Sec. III.
To obtain the ¢’s conditional variances, given the true
hypothesis, we use iterated expectation, i.e.,
Var(¢ | H,) = E{Var[¢ | Hy, Er(t)] | Hx}

—l—Var{E[E ‘ Hk,ER(t)] | Hk} (A24)

Under Hy this result becomes

(M—1)/2 lan. 2)
> RT — MNp/4, (A25)
m=—(M—1)/2

Var(¢ | Hy) =

while under H; it becomes

(M-1)/2

Var(¢ | Hy) = Z

m=—(M—1)/2

?)

(lar,,
4
KNs(NS + 1) (M—D)/2

DY
(kNs+ Np +1) = (M —1)/2

ZMKNs(NS + 1)
kNg+ Np +1

Var(lag,,|* | Hi)

= MNg/4+

~ MNg/4, (A26)

again reproducing the results from Sec. III.

Appendix B: Comparison Between QI PC and QI
Hetero-Homodyne Reception

The sufficient statistic, £pc, for Guha and Erkmen’s
PC receiver is the outcome of measuring the observable

(M-1)/2

Ech Z

m=(M—1)/2

Re[(\/idh +ar,,)ar,,], (B1)

where the {ay,, } are the vacuum-state, signal-port inputs
to the PC receiver’s parametric amplifier that is used to
conjugate the return modes. In QI's Ng < 1, k < 1,
Np > 1, M > 1 asymptotic regime, the PC receiver’s
minimum error-probability decision rule is

say Hi
>
lpec 2 M+/kNg /2, (BQ)
Hy
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heterodyne | g (¢ IR /e
Er()e m) Tand @ |1] 2R/e

demodulation delay

Er(t —2R/c)

y

I and —Q
modulation

ELO (t)e—iumt

Efo(t)e™!

Eg(t)e~iwot homodyne

Re[E;(t — 2R/c) Eg(t)]

say Hi
decision «—— ¢ = Y |e ¢ / dt
< Tr
say Ho
v =M~y/kNg/2

FIG. 5. Schematic of a hetero-homodyne receiver with-
out quantum memory. Thick arrows represent quantum mi-
crowave fields. Thin arrows represent baseband signals that
are conditioned on the outcome of the heterodyne measure-
ment.

to decide between target absence and presence. This
receiver’s performance matches that of our hetero-
homodyne receiver. However, outside of that regime,
its sufficient statistic is noisier than that of the hetero-
homodyne receiver. In particular, both receivers’ suffi-
cient statistics have the same conditional means under
Hy and Hq, but

M
Var({pc | Hp) = v

[(Ng+1)(Ns+ 1)+ NgNg + 2Ng]
(B3)
and

M
Var(fpc | Hl) = Z[(NR + 1)(NS + 1) + NrNg

+ 2Ng +2kNg(Ns +1)]  (B4)

where Np = kNg + Np, exceed their hetero-homodyne
receiver counterparts from Appendix A. The reason for
this behavior is that the PC receiver’s phase-conjugation
operation admits more quantum noise than does the
hetero-homodyne receiver.

Appendix C: Hetero-Homodyne Detection with
Idler Heterodyning

It is very tempting to replace the cascaded POVM
shown in Fig. 2 with the one shown in Fig. 5, because it
eliminates the need for idler storage in a quantum mem-
ory, as we now explain.

In this receiver architecture the roles of the returned
radiation and the stored idler have been exchanged. Het-



erodyne detection is now performed on the idler, yielding
a classical random process Ej(t) after I and @ demod-
ulation. This classical signal can be stored for the 2R/c
range delay without the need for a quantum memory. In-
deed, it can be sampled at the Nyquist rate for bandwidth
B, quantized finely, and stored in a conventional digital
memory for reconstitution when it is needed to drive the
I and —@ modulation of the E1,o(t) field. The observable
that is measured by homodyne detection, conditioned on
Er(t — 2R/c), is then { = Re[E;(t — 2R/c)Eg(t)]. Par-
alleling the development from Appendix A, it is easily
shown that, with ¢ being the result of the { measure-
ment, the following threshold test minimizes the error
probability for equally-likely target absence and presence
when Ng < 1, k<1, Ng>1,and M > 1:

say Hy
ViN
0 i % dt|Ef(t — 2R/c)|? ~ M+\/xNs /2.
Tr

Ho
(c1)
Again paralleling what we did in Appendix A, we find
that

E(¢| Hy) = 0, (C2)

11

E(¢| H)) ~ M+\/xNs, (C3)

Var(¢ | Hy) ~ Var(¢ | Hy) = MNg/2, (C4)

for the Fig. 5 receiver in QI’s asymptotic regime. Invok-
ing M > 1 to approximate ¢ as conditionally Gaussian
given the true hypothesis, we get

Pr(e)or = Q(v/MrNs/2Np) < e MrNs/4Ns /3 - (C5)

which matches CI’s error probability.

Sadly, we have found that the Fig. 5 receiver offers no
quantum advantage, i.e., the need for quantum memory
cannot be circumvented in this manner. The reason for
the performance disparity between the Fig. 2 and Fig. 5
forms of hetero-homodyne reception is easily seen. Con-
ditioned on FEgr(t), the idler is quantum limited, hence
its homodyne detection suffers half the quantum noise
of its heterodyne detection. Conversely, conditioned on
Er(t —2R/c), the returned radiation is background lim-
ited, hence its homodyne detection suffers the same noise
as its heterodyne detection.
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