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The statistical properties of fracture strength of brittle and quasi-brittle materials are often de-
scribed in terms of the Weibull distribution. The weakest-link hypothesis, commonly used to justify
it, is however expected to fail when fracture occurs after significant damage accumulation. Here we
show that this implies that the Weibull distribution is unstable in a renormalization group sense
for a large class of quasi-brittle materials. Our theoretical arguments are supported by numerical
simulations of disordered fuse networks. We also find that for brittle materials such as ceramics,
the common assumption that the strength distribution can be derived from the distribution of pre-
existing micro-cracks by using Griffith’s criteria is invalid. We attribute this discrepancy to crack
bridging. Our findings raise questions about the applicability of Weibull statistics to most practical
cases.

PACS numbers: 62.20.mm,62.20.mt,62.20.mj

I. INTRODUCTION

The applicability of the Weibull distribution to de-
scribe the fracture strength of brittle and quasi-brittle
materials has been a topic of intense debate [1–9]. Sev-
eral experimental studies argue that the Weibull distri-
bution is not always the best statistical distribution to
fit fracture data [1, 2, 6, 8, 10–12] (numerous other argue
otherwise), particularly for quasi-brittle materials that
have significant precursor damage. These observations
demand a general theoretical explanation. The suggested
explanations for these empirical observation includes bi-
modal or multimodal flaw size distribution [1, 13–15],
R-curve behavior [6], small size of the datasets [1, 9],
and thermal activated crack nucleation [16, 17]. Here we
provide a general explanation for these observations by
showing that the Weibull distribution is unstable in the
renormalization group sense for quasi-brittle materials,
and thus not applicable at long length scales.

In deriving the Weibull distribution of fracture
strengths it is invariably assumed that the material vol-
ume has a population of non-interacting crack-like de-
fects, and fracture happens as soon as the weakest of
these defects starts to grow [18–20]. This assumption is
also known as the ‘weakest-link hypothesis’. Experimen-
tal observations suggest that this assumption does not
hold for a large class of quasi-brittle materials. These
materials, including paper [21], granite [22, 23], antler
bone [24], wood [23, 25], and composites [26, 27] etc.,
typically “crackle” [5, 28], suggesting that several local
cracks grow and get arrested prior to global fracture. Ad-
vanced composites are designed to fail gracefully, that
is, they have multiple failures before the ultimate frac-
ture. It is clear that for such materials the weakest defect

does not dominate the fracture properties of the mate-
rial, and the defects interact via elastic fields. The emer-
gent scale-invariant properties of these interactions have
been a topic of intense study in the statistical physics
community [29–32]. Several researchers have used the
Weibull theory to model these quasi-brittle materials.
We show that even if the microscopic strength distribu-
tion is Weibull, the emergent distribution is significantly
distorted due to elastic interactions and metastability.
Thus, the Weibull distribution is not stable in the renor-
malization group sense. We provide numerical evidence
to support our theoretical claims.

For brittle materials such as glasses or ceramics that
fracture catastrophically without precursor damage, it is
assumed that the distribution of fracture strength can
be derived from the distribution of flaw sizes by using
Griffith’s criteria (or equivalently the stress intensity ap-
proach) and ignoring effects such as crack bridging or
coalescence [1, 33]. For exponentially distributed cracks
the fracture strength is expected to be described by
the Duxbury-Leath-Beale (DLB) distribution [5, 34, 35],
while only in the case of power law distributed cracks
one expects to obtain the Weibull distribution [36]. It
is, however, challenging to measure the flaw size distri-
bution experimentally, and thus these assumptions are
rarely verified empirically [14, 37, 38]. One of the aims
of this paper is use numerical simulations to show that
the simple relations that are widely used in the literature
are not accurate, and further study is needed to under-
stand the discrepancy. This observation has important
implications for material engineers who aim to improve
the fracture properties of brittle materials by controlling
the micro-structure.

In light of the above discussed limitations of the



2

Weibull theory, what distribution should one use to fit
fracture data? To answer this question, we consider two
classes of fuse networks to model brittle and quasi-brittle
materials. Both of the these models are derived from the
classical fuse network models [34, 39]. In the model for
brittle materials, the fuse network is seeded with power
law distributed cracks with varying morphology. This
is different from the classical diluted fuse network model
which has an exponential distribution of cracks [5, 34, 35].
The model for quasi-brittle materials has a continuous
distribution of fuse strengths, where each fuse strength
is a random number drawn from a standard Weibull dis-
tribution. In this manner we can ensure that the mi-
croscopic strength distribution is Weibull, and study the
emergent macroscopic distribution. This model differs
from its counterparts in the literature [29, 40] by the
choice of the microscopic disorder, and enables a numer-
ical study of the stability of the Weibull distribution.
Analyzing the simulations, we find that the recently pro-
posed T-method provides a suitable alternative to fit the
numerical data [41]. The method is general enough that
it can be applied in a wide variety of cases.
The rest of the paper is organized as follows. Sec-

tion II presents the basics of the classical Weibull theory
and the commonly used relation between the strength
distribution and the defect size distribution. The details
of the numerical models used in this study are discussed
in section III. Section IV presents theoretical and nu-
merical evidence to show that the Weibull distribution
is unstable under coarse graining for quasi-brittle mate-
rials. In section V we present the numerical evidence
to show that the relation between the strength distri-
bution and the flaw size distribution is nontrivial, and
cannot be obtained by a straightforward application of
the Griffith’s criteria. We discuss the possible sources of
the observed discrepancy. Section VI presents a compar-
ison of the performance of the Weibull distribution and
the recently proposed T-method for fitting the simulation
data for quasi-brittle fuse networks. The conclusions are
presented in section VII.

II. WEIBULL THEORY

In this section we review the classical Weibull theory in
order to facilitate the discussion in the following sections.
We consider a material volume V subjected to a stress
field σ(r). The material is supposed to have a density
of defects of various shapes and sizes, such that e−f(σ)

is the probability of not finding a defect with critical
stress less than σ in a volume V0 of the material. Here
we assume that the stress in uniaxial and tensile; the
case of full tensorial stress is similar and is not presented
here to avoid unnecessary notational complexity. The
volume V0 is supposed to be large enough that it contains
sufficient number of cracks, and yet small enough that the
stress can be considered roughly constant across it; it is
sometimes also called the representative volume element.

f(σ) is supposed to be a homogeneous material property.
Then, the probability that the material volume V will
survive the stress field σ(r) is given by

SV (σ) = exp

(

−
1

V0

∫

V

f(σ(r))dr3
)

. (1)

Weibull recognized that taking f(σ) = (σ/σ̄)k, where σ̄ is
a material dependent scale parameter, and k is the mate-
rial depended Weibull modulus, gave a good fit for several
brittle materials, and introduced what is now known as
the standard Weibull distribution [18]

SV (σ) = exp

(

−
1

V0

∫

V

(σ

σ̄

)k

dr3
)

. (2)

It turns out that the empirical choice made by Weibull
can be justified by a renormalization group calculation
in which one writes recursive equations describing the
failure distribution as the scale is changed [42]. The
Weibull distribution is one of the possible fixed points
of the renormalization group transformation [42].
The Weibull distribution can alternatively be derived

by connecting the function f(σ) to the microscopic de-
fect size distribution. The basic calculation outlined in
the remainder of this section can be found in a number
of important references [1, 33]. According to Griffith’s
criteria, a crack of length w is stable at applied normal
stress σ if

K = σY w1/2 ≤ KIc, (3)

where Y is the geometry factor of the crack, and KIc, the
critical stress intensity factor, is a material property. The
exponent of 1/2 is applicable for ideally sharp cracks, and
can have a different value for wedge shaped or blunted
cracks. Thus, if we take e−h(w) to be probability that
the volume element V0 does not contain any crack longer
than w, then we have

f(σ) = h(K2
Ic/σ

2Y 2). (4)

If the defect size (crack length) distribution is a power
law with exponent γ, then h(w) ∼ w−γ , which gives
f(σ) ∼ (σ/σ̄)2γ , where σ̄ = KIc/Y . Thus, a power law
defect size distribution with exponent γ leads to Weibull
distribution of fracture strength with modulus k = 2γ.
As pointed out before, this entire analysis assumes

that the flaws do not interact, and that the failure of
the weakest flaw leads to the failure of the entire ma-
terial volume. We also show in section IV relaxing the
assumption that the weakest flaw leads to global failure
has important consequences and results in the strength
distribution flowing away from the Weibull form. Our nu-
merical calculation reported in section V sections show
that crack bridging is an important form of crack inter-
action that can significantly alter the resulting Weibull
modulus away from the dilute limit (but does not change
the Weibull form for power law distributed cracks).
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III. THE RANDOM FUSE MODEL

In this section we describe the computational model
that we use for various classes of brittle and quasi-brittle
materials. The theoretical arguments presented in later
sections benefit from having a concrete model as a point
of reference. We study several variants of the basic two
dimensional random fuse model (RFM) [34, 39]. The
RFM is a well accepted model of brittle fracture where
each fuse represents a coarse grained material region
(analogue of the classical representative volume element).
The model consists of a set of conducting fuses with unit
conductivity gj = 1 and breaking threshold σj , arranged
on a 45◦-tilted square lattice composed by L× L nodes.
A unit voltage drop is applied along two parallel edges
of the lattice while periodic boundary conditions are im-
posed along the other two edges. The Kirchhoff equations
are solved numerically using the algorithm proposed in
Ref. [43] to determine the current flowing in each of the
fuses. We then evaluate the ratio between the current ij
and the breaking threshold σj and the fuse having the

largest value, maxj
ij
σj
, is irreversibly removed (burnt).

The current is redistributed instantaneously after a fuse
is burnt. Each time a fuse is burnt, it is necessary to re-
calculate the current distribution in the lattice. The pro-
cess of burning fuses, one at a time, is repeated until the
lattice system fails completely (becomes non-conductive).
The random fuse model is equivalent to a scalar elastic
problem where we consider a pure anti-plane shear de-
formation. In this condition, the shear stress σ is related
to the total current I by σ = I/L, the shear strain ǫ
to the voltage drop v by ǫ = v/L and the conductivity
g is equivalent to the shear modulus. From the break-
ing sequence we can derive the current-voltage (or stress-
strain) curve of the network under adiabatic loading as
discussed in Ref. [44].
In this study we employ two different disorder distri-

butions to model quasi-brittle and brittle materials:

i Weibull disorder (Quasi-brittle). The fuse strength
threshold is chosen to be a random variable drawn
from a Weibull distribution with modulus k, thus
the survival probability of a fuse at applied stress

σ is S1(σ) = e−σk

. Fuse networks with continu-
ously distributed strengths have been studied pre-
viously [29]. In those studies the thresholds were
drawn from the uniform [29], power law [30, 31],
and hyperbolic distributions [45]. However, the fo-
cus of those studies was on the morphology and
dynamic properties, while we focus on strength.
Further, by letting the local thresholds be Weibull
distributed, we can directly study the stability of
the Weibull distribution under coarse graining.

ii Diluted cracks (Brittle). We remove a fraction p
of the fuses and assign the same breaking thresh-
old (= 1) to the intact fuses [5, 34]. We take
0.05 ≤ p ≤ 0.2, thus keeping the initial dam-

age fairly dilute in order to avoid the phenomena
that happens near the percolation threshold (at
p = 0.5 for the tilted square lattice we are us-
ing). Note that the missing fuses are not chosen
randomly, but rather in a way that they form a set
of cracks with power law distributed crack lengths
with 2.5 ≤ γ ≤ 9, where γ is the exponent of the
power law. We employ both straight and fractal
flaws, grown by using self-avoiding random walks.
Fuse networks with diluted cracks were originally
studied in Refs. [34, 39]. However, in those studies
the cracks lengths had an exponential distribution
(as opposed to power law). Exponential distribu-
tion of defect sizes leads to a Gumbel type distribu-
tion of strengths, and thus are markedly different
from our model.

For each case, we do extensive statistical sampling for
network sizes L = 32, 64, 128, 256, 512.

IV. STABILITY OF WEIBULL DISTRIBUTION

FOR QUASI-BRITTLE MATERIALS

The standard Weibull distribution reported in Eq. 2
is derived under the assumption that the failure of the
weakest flaw (or representative volume element) leads
to complete global failure. Under this assumption, if
the strength distribution of the representative element

is standard Weibull with modulus k, i.e. SV0
(σ) = e−σk

,
then the survival probability of the material volume V is
given by

SV (σ) = SV0
(σ)V/V0 = exp

(

−
V

V0
σk

)

. (5)

In mathematical terms, we can say that the Weibull dis-
tribution is stable under coarse graining: A system com-
posed by subsystems described by the Weibull distribu-
tion is itself described by the Weibull distribution.
As we mentioned earlier, however, the weakest-link as-

sumption is not accurate in quasi-brittle materials. We
can then derive the condition for Eq. 5 to remain valid
if this assumption is relaxed. The stress at which the
weakest flaw fails scales as σmin ∼ (V0/V )k. The failure
of this volume element enhances the stress on its neigh-
bors due to stress concentration. However, the neigh-
bors of the weakest flaw are typically not very weak, and
we safely assume that their strength is near the mean
strength 〈σ〉 = 1. Assuming that the stress concentra-

tion factor scales as Y V β
0 , where Y is a geometry factor,

the neighboring volume element fails if σminY V β
0 > 〈σ〉

which yields k & logV/V0 as the approximate condition
for the validity of the weakest link hypothesis. Outside
of this range the local failure of the weakest link does not
trigger global failure. In this calculation we have ignored
details and made several simplifications, thus it only gets
the correct scaling.
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FIG. 1. (color online) Emergent survival probability for L =
4, . . . , 128, with k = 25 for the threshold distribution. If the
emergent distribution was Weibull, it would follow the solid
black line. Clearly, the distribution flows away from Weibull
at long length scales, showing that the Weibull distribution is
not stable in a renormalization group sense.

The above arguments show that the weakest link hy-
pothesis is self-consistent, and the Weibull distribution is
stable under coarse-graining only if the Weibull modulus
is large enough, k & logV/V0. Clearly, the strength dis-
tribution flows away from the Weibull distribution in the
limit of V → ∞. The typical ranges for the Weibull mod-
ulus are k > 30 for metals, 5 < k < 20 for ceramics [46],
and 2 < k < 4 for biomaterials such as nacre [47]. It is
clear that for materials with small to moderate values of
k (such as biomaterials) the applicability of Weibull anal-
ysis is questionable. Indeed the weakest link hypothesis
is manifestly false — these materials exhibit significant
precursory fracture events (crackling noise) before failure
[28].

Figure 1 shows the emergent strength distribution for
fuse networks of various sizes where the fuse threshold
is taken from a Weibull distribution with k = 25. We
choose such a high value of k to show the crossover away
from Weibull, for smaller values of k the distribution has
already flown away from Weibull even for the smallest
networks that we can simulate. According to the Weibull
theory the emergent distribution of strength would be
given by Eq. 5 with V/V0 = L2 (there are L2 fuses),

thus giving SL2(σ) = e−L2σk

. Figure 1 shows that while
this prediction holds for small values of L, the distribu-
tion flows away from the Weibull distribution at longer
lengths. This shows that the Weibull distribution is un-
stable to disorder in a renormalization group sense, and
must be used with caution for quasi-brittle materials.

We have established that the strength distribution
flows away from Weibull in quasi-brittle materials, but
what does it flow towards? It is an unsolved problem
to compute the new emergent distribution of strengths
analytically. However, to get some idea about the distri-
bution, we compute a very simple minded upper-bound

to the survival probability for the fuse network model.
From Eq. 3, at any given stress σ the length of the crit-
ical crack goes as wcr(σ) ∼ (σ̄/σ)2 (i.e. a crack longer
than wcr will have unstable growth) If the fuse strength
threshold is standard Weibull, then the probability of
having a crack of size wcr at any given lattice site is at

least (1 − e−σk

)wcr(σ). Since there are L2 lattice sites,
the global probability of survival is at most

(1 − (1− e−σk

))wcr(σ))L
2

. (6)

Making asymptotic expansions for small σ, we get

SL2(σ) < exp(−L2e−k(σ̄/σ)2 log(1/σ)). (7)

If we take the slowly varying log(1/σ) to be a con-
stant, then the above expression is reminiscent DLB
distribution[34]. The factor of log(1/σ) can be removed
in a more natural way if one takes into account the stress
concentration at each step of crack growth (see Ref. [40]
for a similar treatment). Our observation is supported
by experimental results for some quasi-brittle materials
where the DLB distribution was found to fit the data
better than the Weibull distribution [10–12].
Since the upper bound that we have established decays

faster than any Weibull function at σ = 0, the macro-
scopic survival probability cannot be of the Weibull form,
even if the microscopic distribution is Weibull. Note that
the arguments made here are fairly general, and thus we
expect the macroscopic strength distribution for any ma-
terial with significant precursor damage to deviate from
the Weibull distribution. We have confirmed that these
ideas are consistent with the results of our numerical
simulations. Figure 2 shows the survival probability ob-
tained by statistical sampling of fuse networks with dif-
ferent values of k. The main plot in the figure shows that
the survival probability is consistent with a DLB distri-
bution. If instead the survival probability was consistent
with a Weibull distribution, then the insets in the figure
(so called Weibull plots) would be straight lines. How-
ever, the plots show considerable curvature, suggesting
a deviation from the Weibull distribution at long length
scales.
The DLB distribution was originally associated with

samples having an exponential distribution of crack
length [5, 34]. We have confirmed this hypothesis in our
simulations by measuring the crack length distribution
just before catastrophic failure. The result, reported in
Figure 3 shows indeed the presence of an exponential tail.

V. DEFECT DISTRIBUTION AND WEIBULL

MODULUS FOR BRITTLE MATERIALS

It is widely assumed that the emergent Weibull modu-
lus for brittle materials can be derived by using the Grif-
fith’s criteria if the crack length distribution is known.
This assumption has been used in several important stud-
ies [1, 33]. However, it has never been verified empirically
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FIG. 2. (color online) Survival probability for a) k = 1.5
and b) k = 4. The main figures show the DLB test, while the
insets show the Weibull test; straight lines indicate agreement
with the tested form.

due to experimental challenges. We examine this as-
sumption numerically by simulating fuse networks seeded
with power law distributed cracks. Cracks are created by
removing a certain fraction, p, of fuses from the network.
The net density of cracks, p, is kept low (< 0.2) to mimic
materials such as glasses or ceramics where the density of
micro cracks is small. The critical effects associated with
approaching the percolation threshold are also avoided
by keeping p small. Unlike the classical fuse network
models, the removed fuses are chosen so as to generate a
power law distribution of crack lengths (section III).
We derive the strength distribution based on the stan-

dard Griffith’s criteria based assumption and compare
the result to simulations. According to Griffith’s theory,
if the exponent of the power law distribution of crack
lengths is γ, then for Eq. 4 we have h(w) ∼ pw−γ , giving
f(σ) ∼ p(σ/σ̄)2γ , where σ̄ = KIc/Y . This yields the
following Weibull distribution of strengths for a fuse net-
work of linear size L and ‘volume’ L2 (assuming uniform
stress)

SL2(σ) = e−L2p(σ/σ̄)2γ , (8)
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FIG. 3. (color online) Crack-width distributions at peak load
for Weibull-distributed fuse strengths with exponents a) k =
1.5 and b)k = 4. The distribution is a power-law with an
exponential tail for all values of k.

thus the Weibull modulus is given by k = 2γ.

The above discussion assumes that flaw distribution
does not change at all in fracture process. In real materi-
als, as well as in our fuse network model, there is at least
a small amount of damage before catastrophic fracture.
This damage can change the tail of the crack width distri-
bution. Let γi, γf be the exponent of the crack size distri-
bution before loading, and at peak load, respectively. We
investigate the relation between γi, γf , p, and k numeri-
cally. We find in our simulations that γi < γf . Further,
we find that the modulus of the emergent Weibull dis-
tribution is related to the damage distribution at peak
load, k = 2γf . Figure 4a. shows the comparison of the
crack size distribution at zero and peak load for γi = 5.
Figure 4b. shows the corresponding survival probability
on a so called Weibull plot. The slope of the Weibull
plots agrees well with 2γf .

Thus, the standard assumption of k = 2γi is incor-
rect. We further explore the relation between γi and
γf by carrying out extensive numerical simulations for
2.5 < γi < 9.0, and 0.01 ≤ p ≤ 2. We also investigate
the effect of the shape of initial cracks. We seed the net-
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FIG. 4. (color online) a) Crack-width distributions at peak
load for a system with power law distributed cracks. The
power law tail has an exponent γf that is larger than the initial
one γi. b) The corresponding survival distribution obeys the
Weibull law with k = 2γf

work either with straight cracks, or fractal looking cracks
grown by using self-avoiding random walks. In both cases
we maintain the width distribution, h(w) ∼ w−γi , and
the defect density as dictated by p. Figure 5 shows the
relation between γi and γf for various values of p for
straight as well as grown cracks. For all the cases we
observe that γf > γi. It is reasonable to expect a slight
increase in the exponent γ due to crack bridging. How-
ever, it is not clear what causes the almost three times
increase in γ for some configurations.

VI. T-METHOD TO FIT THE STRENGTH

DISTRIBUTION

Except for the case of power law distributed cracks, we
see that the strength distribution is not Weibull, and is
probably of the DLB type. In a previous paper [5] we dis-
cussed how the extreme value functions are an extremely
poor approximation to the DLB form. These considera-
tions raise the following question: what form should be

�

�

FIG. 5. (color online) Relation of the exponents of the crack-
width distribution initially, γrmi, and at peak load, γf . For
linear-grown cracks, the relation depends strongly on p and γi,
while for random-walk-grown cracks we find γf ≈ cγi + d, for
both investigated dilution parameters p = 0.05 and p = 0.1.

used to fit fracture data in practice?
One of the major concerns while fitting data to ex-

treme value distributions is the accuracy of extrapo-
lations in the low probability tail. We compare the
standard Weibull theory and the recently proposed T-
method [41] by fitting the data fracture data for the
quasi-brittle fuse networks with the two techniques. In
Weibull theory (Eq. 2) the survival probability of the

network is given by SL2(σ) = e−L2(σ/σ̄)k . Given the ob-
served data vector X (= vector of fracture strengths ob-
served in simulation) of length n, the parameters (σ̄, k)
are determined by using the maximum likelihood esti-
mation (MLE) as the values that maximize the following
log-likelihood function

LW (σ̄, k|X) =

n
∑

i=1

∂Xi
logSL2(Xi). (9)

The parameters that minimize the above log-likelihood
function give the best fit parameters (σ̄, k) for theWeibull
theory. The T-method first applies a nonlinear trans-
formation to the data, T (X) = X

−α, and then fits the
transformed data of an extreme value form, thus giving
the following log-likelihood function [41]

LT (α, a, b|X) =

n
∑

i=1

log ∂Xi
G0((T (Xi)− b)/a), (10)

where the parameters (α, a, b) are estimated by mini-
mization, and G0(x) = exp(−e−x) is the standard Gum-
bel distribution. We use the dataset of over 20,000 sim-
ulations, corresponding to the random fuse model with
k = 1.5 and L = 128 to test the applicability of the above
method for such extrapolations. We choose 20 random
samples of 200 data points from the dataset. We then
fit each of the smaller data sets using the Weibull theory
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and the T-method. We extrapolate the fits and compare
prediction in the low probability tail with the empirical
data. Figure 6 shows the ±1 standard deviation predic-
tions of such fits. It is clear from the figure that the
T-method outperforms the standard Weibull theory in
accuracy of the fit and it extrapolation in the low stress
tail.

0.08 0.10 0.12 0.14 0.16
σ

10-5
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10-1

100

1−
S
(σ

)

Empirical
T-method
Weibull

FIG. 6. (color online) Results of extrapolating the fits of the
Weibull distribution and the suggested transformation based
method. Fits obtained from small datasets (size 200) by using
the T-method can be extrapolated with confidence to proba-
bilities about 2 orders of magnitude smaller. The figure shows
±1 standard deviation results.

VII. CONCLUSIONS

In conclusion, we have studied the conditions for emer-
gence of the Weibull distribution for fracture strength in
brittle and quasi-brittle materials. We show the Weibull
distribution is unstable under coarse graining for a large
class of materials where the weakest link hypothesis is
not strictly valid, and there is significant precursor dam-
age. For the case of brittle materials we show that the
relation between strength distribution and the defect size
distribution is highly non-trivial and cannot be obtained
by simple application of the Griffith’s criteria. Crack
bridging has significant effect on the tails of the crack
size distribution, and thus changes the Weibull modu-
lus considerably. We find that the recently proposed
T-method does a significantly better job at fitting the
fracture strength data, as compared to the Weibull dis-
tribution. We hope that the our results will lead to fur-
ther research and discussion about the applicability of
the Weibull distribution for fracture data, particularly
for quasi-brittle materials that crackle.
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