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We propose a scheme for optical entanglement distribution in quantum networks based on a quasi-
deterministic entangled photon pair source. By combining heralded photonic Bell pair generation
with spectral mode conversion to interface with quantum memories, the scheme eliminates switching
losses due to multiplexing in the source. We analyze this ‘zero-added-loss multiplexing’ (ZALM) Bell
pair source for the particularly challenging problem of long-baseline entanglement distribution via
satellites and ground-based memories, where it unlocks additional advantages: (i) the substantially
higher channel efficiency η of downlinks vs. uplinks with realistic adaptive optics, and (ii) photon
loss occurring before interaction with the quantum memory – i.e., Alice and Bob receiving rather
than transmitting – improve entanglement generation rate scaling by O(

√
η). Based on numerical

analyses, we estimate our protocol to achieve > 10 ebit/s at memory multiplexing of 102 spin qubits
for ground distance > 102 km, with the spin-spin Bell state fidelity exceeding 99%. Our architecture
presents a blueprint for realizing global-scale quantum networks in the near-term.

I. INTRODUCTION

Entanglement distribution across distant nodes is fun-
damental to constructing quantum networks [1]. How-
ever, despite recent progress via optical fiber links [2–
4], scaling quantum networks to global reach remains a
formidable challenge. One approach to increasing the en-
tanglement rate over low efficiency (η � 1) elementary
links is to use a deterministic Bell-state source at Char-
lie (C) midway between quantum repeaters (QRs) Alice
(A) and Bob (B) in lieu of an entanglement swap, i.e.
the midpoint source architecture. If A (B) post-selects
on events where a photon passed at least path length AC
(BC), in the regime where the QRs are memory-limited,
the average entanglement rate Γ̄ improves to ∝ √η com-
pared to ∝ η in typical protocols where C performs lo-
cal Bell state measurements (BSM) [5]. Despite the in-
crease in QR complexity, this “midpoint source” scheme
enables an increase in Γ̄ by O(1/

√
η) and has motivated

research efforts to produce the required entangled pho-
ton pair sources, which should be near-deterministic for
the advantage to persist. Thus far, leading efforts are
based on cascaded atomic sources [6, 7] or spontaneous
parametric down conversion (SPDC) sources. While the
latter has demonstrated heralded production of Bell pairs
out of a single [8–11] or a pair of SPDC sources [12, 13],
the existing approaches still suffer in either efficiency or
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fidelity required for near-term quantum networks.

In this Article, we propose a quasi-deterministic Bell
pair source (BPS) that eliminates compounding switch-
ing loss of previously proposed spatially multiplexed [13]
or purely temporally multiplexed [12] heralded BPS.
Namely, this “zero-added-loss multiplexing” (ZALM)
BPS leverages the large SPDC phase-matching band-
width to achieve high transmission rate via spectral mul-
tiplexing.

A high bandwidth BPS is crucial to general long-
distance entanglement distribution to compensate for
channel losses. In this proposal, we consider one specific
application of utilizing space-to-ground optical links to
establish ground-to-ground entanglement, though such a
quasi-deterministic BPS would benefit any general quan-
tum network setting. Reaching the global scale, how-
ever, calls for space-based configurations, one example
of which is shown in Fig. 1, where the midpoint source
is a satellite sending entangled photons to two distant
ground stations. This satellite-mediated entanglement
distribution scheme has to contend with extreme chan-
nel conditions. Here we consider three primary factors
that contribute to our particular setup: large transmis-
sion loss, channel instability, and heralding latency.

Two canonical choices for satellite-based optical trans-
mission links are the downlink and uplink configurations.
Despite the relative ease of just having an interferometric
system for BSM in space, the uplink suffers from point-
ing instability due to the “shower-curtain effect” [14], re-
quiring two-way adaptive optics yet to be demonstrated,
making the downlink configuration more efficient [15].
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FIG. 1. Protocol overview — A global-scale quantum network composed of flying satellites as the quantum transmitters (qTX)

and terrestrial stations as the quantum receivers (qRX). The qTX (C) emits heralded photonic Bell pairs |S(+)
j 〉AB to A and

B, followed by subsequent spectral mode conversion. Filled (open) circles represent successfully heralded (lost) Bell pairs. The

two bunched photons signify multi-photon emission due to BPS’s imperfection. |S(+)
j 〉AB is accompanied by a classical signal

jA,B containing frequency information. A 1xN switch then routes it to an arbitrary spin memory composed of electron-nuclear
spins. The qTX containing quasi-deterministic heralded BPS can also be implemented in ground-only quantum networks, as
shown by node D connected to other network stations, separated by ground distance LGG (considered in Appendix H).

Therefore, we limit our investigation to a two-photon
downlink architecture.

A single-rail (heralding on one photon) [2, 16] encoded
protocol could increase Γ̄ ∝ η over a dual-rail (heralding
on two detected photons) [17] scheme with Γ̄ ∝ η2. How-
ever, it is presently unclear whether the optical carrier-
level phase tracking required in the single-photon scheme
is compatible with space-to-ground links.

Specifically, we assume: (1) the availability of memory-
multiplexed (k-qubits) QRs on the ground – but not
on the satellite; (2) satellite-to-ground (SG) downlinks;
(3) SG transmission in the telecommunications C-band
via frequency conversion for compatibility with space-
qualified photonics [18]; and (4) two-photon-heralding [2,
16].

This Article is organized as follows. Section II presents
an overview of the satellite-assisted entanglement distri-
bution architecture, one specific example of global-scale
quantum network utilizing the ZALM BPS. Section III
discusses the quantum state description of a heralded en-
tangled state and evaluates the boosted BPS emission
rate with spectral multiplexing. Section IV then de-
scribes the two critical components in the ground-based
quantum receiver: (1) a mode converter for temporal-
spectral conversion via a sum-frequency generation pro-
cess; (2) a cavity-based spin-photon interface based on
a hybrid photonic integrated circuit. We then evalu-
ate the ground-to-ground spin-spin entanglement state
fidelity and efficiency in Sections V-VI, accounting for

imperfections in the ZALM BPS and the ground-based
quantum receivers. Additionally, we discuss the trade-off
between entanglement fidelity and generation rate due
to unheralded photon loss in the channels. Finally, Sec-
tion VII concludes the paper and offers thoughts on alter-
native approaches for implementing the spectrally multi-
plexed BPS. Importantly, it addresses engineering chal-
lenges that still need to be overcome in order to realize
the proposed architecture.

II. ENTANGLEMENT DISTRIBUTION
ARCHITECTURE OVERVIEW

Improving efficiency and fidelity of quantum links for
scalable quantum networks beyond recent satellite-based
demonstrations [19, 20] likely requires heralded entangle-
ment of quantum memories. Here, we propose an archi-
tecture integrating the merits of satellite-based channels
and spin-photon interfaces containing diamond color cen-
ters. On the satellite, C as a multiplexed quantum trans-
mitter (qTX) emits heralded polarization-encoded pho-

tonic Bell states |S(+)
j 〉AB = (|HAVB〉 + |VAHB〉)/

√
2 =

(|1, 0; 0, 1〉 + |0, 1; 1, 0〉)/
√

2 (polarization-Fock represen-
tation [13]), accompanied by a classical heralding mes-
sage encoding its frequency information, jA,B . Idler pho-
tons (of same polarization unknown to us) of a pair of
pulse-pumped SPDC sources are interfered and detected
in wavelength demultiplexed channels to herald Bell pairs
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in the signal photons. The detail will be covered in Sec-
tion IV.

Each photon of the Bell pair described by |S(+)
j 〉AB

then travels to its respective terrestrial quantum receiver
(qRX), A and B (detailed in Section IV). At each re-
ceiver, a mode-converter (MC) [21, 22] converts both the
frequency and the spectral bandwidth of the photon to
match those of the quantum memories, crucial for effi-
cient cavity-based spin-photon interaction [23]. Finally,
successful photon detection at both A and B completes
teleportation, i.e. A and B sharing spin-spin entangle-
ment upon heralding on the same Bell state’s photons.

The analysis and discussion of our proposal in the rest
of manuscript is tailored towards studying the perfor-
mance and challenges of a single quantum link; how-
ever the utility of a ZALM link is applicable to terres-
trial fiber-based quantum links. Multi-hop linear chain
of quantum repeaters (where the channel between A and
B is subdivided into smaller segments) with ZALM ar-
chitecture based links for generation of entanglement and
local entanglement swapping between memories (in a re-
peater station) is a natural extension of our study, as
is a regular grid network (on a well defined ‘lattice’) of
repeaters which can support multiple entanglement gen-
eration paths. We reserve the analysis of these advanced
network geometries for future work.

III. QUANTUM TRANSMITTER

A. Photonic sources of high-quality dual-rail
entangled qubits

Generation of high-quality photonic entangled pairs is
an open research challenge, with multiple possible ap-
proaches, each having their own set of merits and demer-
its. We consider SPDC sources pumped with a mode-
locked laser, combining previous proposals for quasi-
deterministic sources [8–13, 24–27]. More specifically,
our BPS builds on the proposal of Ref. [13] of inter-
fering photons of a pair of SPDC sources [28–30] to
herald Bell pair production. Prior proposals necessi-
tate spatial multiplexing to boost the Bell pair gener-
ation rate. However, this requires optical switches in a
tree-configuration whose number of layers grows expo-
nentially with the number of spatial multiplexing modes.
Given finite loss per switch, the compounded optical loss

through the switch array quickly renders the Bell pair
generation inefficient. For example, the multiplexing re-
quirements are very demanding (∼ 107 sources running
in parallel) to achieve quasi-deterministic state genera-
tion. Considering 0.5 dB loss per switch, ∼ 107 would

lead to 10−0.5/10·log2(107) ∼ 7% efficiency.
In our current proposal, we leverage the large phase-

matching bandwidth σpm = 10 THz for spectral mul-
tiplexing. After the beam splitter interaction of the
intermediate BSM, we demultiplex the output beams
into dense wavelength division multiplexing channels
(DWDM) and perform single photon detection on each
channel separately (Bell state analyzer shown in Fig. 2).
Each DWDM channel is spaced apart by σch = 12.5 GHz
over σpm in the C-band. If detection (with the correct
click patterns; see Appendix A) occurs in the same fre-
quency channels for the two DWDMs, then the BPS has
heralded production of a photonic Bell state.

First, we consider the quantum state of a single down-
conversion process in a χ(2) medium [25, 31, 32],

|ψ〉 = c0 |0〉+ c1

∫
J(ωS , ωI)â†S(ωS)â†I(ωI) |0〉

+ c2

∫
J(ωS , ωI)â†S(ωS)â†S(ωI)

· J(ω′S , ω
′
I)â†S(ω′S)â†I(ω′I) |0〉 (1)

up to two-photon contributions, where |0〉 is signal-idler
mode in the vacuum state, and â†(ωk) is the creation
operator at frequency ωk for the signal (k = S) or idler
(I).. J(ωS , ωI) represents the joint spectral amplitude
function (Appendix A).

The constituent terms of Eq.(1) are the vacuum
(|0, 0〉), single photon entanglement (with J(ωS , ωI) and
terms with a second order contribution. The latter
are detrimental to entanglement distribution protocols
as they lie outside the dual-rail photonic qubit Hilbert
space. With photon loss, these terms yield false click
patterns and limit the fidelity of the distributed entan-
gled pairs [13, 33]. Each SPDC source in Fig. 2 comprises
two down-conversion processes [34]. The qTX performs
BSM in each DWDM channel by interfering the idler pho-
tons from both SPDC sources. We take J(ωS , ωI) to ex-
hibit frequency anti-correlation between signal-idler pho-
tons, such that a demultiplexed detection heralds ‘which-
frequency’ information about the Bell pair. Based on
the analysis of Ref. [13] and its extension to the current
proposal (see Appendix A for a detailed derivation), the
spectrally-synchronized BSM that yields one of the de-
sirable photon click patterns (say on channel j) heralds
an entangled state with a spectral description given as,

|S(±)
j 〉 ∝

∫
~Ωj

dω̄

[(
J(ωA1 , ωA′

1
) J(ωB′

2
, ωB2) â†A1

(ωA1) â†B2
(ωB2) + (−1)m1J(ωA2 , ωA′

2
) J(ωB′

1
, ωB1) â†A2

(ωA2) â†B1
(ωB1)

)

+ (−1)m2

(
J(ωA1 , ωA′

1
) J(ωA2 , ωA′

2
) â†A1

(ωA1) â†A2
(ωA2) + (−1)m1J(ωB′

2
, ωB2) J(ωB′

1
, ωB1) â†B1

(ωB1) â†B2
(ωB2)

)]
× |0〉A1

|0〉A2
|0〉B1

|0〉B2
. (2)



4

quantum transmitter (qTX)

B

|α0 eiωt〉

ωS

ωS

ωI

spectral demuxed Bell state analyzer

	

		

de
m
ux

de
m
ux

he
ra

ld
in

g 
si

gn
al

 
on

 C
ha

nn
el

 j

𝑀

𝜔!

|𝛼!𝑒"#!$⟩

𝜒(&)

𝜒(&)

𝜔!

𝜔(
𝜔)

𝜔(

𝜔) 𝑗

𝑗*

𝑗+

𝑆,
-

*+

FIG. 2. Implementation of qTX. – A multiplexed BPS com-
prises a pair of pulse-pumped SPDC sources. A spectral de-
multiplexed BSM heralds the Bell pair creation and sends out
classical messages encoding its frequency information.

Here, the modes A1, A2 (B1, B2) correspond to the
qubits transmitted to A (B), and

∫
~Ωj
dω̄ represents inte-

gration over the j-th detection channel’s spectral band-

width ~Ωj . Subscript 1 (2) represents the polarization
mode H (V ). Parity bits m1 and m2 depend on the de-
tection pattern and determine the distributed entangled
state (Appendix A).

The first two terms in Eq. (2) represent having one
photon each in A’s and B’s frequency correlated chan-
nels, corresponding to the quantum state equivalent
to (|1, 0〉A |0, 1〉B ± |0, 1〉A |1, 0〉B)/

√
2 = (|H〉A |V 〉B ±

|V 〉A |H〉B)/
√

2 ≡ |Ψ±〉 in the spectral-mode basis. The
remaining terms of Eq. (2) represent a state in which A
(B) receives both photons and B (A) receives none, i.e.
it is equivalent to a term of the form, (|1, 1〉A |0, 0〉B ±
|0, 0〉A |1, 1〉B)/

√
2 in the polarization-Fock basis, con-

tributing to the heralded state infidelity. We note that
leakage photons stemming from the second-order term
in Eq. 1 with non-degenerate frequencies (i.e. ωs 6= ω′s)
would not introduce additional errors in spin-spin entan-
glement, as discussed later in Section IV A.

B. Average Bell pair generation rate

In calculating the average emission rate of the ZALM
BPS, we abstract all the parameters of the transmission
and collection optics into a single channel loss parame-
ter
√
η for each satellite-ground link; assuming suitable

levels of timing synchronicity, adaptive optics, pointing
and tracking, Doppler compensation and beam forming
for the architecture design.

The essence of the heralded BPS relies on leveraging
the entirety of the phase matching bandwidth of the

10-4 10-3 10-2 10-1
0.97

0.98

0.99

1

Heralded BPS
Non-heralded BPS

FIG. 3. The spin-spin Bell state fidelity F as a function
of the mean photon number Ns for both the heralded BPS
(blue solid) and the non-heralded free-running narrowband
BPS (orange solid). The horizontal black solid line indicates
the fixed fidelity F = 0.998, which is chosen based on partic-
ular parameter values considered (see main text). Both the
blue and orange dashed lines indicate their intersections at
the respective Ns values for the heralded and non-heralded
BPS.

SPDC, which we assume to be σpm = 10 THz. To
compute the BPS emission rate requires knowing the
density matrix of the heralded BPS’ output state ρBPS,
which depends on the mean photon number per mode
Ns that is effectively dictated by the power of the pump
field. Given ρBPS and accounting for imperfections in the
quantum receiver, we can evaluate the resultant spin-
spin entangled state and its fidelity to the ideal Bell
state, F , after heralded teleportation of the photonic
qubits. More details on calculations of F will be cov-
ered in Section IV. Figure 3 shows F as a function of Ns

for both the heralded BPS and the non-heralded free-
running narrowband SPDC source. For the former, as
Ns increases, the effect of loss is suppressed and hence
the fidelity increases. For the latter, however, fidelity in-
creases from having higher Bell pair contribution relative
to the other order terms. After reaching an optimum,
the fidelity begins to drop with increasing Ns as a re-
sult of multi-photon events degrading the photonic Bell
state fidelity. Note that in general the generation rate
can be improved by increasing Ns, at the cost of low-
ering the heralded photonic Bell state fidelity (thereby
the spin-spin Bell state fidelity). For an instance, for the
ZALM BPS, increasing Ns to 8 × 10−2 still maintains
a fidelity F ≥ 0.995. On the other hand, with a free-
running SPDC, the fidelity drops off much more quickly
due to higher order terms that cannot be eliminated via
heralding.

To fairly compare the performance of the two, we fix
the spin-spin Bell state fidelity still attainable by the non-
heralded BPS at F = 0.998 and derive a corresponding
a mean photon number of Ns = 2.94× 10−2 for the her-
alded ZALM BPS. Given Ns, we numerically compute
the density matrix of the heralded photonic state in the
Fock basis for each spectral mode, and consequently cal-
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culate the probability of generating a heralded Bell pair
pgen by taking a partial trace over the Bell basis states.
We find pgen = 3.6 × 10−4 per spectral mode. Now,
accounting for all the spectral modes, we can greatly
boost the generation probability. Specifically, assuming
a DWDM channel bandwidth of 12.5 GHz, the num-
ber of spectral-multiplexed modes is simply Nmodes =
σpm/γ = 10 THz/12.5 GHz= 800. The probability
of successfully heralding a photonic Bell pair per pulse
across the entirety of the phase-matching bandwidth σpm

is pZALM = 1− (1− pgen)Nmodes = 2.5× 10−1. If we con-
sider a state of the art mode-locked laser with a pulse
generation repetition rate of σrep = 30 GHz [35], the av-
erage Bell pair emission rate is pZALM×σrep ≈ 7.45 GHz.

In contrast, for a narrowband-filtered free-running
SPDC source (non-heralded BPS), we find the required
mean photon number mode of Ns,SPDC = 1.27 × 10−3,
to suppress higher order terms and match the fidelity of
the heralded spin-spin state (F = 0.998) with the her-
alded ZALM BPS. We again compute its density ma-
trix and find the probability of generating a Bell pair
to be pgen,SPDC = 2.5 × 10−3. Since we assume a
narrowband-filtered source, the absence of spectral mul-
tiplexing means the success probability is the genera-
tion probability itself, i.e. pgen,SPDC = pSPDC. As-
suming the same pulsed laser repetition rate of 30 GHz,
the average generation rate for the photonic Bell pair is
pSPDC × σrep = 75 MHz.

C. Requirements on the photon detectors for
entanglement swap

Here we consider the requirements on the single photon
detectors in qTX. First, the detector reset time should
be short enough such that ideally there are no missed
heralding events. Given Ns, the average production rate
for the signal-idler pair would be Nsσrep. The number
of incident photons per channel within the detector’s re-
set time τr would be µ = τrNsσrep/(4 ×Nmodes), where
the factor of 4 stems from the need of four detectors for
BSM [13]. Consequently, the probability of detecting ≥ 2
photons in one channel within the detector’s reset time is
p = 1− exp(−µ)− µ exp(−µ) following the Poisson dis-
tribution.

We take a detector reset time τr = 1 ns [36, 37], re-
sulting in µ = 1 ns × 7.45 MHz/(4 × 800) = 2.3 × 10−3.
The probability of detecting ≥ 2 photons is then ∼
2.7 × 10−6 � 1, which is sufficiently small to neglect
missed detection events due to multiple-photon incidence
on the same detector within its reset time.

Second, the detector jitter must be sufficiently small
to avoid projecting the output of the ZALM BPS to a
mixed state. Otherwise, this would lead to sub-optimal
BSM due to spectral distinguishability and an overall re-
duction in the mode conversion efficiency at the ground
stations. To avoid uncertainty in projection within the
12.5 GHz spectral window given by the DWDM channel

quantum receiver (qRX)
𝜓 = 𝛼 𝐻
+𝛽|𝑉⟩

	𝑚MC

quantum receiver (qRX)

Classical 
message to 
Bob

CZ

𝐻-polarized
𝑉-polarized

Δ𝑡! ≪ Δ𝑡"

Δ𝑡"

𝜎%#$
spin memory

𝜓% = | ↓⟩ + | ↑⟩)/ 2

1 X N 
switch 
array

FIG. 4. Implementation of qRX. – The qRX contains a
mode converter (MC) and a 1×N switching array that routes
the photon to arbitrary channels in the memory bank, each
containing a diamond nanocavity coupled with an optically
active electron spin (red).

bandwidth, we need the jitter time to be much less than
1/12.5 GHz = 80 ps. Based on Ref. [38], we assume the
detector jitter time to be close to state of the art at 1 ps.
In Appendix B, we also evaluate the impact of having
jitter time much larger than 1/12.5 GHz≈ 80 ps on the
heralded photonic Bell pair. Namely, having an imperfect
measurement would lead to a reduced interference visi-
bility in the BSM, consequently degrading the fidelity
of the photonic Bell state. However, with an assumed
Gaussian spectral profile per DWDM channel, the JSI
almost recovers perfect purity and results in a theoreti-
cal maximum visibility of v = 0.996 (corresponding to a
photonic Bell state measurement infidelity of 2 × 10−3).
Further complications concerning mode conversion and
spin-photon quantum teleportation with increased jitter
time are beyond the scope of this Article and thus tabled
for future studies.

IV. QUANTUM RECEIVER

A. Mode conversion for frequency and bandwidth
matching

For efficient cavity-based spin-photon interaction, the
photon must be 1) resonant with the spin’s optical tran-
sition and, 2) narrow in bandwidth relative to the emit-
ter’s optical linewidth [23]. Hence, we consider a “mode-
converter” (MC) that frequency up-converts from tele-
com C-band to visible wavelengths and pulse shapes to
reduce the photon’s spectral bandwidth, i.e. increasing
the initial temporal width of the photon ∆ti to a final
temporal width ∆tf � ∆ti.
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As shown in Fig. 4, upon arrival from the satellite, the
photon with carrier frequency ωa enters a high-Q ring
cavity [39] made from a χ(2)-material, supporting three
resonance frequencies: ωa, ωb (target frequency matching
the emitter’s transition at 737 nm, see Section IV B) and
ωc (strong pump’s frequency) that satisfy energy conser-
vation: ωa + ωc = ωb [40]. Upon receiving the classical

message jA,B encoding |S(+)
j 〉AB ’s frequency information,

the pump field is optimally shaped to convert photons in
mode a to mode b [21, 22]. Since each DWDM channel
corresponds to a unique frequency, each ground receiver
contains an array of ring resonators whose resonance fre-
quencies are spaced 12.5 GHz apart. To reduce the in-
tensive requirement of having many ring resonators, each
resonator may include phase shifters to address multi-
ple DWDM channel frequencies. For example, if each
resonator has up to 1 THz of tuning range [41–44], cor-
responding to 80 DWDM channels, the number of ring
resonators needed reduces from Nmodes = 800 to 10.

A subtle feature of the MC is that it acts as an ad-
ditional spectral filter, which removes spurious spectral
modes from interacting with the spin memories in the
qRX. For example, second-order terms with two photon-
pairs per SPDC source as indicated in Eq. (1) may lead to
interference between spectrally degenerate photons (for
e.g. single idler photons at ωI from the constituent SPDC
sources) with an accompanying non-degenerate photon
(i.e. one of idler modes actually generates a two-pair term
with ωI 6= ω′I ); henceforth we shall term these as “leak-
age photons”. With perfect detection efficiency, these
events would be immediately flagged based on the detec-
tion pattern (since the pattern would deviate from the
ideal spectral mode-synchronized detection). However, in
the practical case of non-unity detection efficiency, these
events may not be discernible from a scenario in which
only first-order photon-pairs from the two SPDC sources
interfere (i.e. idler photon at ω′I is lost). Given a particu-
lar BSM with the correct click pattern, the qTX sends the
known information jA,B about the heralded Bell pair’s
frequency. Regardless of the presence of leakage photons,
say at ω′S , the MC would only up-convert ωS photons
specified by jA,B . In this sense, the final spin-spin Bell
state is partially post-selected spectrally. We note that
the edge case of having second-order terms with spec-
trally degenerate idler photons (and therefore signal by
frequency correlation) is indeed a non-correctable error,
but is accounted for in the fidelity calculations presented
in Section V later.

We use the method developed in Ref. [21] to realize
a beam splitter Hamiltonian (in the frequency domain)
between modes a and b via sum-frequency-generation
(SFG) between the pump and mode a, though other pro-
posed methods are equally viable [45–49]. The Hamilto-
nian describing the cavity modes is

Ĥ = ~χSFG

(
âb̂†ĉ+ â†b̂ĉ†

)
+
∑
q

i~√κq,w
(
q̂†ŵq − ŵ†q q̂

)
,

(3)

where q = {a, b, c}, ŵq is the annihilation operator of
the input (i.e. waveguide) mode interacting with cavity
mode q, and κq,w is the cavity-waveguide coupling rate.
χSFG is the SFG coefficient. If mode c contains the strong
pump mode, it may be treated classically, and the first
term in the Hamiltonian has the beam splitter form [21]

ĤBS = ~
(

Λ∗(t)â†b̂+ Λ(t)âb̂†
)
, (4)

where Λ(t) =χSFG〈ĉ(t)〉=χSFG

√
nc(t) with nc being the

number of pump photons in the control mode, c. Taking
the quantum state of the cavity to be

|Ψcav〉 ≡ [ψa(t)â† + ψb(t)b̂
†] |0〉a |0〉b , (5)

we can derive the equations of motion from the
Schrodinger equations, which are detailed in Appendix C.
The input state may be expressed in a time-bin basis
as [21]

|Ψin〉 ≡
∫
dtξa,iŵ

†
a(t) |0〉t , (6)

with |0〉t representing the temporal multi-mode vacuum
state ŵ†a(t) populates the time-bin indexed by t with one
photon. The output state is

|Ψout〉 ≡
∫
dtξa,o(t)ŵ†a(t) |0〉t +

∫
dtξb,o(t)ŵ†b(t) |0〉t ,

(7)

where ξa,o, ξb,o are two Schrodinger coefficients solvable
by the equations of motion (see Appendix C). We assume
that a maximum conversion efficiency is achieved when
ξa,o(t) = 0 by solving for an optimally shaped control
pulse described by Λ(t).

As an example, let us consider Gaussian input pulses

ξa,i(t) =

√
2

τG

(
ln(2)

π

)1
4

exp

(
−2ln(2)

(t− Tin)2

τ2
G

)
, (8)

where |ξa,i(t)|2 has a full temporal width at half maxi-
mum (FWHM) of τG, spectral width of ΩG = 4ln(2)/τG,
and integrates to 1 (over the infinite interval from −∞
to ∞).

Specifically, we use an input pulse centered at 1550 nm
with a temporal width of τG =80 ps and κa,w =4ΩG, which
ensures efficient absorption into cavity mode a. The out-
put pulse has a target wavelength of 737 nm correspond-
ing to the optical transition of the spin memory of choice
(Section IV B). Figure 5 plots the input and output wave
packets whose bandwidth is κb,w =2π×200 MHz to match
the bandwidth of the output pulse to the cavity contain-
ing the spin qubit. The small amplitude of the blue line
in Fig. 5 indicates a very small fraction of the incident
wave packet leaking through the cavity without being ab-
sorbed. This fraction decreases towards zero very rapidly
as κa,w is increased relative to ΩG [21].
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FIG. 5. Simulation results for frequency conversion and band-
width narrowing. ξa,i, ξa,o, ξb,o represent the input pulse in
frequency mode a, the output pulse in mode a, and the tar-
get output pulse in mode b. Λ is the solved control pulse
optimized for the mode conversion process.

B. Spin-photon interface for quantum memory
storage

Illustrated in Fig. 4, after passing through the MC,
the photons at A and B each arrive at a bank of spin
memories, which we take to be SiV− centers in diamond
coupled to nanocavities as described in Ref. [50] for mem-
ory multiplexing. Each SiV−’s electron spin can map
onto a neighboring nuclear spin for long memory storage
via hyperfine interaction [51] (Appendix E), minimizing
decoherence while the repeater waits for subsequent pho-
tons. For calculating the spin-spin Bell state fidelity, we
assume a sufficiently long nuclear spin coherence time
� 1 s and neglect dephasing errors.

The spin memories can be optically interfaced through
a 1×N switching array that directly routes from 1 input
channel to N output channels. For an example, beam-
steering devices such as a spatial light modulator may
be used to route incoming photons to an arbitrary cav-
ity in a free-space configuration. For the calculations
covered in the remainder of the Article, we assumed us-
ing a sufficiently fast optical switch array with speed
∼ √ηpZALMσrep ≈ 100 kHz. In Appendix D, however, we
also consider spin memories heterogeneously integrated
into a LiNbO3-based [39, 52] PIC for high-bandwidth
operations. For the latter, the entanglement genera-
tion rate decreases with increasing memory multiplex-
ing due to a log2N depth Mach-Zehnder interferome-
ter. One strategu to minimize the required dimension of
the switching array is to assume the presence of multi-
ple memories inside each cavity. Since the memories (at
a given site) would be pre-characterized, their emission
frequencies are known beforehand. The MC can then be
used to spectrally select an emitter via upconversion.

Importantly, prior to the switching array, the modes
of polarization-encoded photonic state are split into two
physical paths (on the PIC) by a polarization beam split-
ter. Only polarization mode |H〉 enters the 1 × N opti-

cal interposer to an array of k nanocavities. The pho-
ton then reflects off the cavity and acquires a spin-state-
dependent phase [23]. Mode |V 〉, on the other hand,
acquires a constant phase by reflecting off a mirror in a
path length-matched to that traveled by the |H〉 com-
ponent. Together, the polarization-encoded qubit un-
dergoes a controlled-phase gate that effectively entan-
gles the photonic qubit with the spin memory. After
the two polarization modes re-interfere at a beam split-
ter, they are subsequently detected in the diagonal basis
to herald quantum teleportation, i.e. mapping a pho-
tonic qubit |ψ〉P = α |H〉 + β |V 〉 onto the spin qubit
|ψ〉S = α |↓〉+ β |↑〉.

Crucially, the controlled-phase gate fidelity depends on
the atom-cavity cooperativity, C. In the limit of high
cooperativity, the cavity reflection coefficient (for the H-
polarization mode) would be

r
C�1−−−→ C − 1

C + 1
(9)

More details on the derivation can be found in Ap-
pendix E. For the entanglement fidelity calculations
presented in Section V, we assume a cooperativity of
C = 100 [3]. Therefore, the mode-converted photon’s
bandwidth of 200 MHz is still much narrower than the
spin’s Purcell-broadened linewidth, a requirement which
is paramount to the cavity reflection protocol [23, 53].

V. ENTANGLEMENT FIDELITY

We now analyze the spin-spin Bell state fidelity by ac-
counting for imperfections in the qTX and qRX. First, for
each spectral mode (i.e. spanning a single DWDM chan-
nel bandwidth), we compute the density matrix of the
heralded photonic state ρZALM based on Eq. 2. ρZALM,
in the polarization-Fock basis {|HA, VA;HB , VB〉}, con-
tains up to two-photon contributions for A and B. As for
the spin qubits each initialized in a superposition state
|ψ〉S,i = |↓〉+ |↑〉)/

√
2, they form a product state

ρS,i =
(
|ψ〉〈ψ|S,i

)⊗2

(10)

Hence, the collective initial state for both photonic and
spin qubits is ρi = ρZALM ⊗ ρS,i.

By considering finite cooperativity and waveguide-
cavity coupling strengths based on the parameters used
in Ref. [50], we evaluate the resultant controlled-phase

gate operation acting only on the Bell basis states, ˆUCZ.
For non-vacuum basis states outside of the Bell ba-
sis, we treat these contributions as erroneous photonic
states that project the spins into maximally mixed states.
Assuming perfect single-qubit gate for the Hadamard
and Pauli-correction operations post-heralding, the tele-
ported state’s fidelity Ftele shared between the two spin
memories at A and B is calculated by taking the overlap
with an ideal spin-spin Bell state |Φ+〉 (considering here
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only one of the four Bell states):

Ftele = wBell · 〈Φ+|ÛCZρiÛ
†
CZ|Φ+〉+

wnot−Bell

4
(11)

where wBell and wnot−Bell represent the partial traces
over the Bell and non-Bell basis states. The latter term is
again due to terms outside of the Bell basis projecting the
spin memories into maximally mixed states. Accounting
for dark counts (later calculations assume 102 Hz based
on Ref. [20]), we further modify the teleported state’s
fidelity to be,

Ftele →
(
wBell · 〈Φ+|ÛCZρiÛ

†
CZ|Φ+〉+

wnot−Bell

4

)
× (1− pdark)2 +

2(1− pdark)pdark + p2
dark

4
. (12)

Next, we focus on infidelity caused by photon loss in
the channel. The issue arises from a competition between
efficiency and fidelity. Since initializing spins is time-
consuming [3], time can be saved by not re-initializing
the spins after every attempt (where photons transmit
through atmosphere and arrived at qRX). A complica-
tion arises if a photon is lost after reflecting off the cav-
ity. This qubit loss error projects the spin into a maxi-
mally mixed state; however since the loss is unheralded,
the spins may not be re-initialized for the subsequent
interacting photons. As a result, the average spin-spin
Bell state fidelity decreases as the number of attempt
increases. By setting a maximum number of attempts
Nmax before needing to re-initialize the spins, we can
then minimize this photon loss infidelity, ε.

To calculate the dependence of ε on Nmax, we consider
three scenarios when a photon arrives at the qRX. It can
be (1) detected with probability

√
η (assume identical

downlink channels), (2) lost before reaching the spin with
probability plost, or (3) lost after reaching the spin with
probability pe. Since generally plost � {√η, pe}, we save
time by not re-initializing the spins after every channel
use.

However, as mentioned previously, skipping spin re-
initialization after detector click potentially causes an
unheralded error. Thus, we optimize the spin-spin en-
tanglement fidelity by constraining the number of loading
attempts before we re-initialize the spins. For simplicity
of analysis, we fix an average qTX transmission rate at
1/τ0 = pZALMσrep ≈ 7.45 GHz (Section III B). The prob-
ability of at least one unheralded error occurring in the
first m − 1 time bins conditioned on detector clicks on
the mth bin is

Perror(m,m) = 1− (ξplost/(1−
√
η))

2(m−1)
, (13)

where ξ is the probability of both A and B receiving
photons, computed from taking a partial trace of ρZALM

over basis states with ≥ 1 photons going to A and B.

Then, the probability of error over N bins is

Perror =

N∑
m=1

Perror(m,m)(1− η)m−1η. (14)

Finally, the average state fidelity is

F = (1− Perror)Ftele +
Perror

4
. (15)

The maximum fidelity Fmax occurs when Perror = 0. We
can then define ε = Fmax − F as the average infidelity
arising from the unheralded photon loss error. Constrain-
ing ε therefore limits the maximum number of bins Nmax

before needing to re-initialize the spin memories.

VI. AVERAGE ENTANGLEMENT
GENERATION RATE

Lastly, we compute entanglement generation rate Γ̄ by
considering k spins in the qRX. For simplicity, we let only
a single initialized spin to accept photons at a time. Upon
successful spin-photon mapping, A communicates with B
to determine if B’s corresponding photon was successfully
detected. If both photons were detected, A then transfers
the electron spin to the nuclear spin for memory storage
(see Appendix E). Otherwise, A re-initializes the spin
qubit and awaits subsequent successful detection(s). This
communicate-and-reset sequence takes a time τidle, given
by the sum of communication time τcomm and the spin
reset time τreset.

Since the remaining (k−1) spins are inactive, each spin
is “on-duty” for time τidle/(k − 1). The qTX generates
Nk ≡ τidle/[(k− 1)τ0] attempts during a single spin’s on-
duty time. Furthermore, the target fidelity F = Fmax −
ε(Nmax) limits Nmax, as mentioned in Section V. Hence,
for a fixed k, the on-duty spin would actually be active
for N = min(Nk, Nmax) attempts.

In one clock cycle over time τidlek/(k − 1), each spin
would re-initialize after every N attempts. The proba-
bility both stations detect photons is then

psuccess = η

(
1− (1−√η)2N

1− (1−√η)2

)
, (16)

yielding an average of kpsuccess successfully detected
pairs. Finally, Γ̄ is the ratio between the number of suc-
cessfully detected pairs and clock cycle:

Γ̄ =
psuccess · (k − 1)

τidle
(17)

Fig. 6(a) compares the normalized rate Γ̄τidle/(k − 1)
at k ∈ {101, 107}. In the memory-limited regime (k =
101), Γ̄ scales as

√
η (see Appendix F for derivations),

highlighting the advantage of the “midpoint source” [5]
architecture. In contrast, in the source-limited regime
(k = 108), we recover the Γ̄ ∝ η scaling.
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FIG. 6. Entanglement generation rate Γ̄ as a function of (a)
the total channel efficiency η and (b) the number of spins
k. (a) In the memory-limited regime (k = 101), the normal-
ized rate Γ̄τidle/(k − 1) scales ∝ √η, whereas it scales ∝ η

in the source-limited regime (k = 107). (b) Γ̄ vs k for both
ZALM and SPDC with varying ε ∈ {10−2, 10−3} and total
downlink atmospheric attenuation αatm = {40, 50} dB. We
additionally consider AB = 102 km (purple). These calcula-
tions assume a nuclear spin coherence time � 1 s.

In Fig. 6(b), we compare the entanglement gener-
ation rate Γ̄ between using the ZALM BPS and us-
ing a free-running SPDC source (with a narrowband
200 MHz filter) as the qTX in both memory-limited
and source-limited regimes. Furthremore, we compare
their Γ̄ between total downlink atmospheric attenuation
αatm = 40 dB and 50 dB, corresponding to channel
losses

√
η ≈ 0.2% and 0.07%, respectively. The total

loss accounts for attenuation in the downlink channel it-
self, 3.57 dB from adaptive optics [54, 55], 3 dB from
mode conversion inefficiency (Appendix C), 2.68 dB from
the diamond nanocavity (with cooperativity C = 100),
∼0.8 dB insertion loss from the switching array (assumed
a single-layer low-loss interposer), and 0.044 dB from de-
tector inefficiency [3].
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1

FIG. 7. Entanglement generation rate Γ̄ and the probability
of success for the ZALM BPS pZALM as a function of spectrally
multiplexed modes in the qTX, Nmodes. Γ̄ is evaluated for k =
{104, 105, 106}. Calculations assume η = 40 dB, ε = 10−2,
and AB = 104 km.

We also consider infidelity arising from unheralded
photon loss error ε = {10−2, 10−3}, which effectively
dictate the frequency of spin re-initialization (the con-
sequential rate-fidelity trade-off is investigated in Ap-
pendix G). Lastly, we evaluate two ground-to-ground
distances AB at 104 km and 102 km, with correspond-
ing communication times τcomm = 60 ms and τcomm =
0.5 ms, respectively. The spin re-initialization time is
assumed to be τreset = 30 µs [3].

For AB = 104 km (blue, orange, and yellow curves in
Fig. 6(b)), at low k, ZALM and SPDC have comparable
Γ̄ since the rate is limited by a quickly saturated bank of
memories, i.e. photons are arriving at a rate faster than
the spins are able to be freed up. However, as k increases,
the advantage of the ZALM BPS starts manifesting as its
rate performance surpasses that of a non-heralded SPDC
source.

The point of divergence between the ZALM BPS and
SPDC depends on ε and τcomm. To maintain a small
ε = 10−3, A and B need to re-initialize the spins more
frequently , i.e. reducing Nmax regardless of k. Hence,
ZALM and SPDC achieve similar Γ̄. Instead, if τcomm is
reduced, e.g. smaller AB = 102 km, the effect of mem-
ory saturation is suppressed. As a result, ZALM would
greatly outperform SPDC even with small k, shown by
the purple curves in Fig. 6(b). Lastly, Γ̄ plateaus as k in-
creases indefinitely, at which point Γ̄ is solely determined
by η and τ0,

Γ̄→ η/(1− (1−√η)2) · 2/τ0 · log (1/(1−√η)) . (18)

The upper bounds, indicated by the black dashed lines,
are 7.3 × 102 Hz for αatm = 40 dB and 7.3 × 101 Hz
αatm = 50 dB. Similar calculations for a ground-only
quantum repeater network are presented in Appendix H,
where we consider a midpoint source equidistant from
A and B separated by 2LGG = 102 km. Expectedly, a
qTX based on the ZALM BPS shows a rate advantage
by more than an order of magnitude than one based on
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a non-heralded SPDC source.
As shown in Fig. 7, we further compute the entangle-

ment generation rate Γ̄ and the probability of success
pZALM as a function of the number of spectrally mul-
tiplexed modes Nmodes for k = {104, 105, 106}. The
calculations here assume η = 40 dB, ε = 10−2, and
AB = 104 km. Expectedly, pZALM approaches unity
as Nmodes increases. However, despite the increase in
the qTX’s transmission rate 1/τ0, Γ̄ quickly saturates
at Nmodes < 102 for k = 104, a manifestation of the
memory-saturation effect. As k increases to 106, the rate
at which spin memories is freed up at the qRX becomes
comparable to 1/τ0, giving rise to an increase in Γ̄ mono-
tonic with Nmodes. Given the saturation behavior, the
number of spin memories available at the qRX effectively
sets the upper bound on Nmodes used in ZALM, past
which point the rate advantage of the quasi-deterministic
BPS nullifies.

VII. DISCUSSION AND OUTLOOK

In this Article, we proposed a midpoint source archi-
tecture relying on a quasi-deterministic ‘zero-added-loss
multiplexed’ BPS for quantum networks. It leverages
the large phase-matching bandwidth intrinsic to SPDC
sources and utilizes spectral multiplexing via commer-
cially available DWDMs. Moreover, our proposed mode
converter crucially upconverts the heralded photons to
spectral modes with matching frequency and bandwidth
to those of solid-state spin qubits, a step which is essential
for memory-based repeater networks. Our calculations
show that the ZALM BPS greatly increases the entan-
glement generation rate Γ̄, especially in low-transmission,
memory-limited links. In our scheme, upon receiving her-
alded photonic Bell pairs from the quantum transmitter
on the satellite, the ground-based quantum receivers per-
form photon-to-spin mapping and herald spin-spin en-
tanglement between two remote terrestrial stations. Our
calculations show that in the memory-limited regime, our
“midpoint source” scheme has a favorable

√
η rate scal-

ing. As memory multiplexing increases to k ' 102, for
ground-to-ground distance 102 km, the ZALM BPS en-
ables Γ̄ > 10 Hz with theoretical spin-spin Bell state fi-
delity F > 0.99. This significantly outperforms the case
where a single SPDC (non-heralded) source is used, in
which Γ̄ is lower by ∼ 2 orders of magnitude. We stress
that such a high bandwidth BPS should prove valuable to
any two-way quantum repeater network configurations.
For example, the advantage is apparent in a ground-only
quantum network as shown in Appendix H. Addition-
ally, the ZALM BPS may also benefit applications that
must rely on distribution of optical entanglement, such as
optical quantum computing [56–58], precision measure-
ment [59], and all-optical quantum repeaters [60, 61].

Currently, the upper bound of Γ̄ is limited by the low
probability of detecting the same Bell pair, which is a
function of both channel loss η and the BPS emission

rate 1/τ0. While α (e.g. atmospheric attenuation) is of-
ten a fixed parameter, η can be further improved by ad-
ditional engineering: reducing the DWDM channel band-
width to increase the number of spectrally multiplexed
modes, minimizing loss in optical transmission (for e.g.
increasing adaptive optics transmission efficiency, using
larger optical apertures etc.), minimizing insertion loss
for the 1 ×N switching array, and increasing the cavity
reflection efficiency (dictated by both design and fabrica-
tion capability currently [62]). As for boosting the ZALM
BPS’ emission rate, using higher pump powers does in-
crease the mean photon numbers Ns (and consequently
the heralding probability) at the cost of degraded state fi-
delity. Having higher single photon detectioon efficiency
on the satellite could also improve 1/τ0. We stress that
for ZALM’s advantage to persist, the detection efficiency
must be high in qTX entanglement swap and heralding.
Missed photon detection translates to infidelity in the
heralded state, countered only by lowering Ns, which fur-
ther limits the heralding and entanglement distribution
rate.

The implementation of the qTX in the proposal thus
far demands having a large number of detectors in the
midpoint source. Alternative to DWDM and having de-
tectors for each spectral channel, one may also use time-
of-flight measurements via dispersive optical elements al-
ready experimentally demonstrated in Ref. [63]. With a
detector reset time τr and a pump whose repetition rate
of � 1/τr, a single detector would suffice, therefore sig-
nificantly reducing the detector requirement for the BPS.
However, we note that having a high detection efficiency
is critical to correctly heralding Bell state creation in the
qTX [13]. However, we note that there exists a large at-
tenuation loss in the dispersive element (∼ 10 dB based
on Ref. [63]). Further technological improvements in con-
structing high-efficiency and highly dispersive optics are
warranted to realize a practical qTX based on time-of-
flight measurements.

In the qRX, the mode converter is imperative to en-
abling � 1 ns long photons to interact with spin mem-
ories with <ns temporal width at frequencies 100s THz
away. As opposed to sum-frequency generation in high-
Q ring resonators, time-lensing effect already realized
in electro-optical modulating platforms (e.g. LiNbO3)
could also be viable alternatives [49, 64].

Given current demonstration of PIC-integrated k ∼
102 SiV− [65], the achievable Γ̄ is ∼ 1 ebit/s. It remains
another engineering challenge to realize large-scale inte-
gration of solid-state spin qubits in photonic structures.
Potential avenues may include implanting multiple emit-
ters within each cavity via focused-ion beam [65, 66] and
spectrally select a frequency-unique spin.

Lastly, instead of using a cavity-reflection spin-photon
mapping protocol, BSM based on atomic emission inter-
fering with photonics Bell pairs can also entangle remote
spins [5]. The spin memories suitable for the proposed
architecture extends to other matter qubits such as
defects in Si [67] and SiC [68], rare-earth ions [69, 70],
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atomic vapors [71], cold atoms, and trapped ions, may
be suitable memory qubits as well. Irrespective of the
entanglement scheme and platform choice, our proposal
remains viable as an optical entanglement distribution
protocol for midpoint source based quantum links.
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Appendix A: Analysis of the Down Conversion Process

We consider a spontaneous parametric down-conversion (SPDC) Hamiltonian [31, 32] in terms of the interacting
field operators as

Ĥint(t) =

∫
V

d3rχ(2)Ê
(+)
P (r, t)Ê

(−)
S (r, t)Ê

(−)
I (r, t) + H.c. . (A1)

The consituent terms in this expression are as follows

– Êj(r, t) = Ê
(+)
j (r, t)+Ê

(−)
j (r, t) are the three interacting fields, with the mode label index j = P, S, I identifying

the pump, signal and idler fields respectively.

– The crystal’s nonlinearity is characterized by the second order nonlinear coefficient χ(2). This coefficient is
assumed to be equal over the frequency range of interest.

– V is the volume of interacting field regions in the nonlinear crystal.

To simplify the analysis, the down-converted beams are constrained to be co-linear with the pump beam. The volume
integral in Eq. (A1) then becomes an integral over only one direction, which we choose to be z. The positive frequency

part of the field operator Êj(z, t), is described by

Ê
(+)
j (z, t) =

∫
dωjA (ωj) âj (ωj) e

i[kj(ωj)z−ωjt], (A2)

where âj (ωj) is the photon annihilation operator for the mode defined by frequency ωj , the z direction, and the
polarization associated with the index j. The term A (ωj) is a slowly varying function of frequency,

A (ωj) = i

√
~ωj

2ε0n2 (ωj)× Vj
. (A3)

This term varies slowly w.r.t. the field frequencies, and hence may be taken outside the integral. In Eq. (A3), n(ωj)
is the frequency dependent refractive index and Vj is the mode volume. In case of a free-space implementation,
this is calculated as the product of the crystal face area and the propagation length of the photons generated by
the down-conversion process; the crystal face area is replaced by the waveguide mode area are in case of an on-chip
implementation. Since SPDC is a very inefficient process, the pump field must be relatively large. Accordingly,

the electric-field operator Ê
(+)
p (r, t) may be replaced by the classical field Ep(r, t) = α̃(t)eikP (ωP )z. The interaction

Hamiltonian may now be expressed as

Ĥint(t) =A

∫ L

0

dz

∫
dωI

∫
dωS â

†
I (ωI) â†S (ωS) α̃(t)× e−i{[kI(ωI)+kS(ωS)−kP (ωP )]z−[ωI+ωS ]t} + H.c., (A4)

where L is the length of the crystal and A (ωj) has been grouped into a single parameter A, along with several
constants defined by

A = A(ωS)A(ωI)χ(2) ≈ A(ωP /2)2χ(2) (A5)

For a continuous wave (CW) pump, the nonlinear interaction prescribed by Eq. (A4) is a continuous process. We
can argue that the interaction has therefore started long before the emission of signal and idler photons that we expect
to arise as result. Thus we can extend the interaction time t0 → −∞ and t→∞.

With the revised limits of integration, the integral is somewhat easier to handle if the pump field is represented as
its frequency components. This is in general true for any pump spectral shape [72]. We shall examine two cases in
our analysis, (1) a CW pump of finite line width and (2) a pulsed mode-locked pump whose spectral characteristics
are given as

1. Continuous wave (CW) pump: The pump field for a CW laser may be expressed as α̃(t) =
∫
dωP α(ωP ) e−iωP t

with spectral mode shape function α(ωP ). We consider a Gaussian spectral profile model for α(ωP ) of the form,

α(ωP ) = exp(−(ωP − ωP0)2/2σ2
P ) (A6)

where ωP,0 is the pump center frequency and σP is the pump linewidth.
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2. Mode-locked pump laser: For the present analysis the mode locked laser is modelled as a sum of CW-like laser
lines separated by preset frequency separations given by

α(ωP ) =

N∑
n=−N

S(ωP ) exp

(−(ωP − ωP,0 − n∆ωP )2

2σ2
P

)
, (A7)

where S(ωP ) is the overall mode envelope function for the laser. For a comb source with a Gaussian gain
envelope, we choose S(ω) = exp(−(ω−ωP0)2/2σ2

P,BW ) to be the standard functional form, where σP,BW is the
comb bandwidth.

Irrespective of the pump shape, the integral in Eq. (A4) then becomes∫ t

t0

dt′Ĥint (t′) =A

∫ ∞
−∞

dt′
∫ L

0

dz

∫
dωI

∫
dωS â

†
I (ωI) â†S (ωS)

∫
dωP α (ωP )

× e−i{[kI(ωI)+kS(ωS)−kP (ωP )]z−[ωI+ωS−ωP ]t} + H.c. (A8)

The time integral is performed first, yielding a 2πδ (ωI + ωS − ωP ) term. Subsequently integration over the length of
the crystal yields,∫ t

t0

dt′Ĥint (t′) =2πA

∫
dωI

∫
dωS â

†
I (ωI) â†S (ωS)× α (ωS + ωI) Φ (ωS , ωI) + H.c. (A9)

where Φ(ωS , ωI) is the phase matching function (PMF) given by,

Φ(ωS , ωI) =
sin {[kS(ωS) + kI(ωI)− kP (ωS + ωI)]L}

[kS(ωS) + kI(ωI)− kP (ωS + ωI)]L
(A10)

Using the concepts developed in the study of time-dependent perturbation theory, we may now work out a full
Dyson series based expansion of the interaction to obtain the final state. For a generic interaction Hamiltonian
Hint(t) acting on the initial state |ψ(t0)〉 from t0 to t, the final state (upto a second order Dyson series expansion)
can be expressed as,

|ψ(t)〉 =

[
1 +

1

i~

∫ t

t0

dt′ Ĥint(t
′) +

1

(i~)2

∫ t

t0

dt′
∫ t′

t0

dt′′Ĥint(t
′)Ĥint(t

′′)

]
|ψ(t0)〉 . (A11)

Such an expansion yields the following characteristic quantum state after the necessary integrals are evaluated.
Zeroth Order Term — The zeroth order approximation describes the regime without any nonlinear field interaction.
Hence, this simply yields the broadband vacuum term |0, 0〉.
First Order Term — The first order Dyson expansion yields the term in which a single pair of signal and idler
photons are created. Their spectral characteristics are governed by the joint spectral amplitude (JSA), J(ωS , ωI) =
α(ωS +ωI)Φ(ωS , ωI) i.e. a product of the pump spectral function and the PMF. The state may then be expanded as

|ψ(1)〉 =
2πA

i~

∫
dωI

∫
dωS α(ωS + ωI) Φ(ωS , ωI) â†S(ωS) â†I(ωI) |0, 0〉 (A12a)

≡ g(1)

∫ ∫
dωI dωS J(ωS , ωI) â†S(ωS) â†I(ωI) |0, 0〉 . (A12b)

Here, we make the simplification g(1) = 2πA/i~. It is important to note here that the JSA for the mode locked pump
is a summation of JSA terms for the CW pump. Further, the mode spacing (∆ωP ) is typically much smaller than the
overall envelope’s bandwidth, σP,BW ; thus the overall JSA may be modelled by that of the pump envelope, rather
the individual pump spectral lines.
Second Order Term — The second order term must account for time-ordering effects of subsequent down-conversion
steps. Ref. [73] has shown, that due to destructive interference, nontrivial terms in this expansion are eliminated.
This leads us to calculate the second order terms as

|ψ(2)〉 =
1

2

(
2πA

i~

)2(
g′0 |0, 0〉+

∫
dωI

∫
dωS

∫
dω′I

∫
dω′S J(ωS , ωI)â†S(ωS) â†I(ωI) |0, 0〉 J(ω′S , ω

′
I)â†S(ω′S) â†I(ω′I) |0, 0〉

)
(A13a)
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≡ g(2)

(
g′0 |0, 0〉+

∫
all ω

J(ωS , ωI)J(ω′S , ω
′
I)â†S(ωS) â†I(ωI) |0, 0〉 â†S(ω′S) â†I(ω′I) |0, 0〉

)
(A13b)

where,

g′0 =

∫
dωI

∫
dωS |α(ωS + ωI)Φ(ωS , ωI)|2 (A14a)

g(2) = 2(πA/i~)2 =
(
g(1)

)2

/2 (A14b)

Hence upto the considered second order expansion, the emitted state is expressed as,

|Ψ〉SPDC = (1 + g(2)g′0) |0〉+ g(1)

∫
J(ωS , ωI) â†S(ωS) â†I(ωI) |0〉

+ g(2)

∫
J(ωS , ωI) â†S(ωS) â†I(ωI) · J(ω′S , ω

′
I)â†S(ω′S) â†I(ω′I) |0〉 (A15)

where |0〉 represents the vacuum state. Note that this state is unnormalized and hence contains information about
the total emission rate of the source.

1. Post-Measurement State and Detection Statistics of Zero-Added Loss Multiplexed Source

The output state for a single entangled pair source (comprised of two down conversion processes) is

|Γ〉 = |Ψ〉⊗2
SPDC =

(
|0, 0〉+ |ψ(1)〉+ |ψ(2)〉

)⊗2

(A16)

= |0, 0〉(1) |0, 0〉(2)
+ |ψ(1)〉(1) |0, 0〉(2)

+ |0, 0〉(1) |ψ(1)〉(2)
(vacuum + Bell pair )

+ |ψ(2)〉(1) |0〉(2)
+ |0〉(1) |ψ(2)〉(2)

+ |ψ(1)〉(1) |ψ(1)〉(2)
(two photon terms + vacuum contri.)

+ . . .+ |ψ(2)〉(1) |ψ(2)〉(2)
(higher order terms) (A17)

We clarify on the mode labelling convention used in the generalized analysis of this Appendix. Each SPDC process
generates a signal-idler pair; an entangled pair source is modelled to comprise of two SPDC processes. Let us label
the signal and idler as S and I respectively; additionally let us associate the subscript (say k) to the entangled pair
source. The superscript is used to label the signal-idler pair (or equivalently, which constituent SPDC process). So

the mode label S
(2)
a signifies the signal of the second SPDC process for the entangled pair source labelled a.

Since the idler beams are swapped, we can assume the mode ordering to be S
(1)
k , I

(2)
k , S

(2)
k , I

(1)
k to get the standard

state expansion, where k = a, b determines which entangled pair source (of two) we are referring to. Additionally, we
may simplify the mode notation by adopting the abbreviations proposed in Fig. S1.

Pump 

Output Mode Labels 
with Abbreviations

FIG. S1. Schematic of the individual SPDC entangled pair source using a CW pump excitation.

The spectrally demultiplexed Bell state analyzer in Fig. S2 governs the mode interactions; we shall analyze a subset
of them to determine the final quantum state. As per our abbreviated notation, the modes labelled by a4 and a3
interact with modes b1 and b2, respectively. Under the action of the balanced beamsplitters preceeding the detection,
the creation operators are transformed as per the following rule,

â†D1
:=

1√
2

(
â†a4 + â†b1

)
, â†D2

:=
1√
2

(
â†b1 − â

†
a4

)
, (A18a)
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Zero Added Loss (ZALM) Bell 
pair Source
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Entangled Pair Source
<latexit sha1_base64="XQzyTxI3e4d/woYXx00PRQqsgYk=">AAAD2HichVLLbhMxFHU7PEp4pbBkMxAhsQqZqAKW5bFggyhS01bEUeTx3ElM/ML2NEQjS+wQS5D4GrbwEfwNnkkiJWkpHo185txzrq81J9WcWdfp/Nnaji5dvnJ151rj+o2bt243d+8cWVUYCj2quDInKbHAmYSeY47DiTZARMrhOJ28rOrHp2AsU/LQzTQMBBlJljNKXKCGzcdYEDfODZmUxCcYPhbsNH6eYNxYLXSXhe6w2eq0O/WKz4JkAVposQ6Gu9vfcKZoIUA6yom1/aSj3aAkxjHKwTdwYUETOiEj6AcoiQA7KOub+fhhYLI4Vya80sU1u+ooibB2JtKgrMa1m7WKPLeWhouB8+ucCN+vIExp4E1wvNVgiFOmxIfGl878qxoaFdrXe4kLTYxRU3+BOFNTuZRX+GJDmLTuHvb/dw+iRfdavtZdwpQqIYjMSqwKp43KfD8ZzAdpJR7fD09lC3hDDp800LmYQ+4wJ3LEoTYZNho7bGpiwxVO+OD73fNO6PqNH+/yZ4OSSV04kHT+3/OCx07FVWrjjBmgjs8CINSwEJ2Yjokh1IVsN3AGORZ5uPBKZn285NMVPq34EOJkM7JnwVG3nTxp773ba+2/WMR5B91DD9AjlKCnaB+9Rgeohyj6gX6iX+h39D76HH2Jvs6l21sLz120tqLvfwHui07j</latexit>

a1 ⌘ A1

a2 ⌘ A2

<latexit sha1_base64="y5bqHcCu3AeIeZ2w5kMq365ooAE=">AAAD2HichVLLbtNAFJ3GPEp4pbBkY4iQWIU4iqDLqrBggyhS01Zkomg8vk6mmVfH44bIGokdYgkSX8MWPoK/YewkKElLGcua43PPuXNHPrHmLLPt9u+tWnDt+o2b27fqt+/cvXe/sfPgKFO5odCjiitzEpMMOJPQs8xyONEGiIg5HMeTV2X9+BxMxpQ8tDMNA0FGkqWMEuupYeM5FsSOU0MmRew6GM5ydh7udzCurxa6y0I0bDTbrXa1wosgWoAmWqyD4U7tK04UzQVISznJsn7U1nZQEGMZ5eDqOM9AEzohI+h7KImAbFBUN3PhU88kYaqMf6UNK3bVURCRZTMRe2U5brZZK8lLa7G/GFi3zgn//Rr8lAbeesc7DYZYZQp8aFxhzb+qvlGuXbUXONfEGDV1V4gTNZVLeYmvNvhJq+5+/393L1p0r+Rr3SVMqRKCyKTAKrfaqMT1o8F8kGbk8GP/lDaPN+TwUQOdizmkFnMiRxwqk2GjscWmIjZc/oRT1+9cdkLHbfx4m+4OCiZ1bkHS+X9Pcx5aFZapDRNmgFo+84BQw3x0QjomhlDrs13HCaRYpP7CfzNLnAuXfFysZtnzPsTRZmQvgqNOK3rR6r7vNvf2F3HeRo/QE/QMRegl2kNv0AHqIYq+ox/oJ/oVfAg+BZ+DL3NpbWvheYjWVvDtDwYNTuo=</latexit>

b2 ⌘ B2

b4 ⌘ B1

Output Mode Labels

FIG. S2. Schematic of the Zero added loss Multiplexed (ZALM) Bell pair source.

â†D3
:=

1√
2

(
â†a3 + â†b2

)
, â†D4

:=
1√
2

(
â†b2 − â

†
a3

)
, (A18b)

where â†Di is the creation operator for corresponding detector bank. Subsequently, we may analyze the modes pairwise
to determine the quantum state emitted in a complementary pair of undetected modes. As an example, consider the
a4 ⇔ b1 interaction; the corresponding complementary modes are a2 and b3 respectively. Detection of a 1, 0 click
pattern on the pair of modes i.e. detectors D1 and D2 on one of the uDWDM channels imposes a spectral window on
the detected photon. The detection jitter (which is a detector parameter) in conjunction with the spectral window,
govern the temporo-spectral shape of the heralded photon pair. Given a spectral filter of width ∆Ω Hz and a detector
with a detection jitter of δτ s, the temporal extent of the un-detected photons is given by max(δτ, 1/∆ω) s.

We consider detection of photons in modes a4 and b1 overall a spectral range ωa4, ωb1 ∈ (Ω,Ω′). This heralds the
quantum state |ϕ〉 on the undetected modes

|ϕ〉 ∝
(∫

dωa2

∫ Ω′

Ω

dωa4 α (ωa2 + ωa4) Φ (ωa4, ωa2) â†a2(ωa2) +

∫
dωb3

∫ Ω′

Ω

dωb1 α (ωb1 + ωb3) Φ (ωb1, ωb3) â†b3(ωb3)

)
|0〉a2 |0〉b3 .

(A19)

We note that modes a2 and b3 span a complementary frequency range i.e. ωa2, ωb3 ∈ (ωP − Ω′, ωP − Ω) ensures energy
conservation and phase-matching of the down-converted beams. Similarly, the detection of a 1, 0 pattern on the detector banks
D3 and D4 for a the detection channel ωa3, ωb2 ∈ (Ω,Ω′) heralds a quantum state |ϕ′〉 similar to Eq. (A19) above, and is
described by

|ϕ′〉 ∝
(∫

dωa1

∫ Ω′

Ω

dωa3 α (ωa1 + ωa3) Φ (ωa3, ωa1) â†a1(ωa1) +

∫
dωb4

∫ Ω′

Ω

dωb2 α (ωb2 + ωb4) Φ (ωb2, ωb4) â†b4(ωb4)

)
|0〉a1 |0〉b4 .

(A20)

Hence, the complete detection pattern of 1, 0, 1, 0 on detectors D1—D4, yields the final state |ϕ〉⊗ |ϕ′〉, which we may express
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Click Pattern Parity Bits

D1 D2 D3 D4 m1 m2

1 0 1 0 0 0
0 1 0 1 0 1
0 1 1 0 1 1
1 0 0 0 1 0

TABLE I. Table of parity bits (m1,m2) for a given click pattern in detectors D1 −D4

compactly as |ϕ〉 ⊗ |ϕ′〉 ≡ |Ψ〉+ |Ξ〉 with the constituent terms,

|Ψ〉 =

∫
dω̄
(
J(ωa1, ωa3) · J(ωb1, ωb3) â†a1(ωa1) â†b3(ωb3) + J(ωa2, ωa4) · J(ωb2, ωb4) â†a2(ωa2) â†b4(ωb4)

)
|0〉a1 |0〉a2 |0〉b3 |0〉b4

(A21a)

|Ξ〉 =

∫
dω̄
(
J(ωa1, ωa3) · J(ωa2, ωa4) â†a1(ωa1) â†a2(ωa2) + J(ωb1, ωb3) · J(ωb2, ωb4) â†b3(ωb3) â†b4(ωb4)

)
|0〉a1 |0〉a2 |0〉b3 |0〉b4 .

(A21b)

Here, J(ωi, ωj) = α(ωi+ωj)Φ(ωi, ωj), represents the joint spectral amplitude function for the signal-idler frequency pair ωi, ωj .
The |Ψ〉 component is the spectral equivalent of a broadband Bell pair of the form (|1, 0〉A |0, 1〉B + |0, 1〉A |1, 0〉B)/

√
2. In

contrast, |Ξ〉 is a state in which either Alice or Bob receive both photons; this is equivalent to a broadband (|1, 1〉A |0, 0〉B +

|0, 0〉A |1, 1〉B)/
√

2 state. Note that the latter component is a spurious term which limits the fidelity of the generated entangled
state. The overall general state may be expressed as

|S〉 ∝
∫
dω̄

[(
J(ωa1, ωa3) · J(ωb1, ωb3) â†a1(ωa1) â†b3(ωa3) + (−1)m1J(ωa2, ωa4) · J(ωb2, ωb4) â†a2(ωa2) â†b4(ωb4)

)

+ (−1)m2

(
J(ωa1, ωa3) · J(ωa2, ωa4) â†a1(ωa1) â†a2(ωa2) + (−1)m1J(ωb1, ωb3) · J(ωb2, ωb4) â†b3(ωb3) â†b4(ωb4)

)]
× |0〉a1 |0〉a2 |0〉b3 |0〉b4 (A22)

where the compressed integral
∫
dω̄ denotes the limited frequency integrals (for the corresponding spectral channels)∫

dω̄ ≡
∫
dωa1

∫
dωa2

∫ Ω′

Ω

dωa3

∫ Ω′

Ω

dωa4

∫ Ω′

Ω

dωb1

∫ Ω′

Ω

dωb2

∫
dωb3

∫
dωb4 (A23)

The frequency extent of the undetected modes (a1, a2, b3, b4) are restricted to a (ωP − Ω′, ωP − Ω) by the detection windows
(neglcting the pump linewidth). In Eq.(A22), m1 and m2 are parity bits given by Table I. For the purposes of the current
protocol, we translate to a qubit notation for the modes that make up the quantum state transmitted. We choose the equivalent
naming convention where a1, a2, a3, a4 ≡ A1, A2, A1′, A2′ respectively and b1, b2, b3, b4 ≡ B2′, B1′, B2, B1. The ordering for
the b modes are reversed to match the mode ordering in Fig. S2 where b3 and b4 represent modes transmitted to Bob. With
this mode relabelling, Eq. (A22) becomes,

|S〉 ∝
∫
dω̄

[(
J(ωA1, ωA1′) J(ωB2′ , ωB2) â†A1(ωA1) â†B2(ωB2) + (−1)m1J(ωA2, ωA2′) J(ωB1′ , ωB1) â†A2(ωA2) â†B1(ωB1)

)

+ (−1)m2

(
J(ωA1, ωA1′) J(ωA2, ωA2′) â†A1(ωA1) â†A2(ωA2) + (−1)m1J(ωB2′ , ωB2) J(ωB1′ , ωB1) â†B1(ωB1) â†B2(ωB2)

)]
× |0〉A1 |0〉A2 |0〉B1 |0〉B2 (A24)

We use the equivalent notation |S〉 ≡ |S(ωP0, σP )〉 to denote that the state specified in Eq. (A24) arises from a CW pump
field of the form Eq. (A6). Hence given our choice of the mode-locked pump in Eq. (A7), the multiplexed heralded state can
be succinctly described by

|S〉 =

N∑
n=−N

|S(ωP0 + n∆ωP , σP )〉 . (A25)

This state poses additional changes; since there are multiple ‘center frequencies’, the signal and idler photons have an added
degree of uncertainity in their origin. Considering a single SPDC source (say modes labelled by a) a signal-idler pair (say at
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(a) (b) (c)

FIG. S3. Numerically calculated (a) pump envelope function with a frequency comb source, (b) phase matching function using
the Gaussian approximation, and the resultant (c) joint spectral intensity (JSI) function (modulus square of the JSA function).
The plot axes for (a) and (b) spans across a 10× 12.5 GHz, with the center wavelength at 2× 2πc/ωp = 1560 nm. For (c), the
axes span 12.5 GHz corresponding to the spectral width of each DWDM channel.

frequencies ωa1 and ωa3) could be generated by each pump line (centered at ωP = ωP0 + n∆ωP ). The contribution of each
pump line is determined by the spectral envelope (S(ωP )) of the pump and more crucially, by the joint spectral amplitude
J(ωa1 , ωa3) function.

Appendix B: Heralded photonic Bell state

The heralded photonic Bell state fidelity may suffer from timing uncertainty in the detection and imperfect mode conversion.
Here we address the aforementioned issues through an example of calculated joint spectral amplitude (JSA) function J , which is
a product of the pump envelope α(ωP ) and the phase matching function Φ(ωS , ωI) (Appendix A). We first assume a repetition
rate of 1 GHz for the mode-locked pump laser, with each comb width being 12.5 GHz (matching that of the DWDM channel
as explained later). We also take the SPDC material to be magnesium-oxide doped LiNbO3. Using the Sellmeier equations for
both the signal (extraordinary) and the idler (ordinary) photons, and applying a Gaussian approximation [32], we can compute
the phase matching function Φ(ωS , ωI). Multiplying α(ωP ) with Φ(ωS , ωI), we then obtain the JSA function. Figure S3 shows
the three functions respectively.

We further assume a Gaussian spectral profile for the DWDM channel that shapes the JSA, as illustrated in Fig. S4. To
quantify the level of separability, we perform Schmidt decomposition on the JSA to extract its eigenvalues λm with orthonormal
basis vectors {um(ω)}, {vm(ω)} [32]:

J(ωs, ωi) =
∑
m

√
λmum(ωs)vm(ωi) (B1)

where ∫
K1(ω, ω′)um(ω′)dω′ = λmum(ω) (B2)∫
K2(ω, ω′)vm(ω′)dω′ = λmvm(ω) (B3)

K1(ω, ω′) =

∫
J(ω, ω2)(J(ω′, ω2))∗dω2 (B4)

K2(ω, ω′) =

∫
J(ω1, ω)(J(ω1, ω

′))∗dω1 (B5)

The entropy of entanglement, which approaches zero as the JSA becomes more separable, is calculated based on:

S = −
∞∑
k=0

λk log2 λk (B6)

If the inverse of the detector jitter time is much greater than the DWDM channel bandwidth of 12.5 GHz, then the infidelity
of the photonic Bell state stemming from projection into a mixed state is negligible. For calculations presented in the main
text, we assumed a timing uncertainty of 1 ps [38] corresponding to 1 THz, which greatly exceeds 12.5 GHz. However, even
with ideal detection, the heralded photonic Bell state composed by the signal photons from two SPDC sources may still have
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(a) (b)

FIG. S4. The JSI function before and after applying spectral filtering via a Gaussian-shaped DWDM channel profile. The
calculated entropy based on Schmidt decomposition is S = 0.446.

a complex spectral shape, which may lead to infidelity caused by the mode conversion step. This is largely a consequence of
using a frequency comb source with a repetition rate comparable to the DWDM channel width.

Two avenues to circumvent this issue are (i) injecting a complex pump pulse shape in the MC corresponding to the spectral
shape in the heralded Bell state or (ii) engineering the JSA function [32]. For the calculated example shown in Fig. S3 and
Fig. S4, we take the latter approach by matching the pump linewidth to the DWDM channel bandwidth and increasing the
effective crystal length. As a result, the DWDM-filtered JSI shows a near Gaussian profile, as assumed in Appendix C.

Lastly, we consider the case of having non-ideal detectors, with the inverse of the jitter time being smaller than 12.5 GHz.
In this scenario, the two-photon interference visibility is determined by the purity of the DWDM-filtered state.

We follow Ref. [74]’s formalism to compute the two-photon interference visibility v with gating (heralding):

v =
E
A , (B7)

where

E = (g(1))2

∫
dω1dω

′
1dω2dω

′
2J(ω1, ω2)J(ω′1, ω

′
2)J∗(ω1, ω

′
2)J∗(ω′1, ω2) (B8)

A = (g(1))2

∫
dω1dω

′
1dω2dω

′
2|J(ω1, ω2)J(ω′1, ω

′
2)|2 (B9)

We find the theoretical maximum visibility to be v = 0.996.

Finally, we estimate the entanglement swap fidelity Fswap = (1 + v)/2 to be 0.998, which still exceeds 0.99, highlighting the
importance of JSA engineering in the case of imperfect detection. However, we note that the spectral profile of the heralded
photonic Bell state would be convolved with the detector’s instrument response function, likely demanding further shaping on
the MC’s pump pulse. For this reason, we assume a sufficiently small detector jitter and leave the effect of imperfect detection
for future studies.

Appendix C: Frequency and Bandwidth Conversion

Recall that the quantum state of the cavity is

|Ψcav〉 ≡ ψa(t) |10〉+ ψb(t) |01〉 , (C1)

where |10〉 corresponds to the photon being in mode a while |01〉 corresponds to the photon being in mode b. The equations of
motion for the Schrödinger coefficients are

ψ̇a(t) = −
(
iδa +

κa
2

)
ψa(t)− i|Λ(t)|e−iφ(t)ψb(t) +

√
κa,wξa,i(t) (C2a)

ψ̇b(t) = −
(
iδb +

κb
2

)
ψb(t)− i|Λ(t)|eiφ(t)ψa(t) (C2b)

ξa,o(t) = ξa,i(t)−
√
κa,wψa(t) (C2c)

ξb,o(t) = −√κb,wψb(t), (C2d)
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where the photon wave packets are described by the functions ξq,i(t) and ξq,o(t) with q = {a, b}. The input state may be
expressed in a time-bin basis as [21]

|Ψin〉 ≡
∫
dtξa,iŵ

†
a(t) |0〉t , (C3)

with |0〉t representing the product state where all time-bins are empty (i.e. multi temporal-mode vacuum state) and ŵ†a(t)
populates the time-bin indexed by t with one photon. The output state is

|Ψout〉 ≡
∫
dtξa,o(t)ŵ†a(t) |0〉t +

∫
dtξb,o(t)ŵ†b(t) |0〉t . (C4)

Note that the control field was divided into amplitude, |Λ(t)| , and phase, exp[iφ(t)], in Eq.( C2a)-( C2b) and the total decay
rates are defined by κq =κq,w + κq,l with κq,l being the intrinsic loss rates of the cavity modes. We assume that a maximum
conversion efficiency is achieved when ξa,o(t) = 0, so the task is to determine |Λ(t)| and φ(t) such that this is true. Solving
Eq. (C2c) yields ψa(t)=ξa,i(t)/

√
κa,w, which we substitute into Eq. (C2b) and re-arrange terms

d

dt

(
ψb(t)e

−Q(t)
)
eQ(t) =

−i
√
κa,w

|Λ(t)|eiφ(t)ξ(t) ⇒ ψb(t) =
−i
√
κa,w

eQ(t)

∫ t

t0

e−Q(s)|Λ(s)|eiφ(s)ξ(s)ds. (C5)

We defined the function Q(t) = −(iδb +κb/2)t and replaced ξa,i with ξ for brevity in Eq. (C5). Substituting ψa=ξ/
√
κa,w into

Eq. (C2a) yields

(κa,w − κa,l)
2

ξ(t)− ξ̇(t)− iδaξ(t) = i|Λ(t)|e−iφ(t)√γψb(t). (C6)

Multiplying Eq. (C6) by ξ∗(t)exp(κbt) and defining real functions fi and gi, we find

fi(t) + igi(t) = |Λ(t)|e−iφ(t)ξ∗(t)e(−iδb+
κb
2

)t

∫ t

t0

e(iδb+
κb
2

)s|Λ(s)|eiφ(s)ξ(s)ds, (C7)

with

fi(t) =
(κa,w − κa,l

2
ξ(t)− ξ̇(t)

)
ξ∗(t)eκbt (C8a)

gi(t) = −δa|ξ(t)|2eκbt. (C8b)

Note that Eq. (C8a) assumes an input wavepacket without chirp, d
dt

[arg ξ(t)] = 0. The right hand side of Eq. (C7) can be
written as [

x(t)− iy(t)
] ∫ t

t0

[
x(s) + iy(s)

]
ds = x(t)

∫ t

t0

x(s)ds+ y(t)

∫ t

t0

y(s)ds+ i
(
x(t)

∫ t

t0

y(s)ds− y(t)

∫ t

t0

x(s)ds
)
, (C9)

where

x(t) = |Λ(t)||ξ(t)| exp(κbt/2) cos
[
φ(t) + δbt+ arg(ξ)

]
(C10a)

y(t) = |Λ(t)||ξ(t)| exp(κbt/2) sin
[
φ(t) + δbt+ arg(ξ)

]
. (C10b)

By defining the functions

X(t) =

∫ t

t0

x(s)ds = R(t) cos
[
θ(t)

]
, Y (t) =

∫ t

t0

y(s)ds = R(t) sin
[
θ(t)

]
, (C11)

Eq. (C7) can be split into real and imaginary parts

fi = ẊX + Ẏ Y, gi = ẊY − Ẏ X. (C12)

Using the definition in Eq. (C11), we have

fi = ẊX + Ẏ Y =
[
Ṙ cos(θ) − R sin(θ)θ̇

]
R cos(θ) +

[
Ṙ sin(θ) + R cos(θ)θ̇

]
R sin(θ) = ṘR =

1

2

d

dt

(
R2
)
, (C13)

which has the solution

R(t) =

√
2

∫ t

t0

fi(s)ds. (C14)
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Similarly,

gi = ẊY − Ẏ X =
[
Ṙ cos(θ)−R sin(θ)θ̇

]
R sin(θ)−

[
Ṙ sin(θ) +R cos(θ)θ̇

]
R cos(θ) = −R2θ̇. (C15)

Using the result in Eq. (C14), the solution for θ is

θ(t) = −1

2

∫ t

t0

gi(s)∫ s
t0
fi(z)dz

ds. (C16)

To find the solution for |Λ(t)| we evaluate x2 + y2 = |Λ|2|ξ|2 exp(κbt) using the results above

|Λ|2|ξ|2eγLt = Ẋ2 + Ẏ 2 =
[
Ṙ cos(θ) − R sin(θ)θ̇

]2
+
[
Ṙ sin(θ) + R cos(θ)θ̇

]2
= Ṙ2 + R2θ̇2 =

1

2
∫
fi

(
g2
i + f2

i

)
. (C17)

Inserting the definition of gi from Eq. (C8b) yields

|Λ|2|ξ2| exp(κbt) =
1

2Fi

(
δ2
a exp(2κbt)|ξ|4 + f2

i

)
⇒ |Λ(t)|2 =

δ2
a|ξ|2eκbt

2Fi
+

f2
i e
−κbt

2|ξ(t)|2Fi
, (C18)

where Fi(t) is the anti-derivative of fi(t). If δa=0, the solution is

|Λ(t)| = |fi(t)|e
−κb

2
t

√
2|ξ(t)|

1√∫ t

t0

fi(s)ds

. (C19)

Knowing |Λ(t)| means gi is a known function and x and y may be evaluated using θ from Eq. (C16). Then, the phase φ is

φ(t) = −δbt− arg(ξ) + tan−1

(
y(t)

x(t)

)
. (C20)

To obtain x and y, note that

x = Ẋ = Ṙ cos(θ)−R sin(θ)θ̇ =
fi cos(θ) + gi sin(θ)√

2
∫
fi

(C21)

y = Ẏ = Ṙ sin(θ) +R cos(θ)θ̇ =
fi sin(θ)− gi cos(θ)√

2
∫
fi

. (C22)

When δa=0, we have gi=0 and Eq. (C20) simplifies to

φ(t) = −δbt− arg(ξ). (C23)

Using the same example as the one presented in the main text, let us consider Gaussian input pulses

ξa,i(t) =

√
2

τG

(
ln(2)

π

)1
4

exp

(
−2ln(2)

(t− Tin)2

τ2
G

)
, (C24)

where |ξa,i(t)|2 has a full temporal width at half maximum (FWHM) of τG, spectral width of ΩG =4ln(2)/τG, and integrates to 1
(over the infinite interval from −∞ to∞). We also introduce the offset ∆τ to investigate the influence of timing-offset between
the incident photon and the control pulse. The control pulse, Λ(t), is then calculated using ξ(t+ ∆τ) instead of ξ(t). Solving
the equations of motion in Eq. (C2) with the control field calculated from Eq. (C19)–(C23), we calculate the probability of
converting the photon to ωb as

Pb,o =

∫
|ξb,o(t)|2dt. (C25)

The results are shown in Fig. S5. We use an input pulse centered at 1550 nm with a temporal width of τG =80 ps and κa,w =4ΩG,
which ensures efficient absorption into cavity mode a. Fig. S5(a) plots the input and output wave packets for an example with
κa,l =κb,l =κl = 0, ∆τ = 0, and κb,w = 2π×100 MHz to match the bandwidth of the output pulse to the cavity containing the
spin qubit. The small amplitude of the blue line in Fig. S5(a) shows that a very small fraction of the incident wave packet
passes by the cavity without being absorbed. This fraction decreases towards zero very rapidly as κa,w is increased relative to
ΩG [21]. The effect of timing mismatch is investigated in Fig. S5(b), which shows that the conversion efficiency stays above 70%
if |∆τ | ≤ τG. Note that more robustness could be obtained by optimizing the control pulse while taking the timing-offset into
account. Fig. S5(c) shows the reduction in conversion efficiency in the case of a finite intrinsic decay rate of the cavity modes
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FIG. S5. Simulation results for frequency conversion and bandwidth narrowing. (a) Example of the solutions to (C2). (b)
Conversion efficiency as a function of the timing-offset between the incident photon and the control field. (c) Conversion
efficiency as a function of the intrinsic loss rate of the cavity modes. Parameters: τG = 80 ps, κa,w = 4ΩG, κb,w = 2π×100 MHz,
and κa,l =κb,l =κl. In (a) and (b) we used κl =0 and in (a) and (c) we used ∆τ=0.

spin memory

𝜓! = | ↓⟩ + | ↑⟩)/ 2

FIG. S6. An illustration of a MZI tree network as the interposer to the memories. Each layer introduces transmission loss from
the MZI.

(assumed to be equal for modes a and b). The required narrow bandwidth of the output pulse requires the loaded Q to be
larger than Qb,w =4×106. When Ql =Qb,w, the spectrum of the output pulse is roughly Lorentzian with a FWHM bandwidth
of 200 MHz and the conversion efficiency is 50% as illustrated using the vertical dased black line in Fig. S5(c).

Appendix D: Switching array in the receiver

Here we consider using a MZI tree network in a photonic integrated circuit (PIC) as a fast switching array, as shown in
Fig. S6, albeit with finite transmission loss that scales exponentially with the number of layers. For LiNbO3-based PIC,
propagation loss has been shown to be negligible even for device length exceeding 100 µm [39]. For simplicity, we neglect metal
absorption loss stemming from nearby electrodes used to drive the electro-optic phase shifters. Rather, we assume the main
loss mechanism to come from imperfection in the directional couplers. We take a state-of-the-art value of ∼0.2 dB per MZI
demonstrated on SOI [75] to illustrate the effect of switching array loss on the entanglement generation rate. Fig. S7 shows
comparable rates as the non-MZI-based scheme shown in the main text, up until k ≈ 104. After which point, the k-dependent
switching array loss begins reducing the entanglement generation rate.

This particular qRX setup requires heterogeneous integration of diamond color centers into PICs, a feat which has already
been demonstrated by Ref. [65] and is conducive to scaling up a multiplexed quantum repeater network. Despite solid-state
emitters such as SiV− manifesting spectral inhomogeneity, we argue post-selecting candidates within a narrowed inhomogeneous
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FIG. S7. Entanglement generation rate Γ̄ vs k for both ZALM and SPDC with varying ε ∈ {10−2, 10−3} and total downlink
atmospheric attenuation α = {40, 50} dB. We additionally consider AB = 102 km (purple). The rates are based on a scheme
that employs a MZI tree network that has k-dependent transmission loss.

Diamond nanocavity
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FIG. S8. Level-structure of a SiV− center in diamond. The electron spin (red) contains two Zeeman-split states {|↓〉 , |↑〉},
which further split into four states {|↓e↓n〉 , |↓e↑n〉 , |↑e↑n〉 , |↑e↓n〉} due to hyperfine coupling with the nuclear spin (blue).

distribution and performing subsequent in-situ tuning enabled by an active PIC platform could still ensure maximal spin-cavity
coupling. For example, SiV− can be strain-tuned [76] to shift its optical transition frequency, while the nanophotonic cavity’s
resonance can be gas-tuned [77] (i.e. index shifting).

Appendix E: Spin-photon system

1. Silicon-vacancy center

The proposed architecture considers diamond’s negatively-charged silicon-vacancy center as the atomic memory. With an ap-
plied magnetic field and accounting for only Zeeman splitting, the energy ground state splits into two electron spin states |↓〉 and
|↑〉. One of the two optical transitions with the excited state |e〉, |↓〉 ←→ |e〉, is coupled with the cavity mode. With a nearby nu-
clear spin, hyperfine splitting further divides the two electronic spin states to a total of four levels: |↓e↓n〉 , |↓e↑n〉 , |↑e↑n〉 , |↑e↓n〉.
Effectively, the electron spin acts as a broker qubit that interfaces with the photon, and subsequently transfers the qubit state
to the nuclear spin that serves as a long-lived atomic memory [51].

2. Spin-dependent cavity reflection

The reflection coefficient of a single-sided cavity coupled with a quantum emitter is:

r(ω) = 1−
κwg

(
i∆a + γ

2

)(
i∆c + κ

2

) (
i∆c + γ

2

)
+ g2

(E1)
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where g is the atom-cavity coupling strength, γ is the emitter’s spontaneous emission rate, κ is the cavity’s total decay rate,
κwg is the waveguide-cavity coupling rate, and ∆a = ωa − ω and ∆c = ωc − ω are the atomic and cavity detuning from the
probe photon, respectively. In the large cooperativity C = 4g2/κγ � 1 limit and on resonance ∆a = ∆c = 0, the reflection
coefficient of a perfectly over-coupled cavity simplifies to

r(ω)
C�1−−−→ C − 1

C + 1
(E2)

Therefore, r approaches +1 when C increases, whereas a emitter decoupled from the cavity mode would yield r → −1. We
consider a spin qubit whose basis states are |↓〉 and |↑〉. When the emitter is in the |↓〉 state that is coupled to the cavity
mode, r = +1. On the other hand, if it is in the |↑〉 state that is decoupled with the cavity mode, r = −1. As a result of this
state-dependent phase difference, the probe photon is entangled with the spin via cavity reflection.

3. Photon-to-spin mapping

In the Schrodinger picture, we present an example of how an arbitrary photonic qubit encoded in the polarization ba-
sis {|H〉 , |V 〉}, |ψ〉P = α |H〉+ β |V 〉 (≡ α |0, 1〉 + β |1, 0〉 in the dual-rail Fock basis), can be teleported to a spin qubit

|ψ〉S,final = α |↓〉+ β |↑〉. We initialize the spin to be in an equal superposition state: |ψ〉S,init = (|↓〉+ |↑〉) /
√

2. Their joint

state is then: |Ψ〉 = |ψ〉P ⊗ |ψ〉S,init = α |H, ↓〉+ α |H, ↑〉+ β |V, ↓〉+ β |V, ↑〉. Upon entering the receiver node, we envision

using a polarization-splitter rotator to convert the polarization basis to the spatial basis {aH , aV }. Importantly, we re-write
the joint state as |Ψ〉 = α |aH , ↓〉+ α |aH , ↑〉+ β |aV , ↓〉+ β |aV , ↑〉. Subsequently, mode aH acquires a spin-dependent phase
upon cavity reflection, whereas mode aV acquires a constant −1 phase from reflection off a mirror. The resultant state is

|Ψ〉 = α |a, ↓〉 − α |a, ↑〉 − β |b, ↓〉 − β |b, ↑〉 (E3)

We note describe the evolution of each of the two spatial modes separately. After cavity interaction, {|aH〉 , |aV 〉} enter a
50:50 beam splitter whose output modes are {|A〉 = t |aH〉 + r |aV 〉 , |B〉 = r |aH〉 + t |aV 〉}, where r = i and t = 1 are the
reflection and transmission coefficients, respectively. The two output modes then become

|A〉 = α (|↓〉 − |↑〉)− iβ (|↓〉+ |↑〉) (E4)

|B〉 = iα (|↓〉 − |↑〉)− β (|↓〉+ |↑〉) (E5)

The spin undergoes a Hadamard rotation, transforming the states to

|A〉 = α |↑〉 − iβ |↓〉 (E6)

|B〉 = iα |↑〉 − β |↓〉 (E7)

Upon detection on either of the |A〉 or |B〉 port, appropriate Pauli operations can be applied to the spin qubit to obtain the
target state |ψ〉S,final = α |↓〉+ β |↑〉.

However, with imperfections such as finite cooperativity and non-unity coupling to the waveguide mode (κwg/κ < 1) in the
spin-cavity system, the reflection coefficients would have non-unity amplitudes. We consider now the photon-to-spin mapping
process with generalized reflection coefficients, ron, roff, for the on- and off-resonance cases respectively. We still treat the mirror
as a lossless component such that mode b still acquires a constant -1 phase.

Upon reflection, the spin-photon state is

|Ψ〉 = ronα |aH , ↓〉+ roffα |aH , ↑〉 − β |aV , ↓〉 − β |aV , ↑〉 (E8)

After the 50:50 beam splitter, the two output modes are

|A〉 = α (ron |↓〉+ roff |↑〉)− iβ (|↓〉+ |↑〉) (E9)

|B〉 = iα (ron |↓〉+ roff |↑〉)− β (|↓〉+ |↑〉) (E10)

Appendix F: Dependence of Γ̄ on η

1. Memory multiplexing dependent rate scaling behavior

From the main text, the entanglement generation rate is defined to be

Γ̄ =
psuccess · (k − 1)

τidle
(F1)
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FIG. S9. Rate-fidelity trade-off at k ∈ {102, 5× 102, 103}. Setting Ns = 2.94 × 10−2 and C = 100, F upper-bounds at 0.998
due to imperfections in the qTX and qRX. We take AB = 102 km and αatm = 40 dB.

where

psuccess = η

(
1− (1−√η)2N

1− (1−√η)2

)
(F2)

For simplicity, let us neglect the contribution of ε and define N = Nk = τidle/((k − 1)τ0). In the memory-limited regime,
τidle/τ0 � (k − 1), thus Nk � 1. We can re-write psuccess as

psuccess ≈ η
(

1− e−2Nk
√
η

2
√
η

)
(F3)

≈ 1

2

√
η (F4)

where we used the approximations (1 + x)α ≈ eαx for large |αx| � 1 and (1 + x)α ≈ 1 + αx for small |αx| � 1. From above,
we see that Γ̄ scales as

√
η in the memory-limited regime.

On the other hand, with sufficiently high memory multiplexing such that Nk � 1,

psuccess ≈ η
(

2Nk
√
η

2
√
η

)
(F5)

= Nkη (F6)

which recovers the typical Γ̄ ∝ η scaling.

Appendix G: Spin-spin Bell state generation rate fidelity trade-off

Figure S9 demonstrates the rate-fidelity trade-off at different k ∈ {102, 5× 102, 103}. Γ̄ approaches zero as F increases.
Similar to what is shown in Fig. 6 with AB = 102 km and αatm = 40 dB, Γ̄ increases monotonically with the number of spins.

Appendix H: ZALM for ground-only quantum networks

The quasi-deterministic ZALM BPS is useful for general two-way quantum repeater networks regardless of their configura-
tions. Although the main text provides a specific example for a satellite-assisted architecture for global scale networks, we show
here that the same qTX can be equally beneficial for ground-only quantum networks. Figure S10 shows the rate of generating
entanglement between A and B, with a midpoint source C equidistant from the two qRX’s. We assume AB = 2LGG = 102 km
with corresponding classical communication time of 30 ms and ε = 10−3. Again, we compare the rate performance between
ZALM and a free-running narrowband-filtered SPDC for channel losses α = {50, 60, 70, 80} dB accounting for the attenuation
loss in optical fibers. Additionally, we assume the qRX containing a fast-switching PIC whose MZI tree array causes com-
pounded loss dependent on the number of tree layers. In the memory-limited regime with k ≥ 10, ZALM already outperforms
SPDC by at least an order of magnitude in Γ̄. The gap in rate widens further with greater channel loss. For example, the
difference in Γ̄ at k = 1 is much larger for α = 80 dB than for α = 50 dB. Nevertheless, with increasing memory multiplexing,
the rate advantage in using the ZALM BPS immediately manifests.
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FIG. S10. Entanglement generation rate Γ̄ as a function of the number of spins k. Γ̄ vs k for both ZALM and SPDC with
varying channel losses α = {50, 60, 70, 80} dB. These calculations assume AB = 102 km with corresponding τcomm = 30 ms and
ε = 10−3.
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