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Processing quantum information using quantum three-level systems or qutrits as the fundamen-
tal unit is an alternative to contemporary qubit-based architectures with the potential to provide
significant computational advantages. We demonstrate a fully programmable two-qutrit quantum
processor by utilizing the third energy eigenstates of two transmons. We develop a parametric
coupler to achieve excellent connectivity in the nine-dimensional Hilbert space enabling efficient im-
plementations of two-qutrit gates. We characterize our processor by realizing several algorithms like
Deutsch-Jozsa, Bernstein-Vazirani, and Grover’s search. Our hardware efficient protocols allow us
to show that two stages of Grover’s amplification can improve the success rates of an unstructured
search with quantum advantage. Our results pave the way for building fully programmable ternary
quantum processors using transmons as building blocks for a universal quantum computer.

I. INTRODUCTION

Noisy intermediate-scale quantum (NISQ) comput-
ers [1] are making rapid progress toward practical ap-
plications with demonstrated advantage over classical al-
gorithms for specific problems [2, 3]. However, a ma-
jority of those processors utilize quantum two-level sys-
tems. Processing information using d-dimensional quan-
tum systems or qudits can boost performance through
access to a larger computational space and with fewer
entangling gates for certain algorithms [4-8]. In the fam-
ily of qudits, quantum three-level systems or qutrits are
the closest members to qubits and provide the immediate
opportunity to explore possibilities beyond two levels as
basic units.

Theoretical studies show that qutrit-based processors
can be beneficial for quantum error correction by pro-
viding compact logical encoding to protect against era-
sure [9, 10] and ternary errors [11], enhance fault tol-
erance [12], enable magic state distillation [13] and ef-
ficient decomposition of multi-qubit gates [14]. Other
proposals claim improved implementations of quantum
gates [15], algorithms [16], simulations [17], cryptogra-
phy [18, 19], and communication [20] using qutrits. Due
to these advantages, several platforms including photonic
circuits [21, 22], trapped ions [23, 24], nitrogen-vacancy
centers [25], and superconducting circuits [26-29] have
started to explore qutrits as computational units. In the
superconducting circuits platform [30], the transmon [31]
is a natural choice to be utilized as a qutrit due to its fast
gates [26, 28], long coherence times [32, 33], weak anhar-
monicity, and easy measurement [34]. While a signifi-
cant effort is being made in realizing efficient two-qutrit
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gates [26-28] with demonstrations of solving specific
problems [35], implementing multiple generic quantum
algorithms on a single processor has remained a chal-
lenge in the circuit QED architecture [30] due to limita-
tions arising from decoherence, slow, static inter-qutrit
interaction or native entangling operations restricted to
a smaller subspace.

In this work, we present a versatile two-qutrit proces-
sor with excellent connectivity between different states
of the full Hilbert space facilitating a rich set of native
entangling gates. The connectivity is achieved through
multiple beam-splitting and two-photon squeezing-like
primitive operations enabled by a linear parametric
coupler [36, 37]. We demonstrate two-qutrit ver-
sions of Deutsch-Jozsa [38, 39], Bernstein-Vazirani [39,
40], and Grover’s search [41] algorithms without using
any auxiliary qutrit (ancilla) [42]. Deutsch-Jozsa and
Bernstein-Vazirani algorithms provide exponential and
linear speed-ups respectively over corresponding classical
algorithms, whereas Grover’s search provides a quadratic
improvement. We perform two stages of Grover’s am-
plification with success probabilities significantly larger
than classically achievable values. To our knowledge,
ours is the first successful demonstration of a qutrit-based
Grover’s search across any quantum computing platform.

II. METHODS
A. Device description

Our two-qutrit processor, shown in Fig. 1(a), is com-
prised of two transmons [31] (Q; and Q2), each having
its readout resonator. Parametric coupling [36] between
the two transmons is realized by grounding the trans-
mon junctions [37] through a superconducting quantum
interference device (SQUID). The SQUID acts as a tun-
able inductor when an external DC magnetic field Peyy
is threaded into the loop. The transmon pads are also



designed to provide a static capacitive coupling with a
strength larger than the inductive coupling at zero exter-
nal flux. By applying a finite @yt one can, thus, nullify
the competing capacitive and inductive energies to min-
imize the cross-Kerr coupling. The fast-flux line is used
to enable various inter-qutrit interactions by modulating
the SQUID at appropriate radio frequencies, whereas the
charge lines can be utilized to drive qutrit-resonator side-
bands. Individual manipulation of the qutrits are done by
sending appropriate microwave pulses to the resonators,
and the states of the qutrits are determined through
transmission measurements. We keep large Josephson-
to-charging energy ratios (2 90) to maintain long de-
phasing times for the second excited states (|2)) for both
transmons [31]. Figure 1(b) shows the equivalent circuit
diagram.

B. Hamiltonian and operating point

The system can be described by the following Hamil-
tonian when no parametric drives are present
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where wy, is |0) <+ |1) transition frequency, oy, represents
anharmonicity, and ny = a;reak is the photon number

operator with a;i(ak) being the creation (annihilation)
operator for the k-th qutrit. For our device, wy /27 =
{3.3494,3.8310} GHz and «ay/27 = {-115.2,-159.8}
MHz for the two transmons. Figure 1(c) shows relevant
energy eigenstates of Eq. (1) with the shaded area repre-
senting computational subspace and two additional levels
used as auxiliary. At ®ey ¢ = 0, only second order para-
metric processes are allowed, whereas biasing the SQUID
loop sufficiently away from the sweet-spot enables first
order processes. The cross-Kerr couplings Jj; also tune
with ®.; and we choose a bias flux ®,,;, so that the
leading order dispersive shift J1; is minimized. We treat
®.uin as the coupler’s ‘off” point as the higher order cross-
Kerr shifts Jyo and Jy; are very close to minimum at
this bias (see Appendix C for details) ensuring reduced
crosstalk during idling periods or gate operations. The
value of ®,,;, is experimentally determined by perform-
ing Ramsey-fringe experiments on )7 conditioned on (2
being in the ground or first excited state and minimizing
the difference in the oscillation frequencies with respect
to (Pext-

We activate qutrit-qutrit (QQ) red and blue side-
bands corresponding to photon-exchange (beam split-
ting) |m,n) <> |m —1,n+ 1) and two-photon pumping
(squeezing) |m,n) <> |m + 1,n + 1) interactions respec-
tively by modulating the SQUID at corresponding tran-
sition frequencies (see Fig. 1(c)). Here the state of the
system |m,n) indicates the qutrits being in the energy
eigenstates |m) and |n) respectively. All native entan-
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FIG. 1. The two-qutrit device. (a) False colored optical mi-
crograph of the device. Two transmons (red) are inductively
connected through a SQUID loop (purple, inset is an SEM im-
age) that enables inter-qutrit parametric coupling. The trans-
mons are capacitively coupled to linear resonators (green) for
individual readout. Single-qutrit and readout pulses are sent
through the input lines. (b) Simplified circuit diagram of the
device. (c) Energy level diagram with various sideband in-
teraction strengths (in MHz). The computational subspace is
highlighted with a gray background and the other states are
used as auxiliary levels to implement controlled-phase gates.

gling gates thus consist of single pulses with fixed carrier
frequencies and are extremely easy to tune up (see Ap-
pendix D for details). The SQUID (coupler) mode is
designed to have a frequency much larger than any rele-
vant radio-frequency (RF) drives during the experiment
at the operating point and is never populated. The blue



sideband frequencies (around 6.5 - 6.9 GHz) are usually
one order of magnitude higher than the red sidebands
(around 0.2 - 0.7 GHz). For the current geometry, stray
capacitive coupling of the flux line to the SQUID [37]
limits the blue sideband rates due to frequency-enhanced
unwanted interactions.

C. Gate operations

Single-qutrit operations are performed by applying
separate microwave pulses at |0) «+ |1) and |1) < [2)
transition frequencies of both qutrits through the read-
out resonators. We use Gaussian-edge rectangular pulses
having 20 edge lengths. Single-qutrit drives use roughly
5 MHz of Rabi rates, whereas phase gates are realized
by simply advancing the phases of the appropriate sub-
sequent pulses. Consequently, the virtual phase gates
take no time and are near-perfect. For the quantum al-
gorithms we use qutrit-Hadamard H, bit-shift X (exten-
sion of the qubit’s NOT gate), and qutrit-phase Z gates
having the following matrix representations

L 001 10 0
H=— |1 w |, X=|100{,Z=|0w 0],
V31 w? w 010 00 w?

where w = €2™/3 the cube-root of unity. Implementation
of H, X, and Z gates require the application of three, two,
and zero physical pulses respectively (see Appendix A).

We can implement arbitrary two-qutrit unitaries and
hence achieve universal computation [43] by combining
single-qutrit rotations along with generalized controlled-
phase (CPhase) gates Cyp(6,|mn)) = Z — (1 — ) |mn)
representing an accumulation of 6 phase on the eigen-
state |[mn), where Z is the nine-dimensional identity ma-
trix. We realize Cy(, |22)) gate by applying a 94 ns long
2m-pulse at the red sideband [22) <+ |31). Similarly, a
56 ns 2m-pulse at the red sideband |21) <+ |30) enables
a Cyp(m,|21)) gate (see Appendix D). We sandwich these
Cy gates between single-qutrit 7 gates to achieve phase
flip on any computational basis (see Appendix E). While
we have access to a native Cy(m,|12)) gate using the red
sideband [12) > |03), we avoid that due to lower fidelity
caused by significantly shorter lifetime of @Q3’s |2) and
|3) levels. Note that the bosonic enhancement of the
coupling to an external field makes Cp(7,|22)) twice as
fast compared to Cy(, |11)) when restricting to the qubit
subspace.

III. RESULTS

We implement three two-qutrit quantum algorithms on
our fully programmable processor.
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FIG. 2. Deutsch-Jozsa and Bernstein-Vazirani algorithms.

(a) Quantum circuit for the algorithms. In DJ algorithm,
gates Wi, Wa € {I,X,X?,Z, Z*} are applied to implement a
constant or a balanced oracle. The final output state being in
|00) or non |00) distinguishes the two cases. (b) Experimen-
tal results for DJ algorithm. The rows and columns represent
gates applied to @1 and Q2 respectively. The average SPs are
75.5(3)% and 98.5(1)% for the constant (hatched boxes) and
balanced (plain boxes) oracles respectively beating the clas-
sical rate of 50%. (c) Experimental results for BV algorithm.
Each row corresponds to a specific oracle with the mapping
{I,Z,7%} — {0,1,2}. The diagonal terms show the SPs for
all nine strings mapped to the basis states with an average of
78.3(3)%, which is much larger than the classical SP of 33.3%.

A. Deutsch-Jozsa algorithm

The Deutsch-Jozsa (DJ) algorithm [38] is one of the
earliest quantum algorithms showing an exponential ad-
vantage over any classical algorithm. The original DJ
algorithm applies to qubits, and here we extend it to



qutrits [39] for our quantum processor. For an n-qutrit
system, the task of the DJ algorithm is to distinguish
a function f : {0,1,2}" — {0, 1,2}, which takes n-trits
as an input and outputs one trit, between two cases, a
balanced or a constant function. The constant function
always results in the same output (0, 1, or 2) independent
of the input, whereas the balanced function outputs each
of the three possibilities for exactly one-third of the pos-
sible inputs. Note that implementing the different test
functions is often termed as the oracle. A deterministic
classical algorithm needs 3”1 4 1 queries (with at least
two queries in the best case) to distinguish the two cases,
whereas DJ algorithm needs only one and hence provides
the exponential speed-up.

Figure. 2(a) depicts our circuit implementation of the
DJ algorithm. Two Hadamard gates are simultane-
ously applied to both qutrits initialized to |0) (ground
state) to prepare the state & (|0) + |1) + 12))¥2. The or-
acles (gray gates in Fig. 2(a)) are implemented by ap-
plying gates (W) to the qutrits chosen from the set
S = {I,X,X? Z,Z%}. For the constant case, W; and
Wy are picked up from the subset S, = {I, X, X?}, and
the total number of X gates modulo 3 specifies the con-
stant output. For example, the gate X ® X2 would im-
plement constant 0, whereas I ® X2 would be the case of
constant 2. A balanced oracle can be realized by choos-
ing any combination of elements from the set S except
for those cases that result in a constant function. 16 dif-
ferent kinds of balanced functions (see Appendix G for
mapping to various addition functions) are implemented
in our experiment as shown in Fig. 2(a). Finally, two
H' gates are applied before simultaneous readout. A fi-
nal measured state of |00) indicates a constant function,
whereas any other output implies a balanced function.
The theoretical success probability (SP) for each case is
100%, and the experimental results are summarized in
Fig. 2(b) where the hatched (unhatched) boxes repre-
sent constant (balanced) cases. The average SPs for the
three constant cases with outputs {0, 1,2} are separately
72.8(3)%, 76.5(3)% and 77.2(3)%, marked with horizon-
tal, left and right hatching. The numbers in parentheses
represent standard error of mean obtained after 20,000
repetitions of each oracle. All experimental data are cor-
rected for measurement error (see Appendix F). For the
16 balanced cases, the average SP is 98.5(1)%. The SPs
for all cases are well above the classical case, which would
be 50% after a single query.

B. Bernstein-Vazirani algorithm

The Bernstein-Vazirani (BV) algorithm [40] for qutrits
can be restated as follows: given an oracle f(x,s) =
Z;;l x;s; (mod 3) that performs inner product between
two strings of ternaries followed by modulo 3, the goal
is to determine the unknown string s = {s1,82,...,8,}
where the user has control over the input string .
The most efficient classical algorithm will need n ora-

cle queries to find all digits of s. BV algorithm, on the
contrary, needs only one query and the quantum circuit
is identical to the case of DJ as shown in Fig. 2(a). Or-
acles representing 9 different strings for our two-qutrit
system are implemented by choosing gates (W) from the
set {I, Z, Z*}®? with the mapping {I, Z, Z?} — {0, 1,2}.
The final state of the system after measurement directly
reveals the unknown string with 100% theoretical success
rate. Fig. 2(c) tabulates the experimental results where
the vertical axis represents gates applied to the qutrits
corresponding to different unknown strings, and the hori-
zontal axis shows the measured probability for each state.
The diagonal entries indicate individual SPs for each in-
put string mapped to the final state. The average SP for
all 9 cases is 78.3(3)%, which is far above the classical
SP of 33.3% after one query.

C. Grover’s Search

Grover’s algorithm [41] provides a quadratic speed-up
for searching an unstructured database. For a database of
size NV, the algorithm can find the unique input that sat-

isfies a certain condition using O (\/N ) search queries,

while a classical algorithm requires on average A /2 rep-
etitions. Several groups have recently realized Grover’s
search on qubit-based platforms [42, 44-47]. For the
two-qutrit case with AV = 32 = 9, the classical SPs
with one and two rounds of search are é = 11.1% and
% + % . % = 22.2% respectively. The corresponding the-
oretical SPs for the original Grover’s search are 72.6%
and 98.4%, and can also be modified to achieve deter-
minism [48, 49].

The quantum circuit for the two-qutrit Grover’s search
is illustrated in Fig. 3(a) that doesn’t use any auxiliary
(ancilla) qutrit. It has four stages: initialization, ora-
cle implementation, amplitude amplification, and mea-
surement. Starting from the ground state, we apply
Hadamard gates on both qutrits to initialize the sys-
tem to the equal superposition state 1 (|0) +|1) + |2)) 2,
A CPhase gate Cy (7, |jk)), that flips the phase of the
target state |jk), is used to realize the oracle. Due to
the structure of the Hilbert space and coherence pa-
rameters (see Fig 1(c)), we have access to two native
CPhase gates Cp (m,]22)) and Cp (7, |21)) and all other
CPhase gates are realized in conjunction with single-
qutrit rotations (see Appendix E). Amplitude amplifi-
cation of the marked state happens through the Grover’s
diffusion or reflection unitary, which is constructed us-
ing a phase flip of the |22) state sandwiched between
Hadamard and Z gates. Here, we utilized the decompo-
sition Cp (,]00)) = (ZZ) ® Cy (7,[22)) @ (ZTZ1). Si-
multaneous measurements on the qutrits are performed
after one and two iterations of Grover’s search for each
target state. During a similar search using three qubits
(N = 8), each oracle (and amplification) step requires
eight CNOT gates (for a linear chain) [46], resulting in
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FIG. 3. Grover’s search algorithm for two-qutrits. (a) Quan-
tum circuit. The oracles are implemented by CPhase gates
Co (m,|jk)). The diffusion operator amplifies the detection
probability of the marked state. (b) Experimental results.
Detection probabilities (corrected for measurement error) af-
ter one (top panel) and two (bottom panel) rounds of am-
plitude amplification are obtained with 20,000 averages. All
individual success rates are far beyond the corresponding clas-
sical SPs of 11.1% and 22.2%.

an eight-fold rise in entangling operations compared to
our efficient two-qutrit implementation.

Figure 3(b) shows the experimentally obtained detec-
tion probabilities for the 9 different marked states af-
ter single (top panel) and double (bottom panel) rounds
of the Grover’s iteration. Each row represents a proba-

bility distribution acquired with 20,000 repetitions and
after correcting for measurement error. The diagonal
terms represent successful detection rates with an aver-
age SP of 44.4(3)% after the first round, which increases
to 49.6(3)% with the second iteration. The performance
degradation of target states closer to |00) is caused by the
less-efficient implementations of the corresponding ora-
cles, where more single-qutrit rotations are required for
the CPhase gate decomposition (see Appendix E). As
promised by the algorithm, experimental detection prob-
abilities for the individual correct states increased after
the second iteration for all cases (except for |02) and
|12), which we attribute to the lower lifetime of Q3’s |2)
level). The experimental outcome also has a good agree-
ment with our Master equation simulation as described
in Appendix H indicating dephasing and cross-Kerr lim-
ited performance. The average experimental SPs beat
the classical rates of 11.1% and 22.2% for the two rounds
by more than a factor of 2, with clear improvement in
performance after the second iteration.

IV. CONCLUSION

We demonstrate a fully programmable two-qutrit su-
perconducting processor based on transmons. We utilize
a linear coupler to obtain excellent connectivity in the un-
derlying Hilbert space through parametrically activated
fast entangling operations. The success probabilities of
all the algorithms implemented, namely Deutsch-Jozsa,
Bernstein-Vazirani, and Grover’s search, are significantly
higher than corresponding classical rates. Notably, we
achieve improved success rates in finding the correct an-
swer after performing the second iteration of Grover’s
search. To our knowledge, this is the first experimen-
tal demonstration of two-qutrit Grover’s search across
all quantum computing platforms. The performance of
the processor is currently limited by low coherence times
and cross-Kerr interaction, and we expect significant im-
provement with increased coherence [32, 33], pulse shap-
ing [50], geometrical optimization [51, 52], and improved
readout [30]. Our results indicate that qutrit-based pro-
cessors could be a promising candidate for building a
large-scale quantum computer and we believe, will foster
investigations in the field of ternary quantum information
processing.
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Appendix A: Single-qutrit gates
The native operations accessible for a single qutrit are

B [

cosd  —e sin(0/2) 0
Roy (¢,0) = |e®sin g cos & 0|, (Ala)
0 0 1
(1 0 0 |
Riz(6,0)= |0 cos? —esin(0/2)|, (Alb)
10 ' sin g oS g
10 0
O(z,y)=10e* 0 (Alc)
0 0 ety

where, R (¢,60) and Ri2(¢,0) are performed through
sending drives at |0) <> |1) and |1) <> |2) transitions
respectively with appropriate lengths and phases. How-
ever, the generic phase gate © (x,y) is implemented vir-
tually as it requires no physical pulses. For each qutrit
we record two phase parameters 6y, and 615 correspond-
ing to the pulses applied to the |0) <+ |1) and |1) < |2)
transitions respectively. To apply the © (x,y) gate, we
advance both 6y; and 615 by x and y for all the subse-
quent pulses. The single-qutrit Z gate becomes a special
case of the generic phase gate: Z = © (%’r, %’T) Since,
all phase updates are performed in software, the Z gate
(or a © (x,y) gate) has nearly 100% fidelity.

An arbitrary single-qutrit unitary can be constructed
using combinations of Egs. (Al). For example, the H
gate is deconstructed as

1 1 1
Hf— 1 5t 5l
V3 1 e5i %t
= Rz (0,5 )-Ro1 (0,8)0 (m, 5 ) Ruz (0,5 )0 (0.7).
(A2)
with 8 = 2tan~!(y/2). Similarly, the bit-shift gate is
decomposed as
001
X=1]100 :R01(0,7T)'R12(077T). (A3)
010

For single-qutrit process tomography, we use nine
different initial states: {|j), (l7) + |k))/v2, (|l5) +
ilk))/v2}, {j,k} € {0,1,2}. We obtain process fidelities
of 98.96% (Q1) and 97.06% (Q2) for the H gate as shown
in Fig. 4. The same for the Z gates are 97.48% (Q1) and
96.76% (Q2). Even though the Z gates should be nearly
perfect, the process fidelities are limited by state prepa-
ration and measurement (SPAM) error. Further, it is

expected that the process fidelity for the Z gate should
be larger than that of the H gate, which requires multiple
physical pulses. One explanation for the opposite exper-
imental observation is as follows. First, the relaxation
time of level |2) is smaller than that of level |1) whereas
the detection probability of level |0) remains very large
after a finite time when initialized at |0) (set by the ther-
mal excitation). The action of H gate on the chosen nine
initial states always results in some superposition state
where all three basis components |0) , |1) , and |2) partici-
pate. But for the case of Z-gate, several final states have
a population in |1) and |2) or a superposition of those.
As a result, the final states for the case of Z gate experi-
ence stronger relaxation error reducing the fidelity of the
process tomography.

All single-qutrit gates use rectangular pulses with
Gaussian edges. The envelope shape h (t) is defined in
Eq. (A4) with o = 2.5 ns,

—(t—tg—20)2 .
Age™ 207 if tg <t <ty+ 20,
Ay if tg +20 <t <ty — 20,
h (t) = —(t1—20-1)2
Aoe 202 if t7 — 20 <t <ty,
0 Otherwise,

(A4)
where, 20 is the Gaussian tail length, Ag is the ampli-
tude, and t; — tg is the total pulse length.

Appendix B: Device fabrication and parameters

The device was fabricated on a 430 pum thick C-plane
sapphire substrate annealed at 1200°C for 2 hours. A
200 nm thick film of Tantalum was sputtered at 800°C
to form the ground plane. The large features (excluding
the Josephson junctions) were made via optical lithog-
raphy followed by wet-etching (dipped for 20 seconds)
at wafer-scale using Transene Tantalum etchant 111. A
600 nm thick layer of AZ 1518 was used as the (positive)
photoresist, and a Heidelberg MLA 150 Direct Writer
(405 nm laser) was used for the photolithography. The
photoresist was developed by dipping in to MIF 300 de-
veloper for 1 minute and removed by immersing inside
80°C NMP for four hours after wet-etching. The junc-
tion mask was fabricated via electron-beam lithography

Gate type|On Q1 (ns)|On Q2 (ns)
/201 49.50 49.71
/212 41.27 44.15

o1 94.98 95.41
T12 78.52 84.28
Z 0 0

H 141.88 147.90

TABLE I. Total gate lengths for different single-qutrit oper-
ations. The Z gates are implemented virtually.
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FIG. 4. Process tomography for Hadamard gates. The top and bottom panels show real and imaginary components of the

process matrix (x) for (a) an ideal case, (b) Q1, and (c) Q2.

using a Raith EBPG5000 Plus E-Beam Writer on a bi-
layer resist (MMA-PMMA) comprising of MMA EL11
and 950PMMA A7. Both small (transmon) and large
(coupler) Josephson junctions were made with the Dolan
bridge technique. Those were subsequently evaporated
in a Plassys electron-beam evaporator with double an-
gle evaporation (£23°). The wafer was then diced into
7 x 7 mm chips, lifted-off, mounted on a printed circuit
board, and subsequently wire-bonded. The coherence
times and frequency parameters are listed in Table. II
and Table. III.

Quiit | 17" (pus) [ T3 (15) | T3k (1) | T2 (ss)
Q1 47.9 21.7 4.5 2.0
Q2 | 351 3.9 3.2 2.4

TABLE II. Device coherence parameters. le * and szllg respec-
tively represent the relaxation and Ramsey dephasing time
constants for the |j) <> |k) transition.

Appendix C: Hamiltonian

We develop a simplified model to extract various pa-
rameters and explain the sideband interactions. Omit-
ting the readout resonators, the bare Hamiltonian can
be expressed as

Ho=q7C;"q — Ejicos (¢ — 1) — Egacos (¢ — ),

Doy
— Ej.cos (27rLt> cos (¢.), (C1)
D
with the capacitance matrix
Cr = —C2 Cy + Cho 0 (02)
0 0 Ci+Cy+C.

Here {¢1, 2, ¢.} are the node fluxes for the two qubits
and the coupler respectively. 7T = (¢1,92, gc) Tepresent
the charge vector conjugate to the node fluxes, so that
[#k, gx] = i. The coupler capacitance C, originates from
the self-capacitance of the large coupler junctions.



Parameter Symbol| Value/27

Q@1 ]0) <> |1) transition w1 | 3.3494 (GHz)

Q2 ]0) <> |1) transition wz | 3.8310 (GHz)

Q1 anharmonicity (o %1 —115.2 (MHz)

Q2 anharmonicity (o) —159.8 (MHz)

Readout1 frequency wri | 4.9602 (GHz)

Readout2 frequency wr2 | 5.4225 (GHz)
(E‘11> - E|01>) - (E|10> — E|00>) Z7 -238 (kHZ)
(E\21> - E|11)) - (E|20) - E|10>) Z Z2110 -148 (kHZ)
(Epz — Eny) — (Blozy — Eoy) | ZZ1021 | -183 (kHz)
(E\22> E|12)) — (E|20) E|10)) ZZ2120| -211 (kHz)
(Ej22) — Ei21)) — (Bjoay — Ejoyy) | ZZ2021 | -262 (kHz)
(B2 — Ejo2)) — (Ejroy — Ejony) | ZZ1020 | -402 (kHz)
(Ej21y — E20)) — (Ejoyy — Ejony) | ZZ2010 | -403 (kHz)

Coefficient of (a'a)(b'b) Jin | -304.3 (kHz)
Coefficient of (a'a)?(b'b) Jo1 37.8 (kHz)
Coefficient of (aa)(b7b)? Ji2 23.6 (kHz)
Coefficient of (afa)?(b'b)? Joo 5.4 (kHz)

TABLE III. Experimentally obtained various frequency pa-
rameters.

We first extract the linear part of the Hamiltonian,

En
2
E c ¢CX

+ 2J cos <27r %t>¢§.

Hin = T7C; T + 22 (60— 60 + 22 (60— )

(C3)

Table. IV includes all coefficients used in the simulation.
We rewrite the charge and phase variables in the dressed
basis such that Hj, is simultaneously diagonalized for

Capacitance| (fF) |Josephson energy|(GHz)
Ca  |1780 En 13.6
Co2 131.0 Ejo 13.3
C. 193.6 Ejc 1140.0
Cyz 2.0

TABLE IV. Estimated capacitances and Josephson energies.
Capacitances are extracted from Ansys Q3D simulations.
Josephson energies are estimated using Ambegaokar-Baratoff
relation and room temperature resistances of on-chip (nomi-
nally identical) test junctions.
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FIG. 5. Circuit quantization results. (a) Comparison of the
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_>
both 77 and ¢ with the transformation matrix U:

Hyp = Y (C'kﬁi + Dkqgi) (Cda)
k=1,2,c
T = (g, iz, 1) = UVR (C4b)
= NT o
o = (61,62,0.) =UD (Cie)
Upn Uiz Ui
U= Uy Uy Us (C4d)
Ucl UCZ Ucc
Then we quantize the circuit on the dressed basis,
. i | Dy T
= —7=1/ = la, —ar), (C5a)
V2 \ Ci ( k )
~ 1 CN';.C T
(bk = ﬁ Dk (ak + ak) s (C5b)



and insert the nonlinear part back into the Hamiltonian,

Hior = Z (@Jﬂf)

k=1,2,c

> (Uckék - Ulk(/;k)

k=1,2,c

— Ejgcos | Y (U2k<5k - Uckfigk)

k=1,2,c

> Ut

k=1,2,c

¢ex
— Ej.cos (27r <I> t> cos (C6)

0

The resulting transition frequencies and various ZZ in-
teractions strengths as a function of ®.y; obtained from
the numerical diagonalization along with the experimen-
tal data are shown in Fig. 5(a). We notice some devia-
tion when the DC flux is biased very close to 5. This
is caused by the parasitic SQUID-loop inductance. How-
ever, around the DC flux position (Peyy =0.185P() where
we implement all quantum algorithms (vertical dashed
line in Fig. 5(b)), we have a good match between the
numerical and experimental data.

To understand how two-qutrit sidebands work, we fol-
low Ref. [36] and apply adiabatic approximation to the
Hamiltonian. The frequency of the coupler mode remains
well above (> 15 GHz) any other frequencies (< 4 GHz)
in the system and thus can be assumed to stay in the
ground state during any operation. The static energy
of the coupler mode is removed by minimizing the full
circuit Hamiltonian. Treating qutrits as Duffing-type os-
cillators, a toy model with adiabatic approximation can
be written as:

a «
Htoy :wlaial + wgagag + éa{a{alal + fagagazag

+g1(t) (a; + a1> (a% + ag)

+ g2 (—ai —+ al) (—ag + az) ) (C7a)
B VEE 2
) =5 s (27 By (1)/Bg) V10 (C7b)
Vv C1C
go = 25122 VWi, (C7C)

Here ¢; (t) and go are inductive and capacitive coupling
strengths respectively. g¢; (¢) is flux tunable, and when
the RF flux modulation frequency matches with any
two-photon transition frequency |jk) < [j+ 1,k—1)
or |jk) < |j+1,k+1), the corresponding sideband
is activated in the system. This adiabatic approxima-
tion requires sideband frequencies to be much smaller
than qutrit frequencies, which can capture the (red)
sideband rates for [22) « |31) and |21) < [30) used
in the system. However, the (blue) sideband rate for
l7k) <> |7+ 1,k + 1) cannot be explained with such an

approximation and requires keeping the coupler mode in
the analysis [53].

Appendix D: Sideband calibrations

We utilize sideband interactions to implement various
entangling operations in the two-qutrit subspace. The
tune-up of these gates are very easy and are similar
to single-qubit Rabi experiments. We use a Gaussian-
flatten pulse shape for all flux modulation drives, with 5
ns ramping and descending time. We initialize the qutrits
in relevant states and sweep both frequency and the flat
length of the flux modulation drive @ (t) to obtain a
Chevron pattern. We demonstrate Chevron patterns for
the six red sidebands in Fig. 6 and for the four blue side-
bands in Fig. 7 at separately optimized pump amplitudes.
The plots show average photon numbers on the qutrits as
a function of time and drive frequencies. The resonance
feature is selected at the drive frequency where the os-
cillation shows maximum contrast, as represented by the
red dashed lines. We plot the line cuts along these se-
lected frequencies for all the ten sidebands in Fig. 8 and
use the traces to extract interaction rates and gate times.

The red sidebands that coherently take the population
out of the computational subspace, namely |21) «+ |30)
and [22) <> |31) are utilized to implement elementary
CPhase gates as discussed in the next section. Other
four red sidebands within the computational space can
be utilized to implement iSWAP gates between relevant
levels. The four blue sidebands generate or extract two
photons simultaneously and can be utilized to generate
various entangled states. For example, two sequential
pulses at |00) <> |11) and |11) <> |22) with appropriate
lengths and phases can generate the two-qutrit EPR state
(100) + 111) + [22))/V3.

We have not used the blue sidebands for the algorithms

Sideband |Type|Rate (MHz)|n length (ns)
110) <> [01)| Red | 20.1 30.2
120) <> [11)| Red | 21.2 27.5
02) <> [11)| Red | 20.3 29.7
21) <> [12)| Red | 35.8 17.5
21) <> [30)| Red | 19.3 29.9
22) <> [31)| Red | 11.2 50.2
|00) <> [11)| Blue| 3.9 158.5
10) < [21)] Blue 3.5 142.6
01) <> [12)| Blue| 4.6 115.0
|11) <> [22) | Blue 8.4 66.6

TABLE V. Sideband rates and gate lengths for various inter-
actions achieved with the device. The m-pulse lengths include
both the flat-top part and 5 ns rising and falling Gaussian
tail of the pulse. The distortion observed for the |01) < [12)
Chevron is most likely due to the stray charge coupling of the
flux line to the SQUID loop (see text for details).



[01) =110}

m

o
>
oo
%]

Frequency (MHz)

0.480

0.475

0.470

1))

100
Time (ns)

[17)€—>102)

I
[N

Frequency (MHz)
N O
oo
Photon number

o o o
w w w
N w =
[l <) «x

Time (ns)

[21)¢—>130)
0.719

0.718

0.717

Frequency (MHz)

0.716
0

Time (ns)

0.2

Photon humber

Photon number
Frequency MHz)

10

|11)(—)|20)

j

rf
.r'.l".

)

o o

Frequency (MHz)
Photon number

00

[N

o o

N

N

w

N

o o
Photon number

Frequency (MHz)

=y
o]

I \ |
I |I |I
200

Time (ns)
[22)6=131)

400

o

N
o

._\
(o]
mber

0 561

[any
(o)}

[any

o
n
o))
=]
»
H]oton nu

=

=
o

60
Time (ns)

FIG. 6. Chevron plots for the six two-qutrit red sidebands. All sidebands are parametrically activated by modulating the coupler
at the corresponding transition frequencies. Pulses used for flux modulations have a rectangular shape with 5 ns long rising

and falling Gaussian-shaped edges.

The x-axis represents the length of the flat-top section. Both qutrits are simultaneously

read out, and each data point is an average of 1000 experiments.
* @Q1’s readout are not shown in the |21) > |30) and |22) <> |31) cases, as the readout on |3) is not optimized.

due to lower rates. While theoretically larger rates should
be achievable, we start to observe readout saturation [51]
and distortions in the Chevron plots as visible in case
of |01) + |12) sideband (see Fig. 7). This distortion is
most likely caused by the flux line’s stray charge coupling

to the coupler SQUID. The unwanted charge coupling,
particularly at high (blue sideband) frequencies, result
in asymmetrical parametric modulation [51, 52] of the
SQUID loop. This effect can be solved by optimizing
flux line geometry, allowing stronger blue sideband rates.
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Appendix E: CPhase gates

As shown in Fig. 9(a), we utilize two native CPhase
gates Cp (0,]21)) and Cp(0,|22)), which can be real-
ized by applying two 7 rotations to [21) «+ |30) and
|22) <> |31) transitions with the phase of the second =
pulse being advanced by m — 6 compared to the the first
one. The optimized gate lengths are 55.9 ns and 94.0 ns
for Cp (6,]21)) and Cy (0, ]22)) respectively.

The CPhase gates on the states in the region (2), (4)
and (6) (highlighted with yellow) need to decomposed
where the number indicates the number single-qutrit ro-
tations required. The decomposition starts from the tar-
get state, followed by the application of single-qutrit ro-
tations to arrive at one of the states in the region (0)

(following brown arrows). After applying the native
CPhase gate, reverse single-qutrit rotations are admin-
istered traversing the same path back to the target state.
Fig. 9(b) shows the circuit decomposition of Cy (7, |00))
as an example, which requires the maximum number of
pulses. One can also use combinations of red and blue
sidebands to further reduce the total number of gates.
Note that, even though we have access to Cy (7, |12)), we
do not use it due to poorer fidelity caused by significantly
lower lifetime of the |2) and |3) levels of Q5.

The calibration of the CPhase gates involves compen-
sation for the additional phases acquired during the gate
operation [54]. In our coupler, both the AC stark shift
and the rectification effect from SQUID flux modulation
can cause qutrit frequencies to change during the gate, re-
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FIG. 8. Coherent oscillations for all two-qutrit sidebands. On-resonance features from the Chevron plots are selected and fitted
to extract the sideband rates and 7 rotation lengths (shown in Table. V). Rectangular pulses with 5 ns long Gaussian edges
are used for flux modulations, and the x-axis represents the length of the flat-top section. Each data point is an average of

1000 experiments.

sulting in extra phases /J’(J) and ﬁg) for the |0) <> |1) and
|1) <> |2) transitions of the j-th qutrit. We use the cir-
cuit shown in Fig. 9(c) to extract these additional phases.
Starting from the ground state, we apply the gate G; =
Ro1 (O7 %) to both qutrits if calibrating ﬂéjl), followed by
Cy (0, |jk)) and sweep the virtual phase Zy = ©(0,0) be-
fore the last gate Go2 = Ry (7r, %) on @;. By fitting the

readout on Q; to Cy 4 C sin ( () + 9) one can extract

the extra phase f; () acquired. A similar procedure is used
to extract 512) where we use G1 = Ry (0,%) - Ro1 (0,7),
G2 = Ri2 (7, %), and Zy = ©(0,6). Hence, each CPhase
gate has four virtual phases corresponding to two na-
tive transitions for each qutrit. As a demonstration,
we apply the CPhase gate Cy (5F,|22)) on the state
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FIG. 9. CPhase gate construction. (a) Partitioned energy
level diagram. Flipping the phase of a specific target state
in region (0) is performed through a 27 sideband rotation
(shown in red arrow). Flipping the other target states re-
quires a decomposition. The application of a Cyg(m, |mn)) fol-
lows the path marked with brown arrows starting from |mn).
Here the numbers inside the yellow circle indicate the total
number of single-qutrit = pulses required. (b) An example
of circuit decomposition for the Cy (m,|00)) gate. (c) Single-
qutrit phase compensation calibration for a Cy (7, |jk)) gate.

1(10) + [1) + [2))®? (with initial state fidelity of 87.7%).
The final state (shown in Fig. 10) obtained after two-
qutrit tomography [55] shows a fidelity of 82.4%, which

is limited by the cross-Kerr coupling between qutrits and
SPAM error.

Appendix F: Measurement error mitigation

Figure 11 shows the single-shot assignment probability
for the nine basis states of our two-qutrit processor. We
refer this 2d array as the confusion matrix. Our readout
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N~~~ o~~~

FIG. 10. Two-qutrit tomography of the state
(o) +[1) +[2))®* after applying the CPhase gate
Co (%", \22)). The top and bottom rows are experimental
and ideal density matrices, with the real and imaginary parts
shown in the left and right columns.

fidelity is limited because there are no parametric am-
plifiers on the output lines. To fairly demonstrate the
performance of the qutrit algorithms with single shot re-
sults, we apply the inverse of the confusion matrix to the
readout results to compensate for the measurement error.
After correcting for the measurement error, it is possible
that some of the readout counts (number of times the
system found in a specific state) become negative, which
happens due to drifts in the calibration parameters.
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FIG. 11. Heatmap of the confusion matrix. 3% basis states
are prepared and measured for 20,000 times. The numbers
represent average assignment probabilities.



This is corrected wusing Maximum-Likelihood-
Estimation (MLE) with the assumption that the
minimum fluctuation of a measurement repeated N
times should not be lower than /N (assuming normal
distribution). We define the following cost function to
avoid non-physical measurement counts:

LET =Y (p‘q) (F1)

9
—) q;

J

with the restriction p; > V/N. Here 7 contains the ex-
periment counts (1d array of 9 elements corresponding
to the basis states) after applying the inverse of the con-
fusion matrix, and ? is the extracted counts after MLE.

Appendix G: Balanced oracles of DJ algorithm

We implement 16 different balanced functions whose
equivalent classical functions are tabulated in Table VI.
We use A and B to represent the classical ternary values
(0,1, and 2) for the two qutrits. The operator & and
® correspond to addition and multiplication modulo 3
respectively.

Oracle |Classical function|| Oracle | Classical function
Z@1 A®0 I®Z 0o B
Z®X Ad1 X®Z 1®B

Z® X? A®2 X?®Z 20 B
Z’°@I | (20A)30 I®Z? 0® (206 B)
Z’29X| QoA®l || X222 19 (2 B)
72’9 X? RoA)®2 ||X*®2Z% 29 (20B)
727 A9B Z® 72 A G (20 B)
7’7 20A)®B |[[Z207Z2|20A)@ (20 B)

TABLE VI. Equivalent classical functions (ternary valued) for
the 16 balanced functions implemented in the Deutsch-Jozsa
algorithm.

Appendix H: Error analysis

Multiple error sources limit us from approaching the
theoretical success rates for different quantum algo-
rithms. In order to extract contributions from different
sources, we perform master equation simulations in the
lab frame for Grover’s search using the coherence and
cross-Kerr parameters obtained experimentally. We con-
sider a 4 x 4 dimensional Hilbert space describing the
lowest four energy eigenstates of each transmon and in-
sert three different error channels, namely, relaxation,
dephasing, and static ZZ progressively. We do not in-
clude the inductive coupler in the simulation as it has
a much higher resonance frequency (> 15 GHz) during
any operation and thus should not be excited. We com-
pute the squared statistical overlap (SSO) [42] between
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two sets of probability distribution p" and };’ defined as

2
(Z?:o 1/ pjp;-) for each of the oracle implementation

and then determine the mean value from nine different
oracle applications. We first verify that in the absence
of any error channel, our simulation produces probability
distributions that are nearly identical with the ideal val-
ues. Next, we include the three error channels one by one
and recompute the SSOs with respect to the ideal prob-
ability distribution with increased circuit depths. We
tabulate the drop in SSOs after one and two rounds of
Grover’s search in Table. VII, which indicate their indi-
vidual error contributions to the algorithm.

Two biggest error sources are the inter-qutrit disper-
sive coupling and the dephasing. The inter-qutrit dis-
persive coupling includes both the static-ZZ values mea-
sured in Table. IIT and the dynamic-ZZ terms induced
during (parametric) gate operations. The ZZ interac-
tions introduce unwanted phase accumulations that re-
duce the performance of both single-qutrit and CPhase
gates. The dephasing noise is also a significant source of
error. The deepest circuit (2 stages of Grover’s search)
implemented includes 17 single-qutrit and 4 two-qutrit
gates, with a total execution time of 2.11 us. This time
becomes comparable to the qutrit’s Ramsey times (see
Table II) and strongly degrades the success rates. The
third one is the relaxation time, and its contribution is
smaller than the dephasing error as our qutrits’ 77 are
typically longer than T5. The fourth source is the leakage
to non-computational levels. However, we use Gaussian-
filtered rectangular pulses with maximum single-qutrit
rotations rates being much smaller than the energy gaps,
and thus errors due to leakage should not be significant.
While we have not explicitly measured the leakage to
the participating levels for the CPhase gates, from the
continued contrast of the calibration curves (bottom two
plots in Fig. 8), we anticipate a negligible effect. Be-
sides, in our simulation, we keep the first 4 levels for the
transmon to always include the leakage error. In order to
verify that we have captured all the main sources of er-
ror, we compare the experimental results with simulated
outcomes as shown in Fig. 12. Those show a very good
agreement with SSOs of 94.0% and 97.1% for one and
two stages of amplitude amplification.

Error channel |After 1 round|After 2 rounds
Relaxation (T}) 0.83% 11.89%
Dephasing (Ty) 2.70% 16.07%

Static ZZ 5.08% 13.38%

TABLE VII. Error budget for the two-qutrit Grover’s search
algorithm. Drops in SSOs after one and two rounds of ampli-
tude amplification are shown due to different error channels.
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FIG. 12. Master equation simulation of two-qutrit Grover’s
search with one and two stages of amplitude amplification
using experimentally measured parameters. These results are
in good agreement with the experimental outcomes shown in
Fig. 3(b) in the main text.

Appendix I: Scaling up

We envisage building a larger system using qutrit-
based units, and there are several choices. First, one
can couple three transmons to the same parametric
coupler [37] to build a three-qutrit processor where
inter-qutrit static ZZ can be simultaneously minimized
through an optimized layout ensuring almost identical
inter-transmon capacitances. Next, these units can be
used as building blocks to expand in a linear or planar
geometry, as shown in Fig. 13. Two units could be cou-
pled via commonly used tunable couplers [56-58] where a
galvanic connection is not required. Any two qutrits be-
tween two neighboring units can be made equally distant
(with respect to hopping) when the capacitive coupling
for the inter-unit coupler is made to the central supercon-
ducting islands. This way one can realize a moderately-
sized qutrit processor consisting of highly efficient two or

15
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FIG. 13. Scaling-up schemes using qutrit-based units as build-
ing blocks.

three qutrit units with fast gates and a slightly slower but
switchable interaction between neighboring pairs with al-
most identical rates.

Appendix J: Setup

The room and cryogenic temperature wiring diagram
is illustrated in Fig 14. The device is placed inside a
bilayer p-metal shield, mounted on the base plate of a
dilution fridge with 15 mK base temperature. A Tek-
tronix 5014C (1.2 GSa/s) Arbitrary Waveform Generator
(AWG) acts as the master trigger for all other equipment.
The readout pulses are generated through two CW tones
from RF sources (PSG-E8257D), modulated by the AWG
5014C. The qutrit pulses are generated through another
4-channel AWG (Keysight M8195 65 GSa/s, 16 GSa/s
per channel). Before entering the fridge, the qutrit and
readout pulses are combined and sent through lines In;
and Iny. One DC source (Yokogawa GS200) is used to
bias the coupler’s DC flux position. The RF flux modu-
lation is synthesized through the same 4-channel AWG.
Two other direct charge drives, also synthesized through
the same AWG, are not used in this project. Inside the
fridge, at the 4K plate all input lines have 20 dB atten-
uation. At the base plate, In; and Ins lines have 10-dB
attenuation each, followed by a strong Eccosorb® provid-
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FIG. 14. Detailed cryogenic and room-temperature measurement setup.

ing 20 dB attenuation at 4 GHz; Charge; and Charges
lines have 20 dB attenuation, followed by a strong Ec-
cosorb providing 20 dB attenuation at 4 GHz, and a band
pass filter with pass band 3.9 — 4.8 GHz. The DC Flux
line has a low pass filter (DC — 1.9 MHz), followed by
a weak Eccosorb, and the RF Flux line passes through a
weak Eccosorb first, followed by a high-pass filter (with a
cut-off at 200 MHz). The DC and RF flux lines are com-
bined with a Bias Tee, and then the signal passes through
a stepped impedance Purcell filter (SIPF), which blocks

the frequency band 2.5—5.5 GHz corresponding to qutrit
transition and readout resonator frequencies. The output
signal goes through a weak Eccosorb, two circulators, a
DC block, and is amplified with one LNF HEMT ampli-
fier at 4K. The output signals are further amplified at
room temperature and then demodulated with I1Q mix-
ers. The demodulated signals pass through low-pass fil-
ters (DC — 250 MHz) and are amplified again using the
SRS Preamplifier. The final signals are digitized with
Alazar ATS 9870 (1 GSa/s) and analyzed in a computer.
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