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Quantum machine learning has the potential to provide powerful algorithms for artificial intelli-
gence. The pursuit of quantum advantage in quantum machine learning is an active area of research.
For current noisy, intermediate-scale quantum (NISQ) computers, various quantum-classical hybrid
algorithms have been proposed. One such previously proposed hybrid algorithm is a gate-based
variational embedding classifier, which is composed of a classical neural network and a parameter-
ized gate-based quantum circuit. We propose a quantum variational embedding classifier based on
an analog quantum computer, where control signals vary continuously in time: our particular focus
is an implementation using quantum annealers. In our algorithm, the classical data is transformed
into the parameters of the time-varying Hamiltonian of the analog quantum computer by a linear
transformation. The nonlinearity needed for a nonlinear classification problem is purely provided
by the analog quantum computer through the nonlinear dependence of the final quantum state on
the control parameters of the Hamiltonian. We performed numerical simulations that demonstrate
the effectiveness of our algorithm for performing binary and multi-class classification on linearly
inseparable datasets such as concentric circles and MNIST digits. Our classifier can reach accuracy
comparable with the best classical classifiers. We find that the performance of our classifier can
be increased by increasing the number of qubits until the performance saturates and fluctuates.
Moreover, the number of optimization parameters of our classifier scales linearly with the number
of qubits. The increase of number of training parameters when the size of our model increases is
therefore not as fast as that of neural network. Our algorithm presents the possibility of using
current quantum annealers for solving practical machine-learning problems, and it could also be
useful to explore quantum advantage in quantum machine learning.

I. INTRODUCTION:

Recent progress in the field of quantum computation
has led to attaining several important milestones. Quan-
tum supremacy has been demonstrated in a few plat-
forms [1–3]. Quantum processors with tens of qubits
have been implemented and become available for oper-
ation via clouds [4]. Quantum error correction using the
surface code [5] has been demonstrated in several exper-
iments [6–8].

Quantum computers have the potential to solve cer-
tain problems significantly more efficiently than classical
computers. The original motivation for using quantum
computers is to efficiently simulate quantum mechanical
systems such as molecules [9]. Besides this quantum ad-
vantage foreseeable in quantum chemistry, a quantum ad-
vantage could also be found in other computation prob-
lems. For example, Shor’s quantum algorithm can factor-
ize large numbers efficiently [10], thereby posing a threat
to the widely-used RSA encryption system upon which
the modern financial system is built. Grover’s algorithm
can speed up unstructured database search [11].

A promising area of application for quantum comput-
ers is machine learning. The field of machine learning has
developed at a fast pace in recent years. Since 2011, the
progress made in neural-network algorithms and large-
scale classical computing hardware, such as graphical
processing units (GPU), has led to increased performance
of machine learning for many applications. A notable ex-

ample is image classification, where such algorithms per-
form better than humans. Machine learning algorithms
have a wide range of profitable industry applications,
such as recommendation system [12, 13]. Whether quan-
tum computers can contribute to the machine learning
community by providing quantum advantage is an in-
triguing question [14].

To explore the potential advantage brought about
by quantum machine learning, many quantum machine
learning algorithms have been proposed [14–18]. Some
of the quantum machine learning algorithms have been
shown to have advantages over their classical counter-
parts [15–17]. Many proposed algorithms fall into two
categories: classification [17, 19] or generative tasks [18].
For classification tasks, several algorithms based on varia-
tional embedding [19], quantum kernels [19], or quantum
support vector machines [17] have been proposed. The
mechanism behind many quantum classification algo-
rithms is based on finding a simplified separation bound-
ary between different classes after nonlinearly mapping
the original data into a new space that usually has a
much higher dimension [20, 21].

We now discuss recent progress on variational embed-
ding classifiers. Havĺıček et al. proposed and demon-
strated a variational embedding algorithm for binary
classification tasks [19], which embeds classical data
into quantum states of a high dimensional Hilbert space
through parameters of quantum gates, and uses quantum
measurements to classify the embedded quantum states.
This approach focuses on finding an operator whose ex-
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pectation value with respect to the states corresponding
to embedded data is different for the two classes. Specifi-
cally, the two classes lead to positive and negative expec-
tation values, respectively. This decision operator effec-
tively defines a hypersurface in the multi-qubit Hilbert
space used to separate embedded quantum states corre-
sponding to two classes. Lloyd et al. proposed a more
general version of the variational method [20], which uses
a general decision operator defined with density matri-
ces from collections of embedded data. This algorithm
has a training procedure that optimizes the embedding
to maximize the distance between embedded quantum
states with different labels. In this approach, a neural
network is used to transform the classical data into a
dataset with different dimensionality. A parameterized
quantum circuit is introduced where the rotation angles
of the gates are the circuit parameters. Each data can
be mapped into a final evolved quantum state of a multi-
qubit Hilbert space by filling some of the rotation angles
of the quantum circuit with the transformed data values.
The rest of the quantum circuit parameters are knobs
used to maximize the distance between the density ma-
trices formed by states of each class. After maximizing
the distances, the classification can be done using a sim-
ple decision operator expectation value metric to find the
label. One open question regarding this algorithm is with
regards to the role of the quantum part in the operation
of the algorithm since the nonlinearity in the neural net-
work is sufficient by itself for performing classification.

To elucidate the source of nonlinearities in a hybrid
classifier and establish whether the quantum part alone
can do the “heavy-lifting” for realizing a nonlinear clas-
sifier, we propose and investigate a new quantum vari-
ational embedding classifier based on an analog quan-
tum computer, whose control fields vary continuously
in time. We focus on an implementation correspond-
ing to the transverse field Ising model used in quantum
annealing; however, this approach can be explored with
other types of Hamiltonians. In our algorithm, the neural
network is replaced with a simple linear transformation,
and the variational quantum circuit composed of gates is
replaced with an analog quantum computer with direct
control of the continuously varying Hamiltonian param-
eters. The nonlinear mapping of the classical data to
a high dimensional density matrix is now realized with
the analog quantum computer. The mapping can be re-
garded as a point in a 2n × 2n dimensional space defined
on a complex number domain, where n is the number of
qubits. Efficient classification is achieved when the data
corresponding to distinct labels form separate clusters in
Hilbert space. Separability is analyzed in terms of the
distinguishability of density matrices averaged over the
states corresponding to different labels. To form sepa-
rate clusters, the L2 (Hilbert-Schmidt) distance [20] be-
tween the averaged density matrices is maximized in the
training stage by adjusting the parameters in the linear
transformation that converts classical data into the pa-
rameters of the analog quantum computer. In the classi-

fication stage, a simple classifier based on distance metric
is used, yielding the predicted label for a new dataset as
the label of the closest averaged density matrix obtained
at the training stage. This distance-based strategy is
also known as nearest centroid classification [22]. This
distance metric could be obtained purely with a quan-
tum circuit [20]. We find that our algorithm can clas-
sify linearly inseparable datasets [23] with high accuracy.
The dependence of performance on the number of qubits
shows that increasing the number of qubits can boost
performance. Our algorithm opens up the possibility to
use quantum annealers [24] for solving practical machine-
learning problems.

II. ALGORITHM

In this section, we present our algorithm, which real-
izes a quantum variational embedding classifier on multi-
class datasets. An important distinguishing feature of
our algorithm, when compared to previous work, is that
it employs control of the quantum system that is done
via control of its Hamiltonian, in contrast with previous
work where control is done based on quantum gates, as
developed in the context of gate-based quantum compu-
tation model.

In this work, we focus on the implementation of an
analog variational embedding using a quantum annealer.
Quantum annealing is an example of an analog quan-
tum computation [23]. In quantum annealing, the ini-
tial system Hamiltonian is a transverse field Hamiltonian,
and the initial state is the ground state of this Hamilto-
nian. The Hamiltonian is continuously deformed, reach-
ing at the end of the evolution an Ising form. This ap-
proach has been developed and explored in connection
with prospects for solving hard computational problems.

While we retain the key elements of quantum anneal-
ing, such as initial ground state preparation and con-
tinuous transverse to Ising Hamiltonians interpolation,
our work focuses on optimizing evolution for classifica-
tion. Perhaps most important, we do not assume that the
quantum annealer remains in its ground state throughout
the analog computation: that is, the quantum annealer
performs diabatic quantum annealing, in which the con-
tinuous time control fields drive it to a non-equilibrium
final state. We emphasize that our algorithm can be
implemented with other types of Hamiltonians, such as
Hamiltonians used in gate-based quantum computers:
our method applies to any quantum information proces-
sor that is controlled by continuously time-varying fields.

The Hamiltonian of the quantum annealer used in our
algorithm takes the form,

H(t) = (1 − s)H0(s) + sH1(s)

+Hadd(s), (1)

where s = t/tmax, with t the time and tmax is the total
evolution time.
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The initial H0 and final H1 Hamiltonians are given by

H0 =
∑
i

hxiσxi (2)

and

H1 =
∑
i

hziσzi +
∑
i,j

Jijσziσzj (3)

where σxi
and σzi are Pauli matrices.

The additional Hamiltonian Hadd vanishes at the
beginning and the end of the evolution (Hadd(0) =
Hadd(1) = 0) and is given by:

Hadd(s) =
∑
i

Pzi(s)σzi +
∑
i

Rxi(s)σxi

+
∑
i,j

Vij(s)σziσzj (4)

The time-dependent coefficients in front of Pauli ma-
trices (schedules) take the following form:

Pzi(s) =
∑
k

czi,k sin((k + 1)πs), (5)

Rxi
(s) =

∑
k

cxi,k sin((k + 1)πs), and (6)

Vij(s) =
∑
k

cij,k sin((k + 1)πs). (7)

These forms are complete Fourier series expansions con-
sistent with the cancellation condition at s = 0 and s = 1.
The Fourier expansion waveform ansatz of the control
fields used for quantum optimal control is an example of
chopped random basis (CRAB) [25, 26]. Previous stud-
ies on CRAB show the optimization landscape of CRAB
ansatz is good for trainability [25, 26], and as few as three
Fourier terms in the Fourier ansatz are enough for a good
performance [25, 26].

We emphasize that our Hamiltonian is assumed to have
full independent control of the initial transverse field and
final Ising Hamiltonians, as well as of the time depen-
dence of the additional Hamiltonian. This model is con-
sistent with a recently developed platform for coherent
quantum annealing [27].

The connection between the data in the classification
problem and the Hamiltonian is made as a linear trans-
formation from the data to the system parameters, such
as the Fourier coefficients of the additional Hamiltonian,
as illustrated in Fig. 1. The configuration we use for
this Hamiltonian is a simple one-dimensional configura-
tion with nearest-neighbor ZZ coupling. Among all the
possible configurations, this is the simplest configuration
for building quantum computers and therefore is a good
start for testing quantum algorithms.

In our algorithm, classical data is represented by a vec-
tor of dimension d, which is mapped into the parameters
of an annealing Hamiltonian. The Hamiltonian is used to
evolve a multi-qubit (n-qubit) quantum system; see Fig. 1

and Algorithm 1 for the illustration. For a d-dimensional
data X̂ = [x1, ..., xd] which represents a point in a d-
dimensional space, it can be transformed to the schedule
parameters with the following linear transformation:

V̂c = Ŵ X̂T (8)

where

V̂c =



...
czik

...
cxik

...

...
cijk

...


(9)

and Ŵ is a matrix with a size of (ns × m, d). ns is
the number of sins in the ansatz, m = 2n + (n − 1) is
the number of Pauli terms in the Hamiltonian (n is the
number of qubits in a chain), d is the dimension of the
data. ns × m × d is hence the number of optimization
parameters in this case.

For each classical data point, after obtaining the rel-
evant Hamiltonian parameters through a linear trans-
formation, a corresponding state is calculated based on
the evolution under the Hamiltonian. This process is re-
peated for a set of classical data points drawn randomly
from the data. Density matrices are formed by combining
the states corresponding to each point within a certain
class. The L2 distance is maximized in the training stage
by adjusting the linear transformation Ŵ , which con-
verts the raw data into schedule parameters, as outlined
in Algorithm 1. The absolute loss for the optimization
or training is therefore based on L2 distance. The entries
(Ŵij) of the linear transformation are therefore taken to
be the parameters to be adjusted to maximize the dis-
tances/minimize the loss. In the classification stage, the
predicted label for a new dataset is the label of the closest
average density matrix.

The parameters hzi , hxi
and Jij in equations (2) and

(3) determine the initial and final energy levels of the
Hamiltonian. They can be treated with the same footing
as the Fourier coefficients – hxi

, hzi and Jij parameters of
H0 and H1 can be transformed from the data by a linear
transformation matrix, i.e., hxi

, hzi and Jij can be ap-

pended to V̂c. These parameters could also be fixed, e.g.,
taking on values to make the initial and final Hamilto-
nian of the annealer non-degenerate. The tmax is a fixed
parameter, representing the total evolution time.

For multi-class classification, in order to simultane-
ously maximize the pair-wise distances, we define the
absolute loss as the product of the pair-wise distance be-
tween an arbitrary pair of density matrices from collec-
tions of embedded data (see Algorithm 1). The definition
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of loss is not unique to multi-class classification. Essen-
tially, any meaningful loss is acceptable, e.g., we can also
define the loss absolute as a summation of the pair-wise
distance between any pair of density matrices from collec-
tions of embedded data (which gives an algorithm with
similar performance). Compared with previous papers
on variational embedding classifiers, we extend the def-
inition of loss to handle multi-class classification situa-
tions.

Given that neural networks are a common way to im-
plement classification, we discuss the comparison of our
algorithm with a neural network. This comparison is
illustrated in Fig. 2, which shows a comparison of the
nonlinearity in quantum variational circuits and a neu-
ral network. In a classical neural-network classifier, there
are two stages: the first stage is a linear transformation
which maps a point in the original data space into an-
other point in another space. The next stage is a non-
linear transformation, which consists of a nonlinear dis-
tortion to the data points. It is this nonlinear distortion
making the distorted mapped data points separate, and a
simple boundary can be drawn between different classes.
In our algorithm, the first stage is still linearly mapping
the raw data into points in another space. The second
stage is a nonlinear mapping into a 2n × 2n-dimensional
space, taking advantage of the nonlinear dependence of
the final state of a quantum system on the schedule pa-
rameters. In a quantum system, the mapping between
the initial and final quantum state is linear since the
evolution is from a unitary evolution. However, the map-
ping between the schedule parameters and the final state
is nonlinear. This is the source of nonlinearity in our
algorithm. The approach we use is similar to that of a
classical neural network in that the raw data in the orig-
inal data space is mapped into another space (here is the
Hilbert space for our classifier) after being linearly trans-
formed and nonlinearly distorted. The classification is
performed on transformed data in the new space.

In the characterization of our algorithm, we use nu-
merical simulations to calculate the evolved quantum
states. In the numerical simulation, discrete time steps
are used (see Fig. 1). In each time step, a constant
Hamiltonian evolves the system, and the unitary evo-
lution operator is calculated by direct matrix exponenti-
ation: U(tn) = exp (−i

~ H(tn)δt) (H(tn) is the Hamilto-
nian at time tn, δt is the time step). The total evolution
is from the product of these unitary evolution operators:
U(tmax) =

∏
n

exp (−i
~ H(tn)δt). In the simulated clas-

sifier, to maximize the distance (with the linear trans-
formation parameters as the control knobs), we use Py-
torch’s autograd [28] feature to perform an efficient gra-
dient descent optimization. Autograd [28] keeps a record
of tensors and all executed operations, and the result-
ing new tensors in a computational graph whose leaves
are the input tensors and roots are the output tensors.
By tracing this graph from roots to leaves, we can au-
tomatically compute the gradients using the chain rule.

The whole simulation in this study is written with Py-
torch objects with the autograd features, which is essen-
tial to propagate the gradient backward toward tens or
even hundreds of control knob parameters.

Algorithm 1 Analog quantum variational embedding
classifier algorithm

Initial: Initialize parameters in the linear transformation
matrix Ŵ ; Initialize system state;

1: for iterations j = 1, Epochs do
2: for label iteration i = 1, Lclasses do
3: for sample in class i do
4: Convert the sample to parameters of the system

Hamiltonian by equation (8), then, define the system
Hamiltonian (equation (1)); Evolving the initial state of
the system to get a density matrix for the sample

5: Add the density matrices together
6: end for
7: Averaging: taking the summation of the density ma-

trix divided by the number of samples in class i as an
average density matrix Mi for label i

8: end for
9: Calculate the L2 distance Dij = Tr((Mi − Mj)

2) be-
tween the average density matrices Mi and Mj

10: Perform a gradient descent on the loss function Loss =
−
∏

ij Dij (for a binary classification task, Loss = −Dij ;

−
∏

ij Dij is an extended loss for a multi-class classifica-

tion task, other loss definition will also work) with respect

to the parameters in the linear transformation Ŵ .
11: Update the parameters in the linear transformation Ŵ
12: end for
Return: Parameters in the linear transformation Ŵ

III. SIMULATION RESULTS FOR ANALOG
QUANTUM VARIATIONAL EMBEDDING

CLASSIFIER

In this section, we discuss the characterization of the
performance of our algorithm for performing classifica-
tion on linearly inseparable datasets. We tested our algo-
rithm on three typical linearly inseparable datasets used
for benchmarking machine learning classifiers: concentric
circles, spirals, as well as MNIST images (see Fig. 3). Our
algorithm can do classification for all of these datasets.
Here, the performance characterization is discussed in
detail for concentric circles and MNIST digits, which are
standard examples for machine learning benchmarking.

A. Concentric circles

The concentric circles dataset is composed of labeled
points distributed in several concentric circular areas,
separated by gaps [23]. The classification task consists of
training with these labeled points and using it to pre-
dict labels of unseen points. We tested our classifier
on 2-circle and 3-circle cases. In our testing, we use
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FIG. 1: Illustration of our analog quantum variational embedding classifier. The balls placed in a line represent a
multi-qubit quantum annealer. The connection lines represent couplings. The wavy arrows represent

time-dependent driving on the qubits and couplings. The Hamiltonian of the annealer starts with H0 and gradually
changes to H1, driven by a time-dependent Hadd (see equations (1) to (7)). The time-dependent coefficients (the

schedule) of the Pauli terms of Hadd control the evolution, see equations (4) to (7). The schedule is expressed with a
summation of sin terms to meet a vanishing boundary condition at the beginning and end of the evolution, see

equations (5) to (7). The data is transformed into the parameters czi,k, cxi,k and cij,k by a linear transformation
matrix to define the schedule of the quantum annealer, see equations (5) to (9).

FIG. 2: Comparing nonlinearity in our classifier and a
neural network. (a)The nonlinearity in our classifier is
from the nonlinear dependence between the quantum

state and the parameters of the quantum system;
(b)The nonlinearity in a neural network is from the

activation function (such as a sigmoid function)

the datasets module from the scikit-learn Python
package to generate our dataset. We randomly sample
500/600 points as a training dataset and randomly sam-
ple 100/120 data points as a test dataset for a 2/3-circle
case. We train our classifier on the training dataset, using

FIG. 3: Classical datasets for testing performance of
machine learning algorithms. The first two datasets are
the classical linearly inseparable datasets. The last one

is the famous MNIST digits dataset.

gradient descent optimization to maximize the separa-
tion between the average density matrices corresponding
to different classes. We use three sin terms in the Fourier
expansion, the number of time steps is 10, and the tmax

is 2.

For a simple binary or 2-circle classification problem,
the absolute loss is defined as the L2 distance between
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the two average density matrices corresponding to the
two classes. We further extend it to a multi-class case by
defining a loss to maximize pair-wise distances between
any two density matrices (see Algorithm 1). The abso-
lute loss can be defined as the product of the pair-wise
distances (see Algorithm 1).

After training by using a gradient descent optimizer
(Adam optimizer of Pytorch, torch.optim.Adam) to ad-
just the weights matrix to minimize the loss (see the ’Al-
gorithm’ section above), we test our trained classifier on
the test dataset. The predicted label for each data in
the test dataset is chosen to be the label of the nearest
average density matrix.

During training, it is observed that at the starting
stages, the embedded quantum states are not clustered.
Only after training do the labeled embedded quantum
states start to cluster according to their labels. The over-
lap (squared inner product) [20] between samples belong-
ing to the same label is much stronger than the overlap
between samples from different labels. The training re-
sults in the embedded states from the same class cluster
together. The clustering of the training dataset can be
visualized with the overlap matrix. Fig. 4 shows the sep-
aration of different classes for the binary classification
(2-circles) case. Here the h and J parameters of H0 and
H1 are fixed, taking on values to make the initial and final
Hamiltonian non-degenerate. A trained classifier is used
here. The training dataset is fed into the annealer with
the trained parameters. In a classification task, the final
evolved quantum states of s = 1 are used as the embed-
ded states for the data. Here, we recorded the evolution
of the quantum states at each time step. The image se-
quence is from s = 0 (the top left image) to s = 1 (the
bottom right image).

Next, we discuss the characterization of the perfor-
mance as a function of the number of qubits. To make
the dependence on the number of qubits more universal,
the hxi

, hzi and Jij parameters of H0 and H1 are treated
with the same footing as the Fourier coefficients here –
they are also transformed from the data by a linear trans-
formation matrix. In Fig. 5, we show the classification
accuracy vs. the number of qubits. Fig. 5(a) is the re-
sult of the training accuracy after optimizing the analog
quantum computer parameters to maximize the separa-
tion of the density matrices. Fig. 5(b) is the result for
the test accuracy using the same trained analog quantum
computer (obtained after optimizing the analog quantum
computer parameters to maximize the separation of the
density matrices). For each data point, four independent
random initialization (starting from four random initial

guesses of the linear transformation matrix Ŵ ) of the
training stage are performed to obtain sufficient statis-
tics. The mean and standard deviations of the accuracies
are recorded.

Fig. 5 shows that, as the number of qubits increases,
the performance increases until it saturates and fluctu-
ates. The saturation accuracy is > 95% (see the section
IV for a comparison with classical classifiers). The ori-

gin of the fluctuation may be the increased optimization
complexity as the number of qubits increases. These re-
sults show that the classification accuracies on both the
training and test dataset can be generally improved by
increasing the number of qubits. The similar scaling for
both the training and test datasets means that our clas-
sifier has a good generalization. The performance boost
as the number of qubits increases indicates that the ex-
pressivity of our classifier can be improved as the num-
ber of qubits increases. Therefore, a more complicated
classification task could be handled once we add more
qubits to our classifier. Whether the performance af-
ter a certain amount of iterations of training will always
increase as a function of the number of qubits is a com-
plex issue. Indeed, previous studies showed that a sys-
tem with too many qubits might have barren plateaus
featured with a vanishing gradient, and training or op-
timization of performance will become difficult in this
case [22, 29, 30]. Some cures for the barren plateau have
been proposed [22, 30].

B. MNIST digits

In this subsection, we tested our classifier on the
MNIST digits dataset. We tested both binary classifi-
cation (on digits 3 and 5) as well as multi-class classifi-
cation (on digits 1, 3, and 5). Just as for the concentric
circle case, the MNIST dataset is also generated by the
datasets module of the scikit-learn package. The
dimension of raw MNIST digit data from scikit-learn is
an 8 × 8 array. The 8 × 8 array is reshaped into a one-
dimensional array of dimension 64, which is transformed
into parameters of the quantum annealer in our classifier,
as described in our algorithm (see Fig. 1 ). There are
three sin terms in the Fourier expansion, the number of
time steps is 10, and the maximum time tmax used is 0.91
for the binary classification (on digits 3 and 5) and 0.91
for the multi-class classification (on digits 1, 3, 5). The h
and J parameters are fixed here, taking on values to make
the initial and final Hamiltonian non-degenerate. Only
the Fourier coefficients in the schedule are transformed
from the data by a linear transformation matrix. The
loss used in the training stage for binary classification
is −Dmin/rmax, where Dmin is the smallest distance be-
tween centroids of different classes and rmax is the largest
spread of distance of a collection of embedded samples
with respect to their corresponding centroid.

For the binary classification task on digits 3 and 5, all
the digits 3 and 5 are collected, then a random 90% to
10% split is performed to get training and test datasets
(329 samples in the collection are picked out as the
training dataset and 36 samples are chosen as the test
dataset). For the 3-class classification task on digits 1,
3, and 5, all the digits 1, 3, and 5 are collected, then
a random 90% to 10% split is performed to get train-
ing and test datasets (492 samples of the collection are
picked out as train dataset and 55 samples are chosen as
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the test dataset).
After training, the embedded quantum states from dif-

ferent labels show a clustering behavior. As usual, we
visualize the clustering of embedded datasets from the
same labels with the overlap matrix. Fig. 6 shows the
overlap matrix for digits classification. A clear separation
is observed between different classes. A trained classifier
is used here. The training dataset is fed into the annealer
with the trained parameters. In a classification task, the
final evolved quantum states of s = 1 are used as the em-
bedded states for the data. Here, we record the evolution
of the quantum states at each time step. For each time
step, the evolved quantum states are calculated and the
overlap matrix is calculated. The image sequence is from
s = 0 (the top left image) to s = 1 (the bottom right im-
age). The brightness indicates the overlap between the
embedded quantum states.

Next, we discuss the influence of the number of qubits
on performance. For binary classification on digits 3 and
5, increasing the number of qubits, in general, can im-
prove performance. This is shown in Table I, where the
training and test accuracies for classification on MNIST
digits 3 and 5 are recorded for various numbers of qubits.
Each result is averaged over eight random trials, starting
from eight random initial guesses of the linear transfor-
mation matrix Ŵ . For 3-class classification on digits 1,
3, and 5, increasing the number of qubits can improve
the performance prominently, as shown in Table II. Here
each result is also averaged over eight random trials,
starting from eight random initial guesses of the linear
transformation matrix Ŵ .

IV. DISCUSSION

These tests on MNIST digits and concentric circles
show the power of our classifier on different datasets.
In comparison with classical linear classifiers [23], our
algorithm can significantly boost classification accuracy.
The performance of our classifier is also comparable with
the best classical classifiers. We tested a few best clas-
sical classifiers on the same concentric circles dataset.
For a 3-layer (two 8-node hidden layers) neural-network
classifier [12] with a Relu activation function (imple-
mented with Pytorch [31]), the train and test accuracy
are (100%, 100%) for 2-circle case and (99.75%, 98.96%)
for 3-circle case (for a simpler 2-layer neural network,
the train and test accuracy are (100%, 100%) for a 2-
circle case and (99.29%, 98.9575%) for 3-circle case); For
a support vector machine classifier [32–35] (Gaussian
kernel, implemented with scikit-learn [36]), the train
and test accuracy are (100%, 100%) for 2-circle case and
(99.167%, 99.167%) for 3-circle case; For a random for-
est classifier [37–40] (with a tree depth 2, implemented
with scikit-learn [41]), the train and test accuracy
are (100%, 99%) for 2-circle case and (82.3%, 80.8%) for
3-circle case (for a depth-6 random forest classifier the
train and test accuracy are (100%, 100%) for 2-circle case

and (99%, 97.5%) for 3-circle case). As a comparison, for
our classifier, the train and test accuracy are (> 99.5%,
> 99.5%) for 2-circle case, and (> 95%, > 95%) for 3-
circle case (can be further improved to (> 99%, > 99%)
when trained with the −Dmin/rmax loss, Dmin is the
smallest distance between centroids of different classes
and rmax is the largest spread of distance to the centroid
within a class, this loss means the separation between
density matrices from collections of embedded data is
larger than the spread of embedded data points with re-
spect to their centroids).

It is worth mentioning that, the number of optimiza-
tion parameters in our classifier scales linearly with n
(see section II). The other parameters (such as hxi

, hzi
and Jij) will not change this scaling, since they can be
either fixed as constant or lead to a linear dependence
on n when treating them as variables. The linear scaling
with n makes our classifier feasible in NISQ-era. For a
NISQ quantum computer with ∼ 100 qubits, the number
of control parameters (ns×m) is ∼ 1000. This is practical
for controlling and measurement systems in NISQ-era.

In our tests, we intentionally did not optimize the
hyper-parameters (such as tmax): further adjusting the
hyper-parameters could further boost the performance of
our classifier. Using a different loss in the training stage,
such as −Dmin/rmax can also make the training better.

About the quantum part of our classifier, the quan-
tum system used in our classifier is an implementation of
a quantum annealer, but this approach could be extended
to other types of quantum computers run in an analog
mode. As the number of qubits increases, the nonlinear-
ity provided by the quantum computer, in general, can
not be simulated effectively with a classical computer.
This could harbor a quantum advantage for quantum
computation.

1-qubit 2-qubit 3-qubit 4-qubit 5-qubit
Train accuracy 0.9206 0.9850 0.9812 0.9931 0.9942
Test accuracy 0.8590 0.9359 0.9519 0.9679 0.9744

TABLE I: Performance results for binary classification
on MNIST digits 3 and 5. The train accuracy and test

accuracy (average results from 8 random trials) for
quantum annealers with various numbers of qubits are

recorded.

V. SUMMARY

We proposed an analog quantum variational embed-
ding classifier with a focus on an implementation based
on a quantum annealer. The nonlinear mapping of the
classical data to a high dimensional density matrix is
realized with an analog quantum computer. The classi-
cal data is transformed into the parameters of the analog
quantum computer by a linear transformation, which im-
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FIG. 4: Time evolution of the overlap matrix of training data for binary classification on circles. The data to
Hamiltonian mapping correspond to a fully trained classifier. For each time step, the evolved quantum states are

calculated, and the overlap matrix is calculated. The image sequence is from s = 0 (the top left image) to s = 1 (the
bottom right image). The brightness indicates the overlap between the embedded quantum states. Labels 1 and 2

represent the outer and inner circles, respectively.

(a) (b)

FIG. 5: The classification accuracy (with a trained
classifier) vs. the number of qubits for multi-class

classification cases (two examples – 2-label and 3-label
cases are shown here). (a) Classification accuracy vs.
the number of qubits for the training dataset (dataset

used for training our classifier); (b)Classification
accuracy vs. the number of qubits for the test dataset

(unseen dataset), directly using the classifier trained on
the training dataset.

2-qubit 4-qubit 5-qubit
Training accuracy 0.9098 1 1

Test accuracy 0.7864 0.9454 0.9523

TABLE II: Performance results for a 3-class
classification on the MNIST digits 1, 3, and 5. The

train accuracy and test accuracy (average results from 8
random trials) for quantum annealers with various
numbers of qubits are recorded. We can see that

increasing the number of qubits can increase the train
accuracy or test accuracy prominently.

plies that the nonlinearity needed for a nonlinear classi-
fication problem arises purely from the analog quantum
computer due to the nonlinear dependence between the
final quantum state and the control parameters of the
Hamiltonian. By using a metric based on density matrix
from a collection of training dataset [20], our algorithm
can handle a general classification problem. Moreover,
our classifier handles both binary and multi-class classi-
fication tasks. We demonstrate the effectiveness of our
algorithm for performing binary and multi-class classifi-
cation on linearly inseparable datasets. Our algorithm
performs much better than a classical linear classifier.
The performance of our classifier is also comparable with
that of the best classical classifiers. The dependence of
performance on the number of qubits shows that increas-
ing the number of qubits can improve performance un-
til the performance saturates and fluctuates. In addi-
tion, the number of optimization parameters of our clas-
sifier scales linearly with the number of qubits. This lin-
ear scaling is an advantage when comparing with classi-
cal neural network whose number of training parameters
scales quadratically (O(n2)) with the number of nodes.
Our algorithm presents the possibility of using current
and near-term quantum annealers for solving practical
machine-learning problems, and it could also be useful to
explore quantum advantage in quantum machine learn-
ing.

As a prospect, in the future, topics such as the perfor-
mance of our classifier with other types of Hamiltonians,
the expressivity of the analog quantum computer, the
universality of the nonlinearity, the experimental realiza-
tion on actual quantum computers, etc., can be investi-
gated.
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FIG. 6: Time evolution of overlap matrix of training data for the binary classification on MNIST digits 3 and 5. A
trained classifier is used here. The image sequence is from s = 0 (the top left image) to s = 1 (the bottom right

image). The brightness indicates the overlap between the embedded quantum states.
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