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High-fidelity entangling gates are essential for quantum computation. Currently, most approaches
to designing such gates are based either on simple, analytical pulse waveforms or on ones obtained
from numerical optimization techniques. In both cases, it is typically not possible to obtain a global
understanding of the space of waveforms that generate a target gate operation, which can make
it challenging to identify globally time-optimal waveforms that respect amplitude and bandwidth
constraints. Here, we show that in the case of weakly coupled qubits, it is possible to find all pulses
that implement a target entangling gate in near-minimal time. We do this by mapping quantum
evolution onto geometric space curves. We derive the minimal conditions these curves must satisfy
in order to guarantee a gate with a desired entangling power is implemented. Pulse waveforms are
extracted from the curvatures of these curves. We illustrate our method by designing fast, CNOT-
equivalent entangling gates for silicon quantum dot spin qubits with fidelities exceeding 99%. We
show that fidelities can be further improved while maintaining low bandwidth requirements by using
geometrically derived pulses as initial guesses in numerical optimization routines.

I. INTRODUCTION

High-fidelity entangling gates are a key requirement
in all circuit-based approaches to quantum computing.
Such gates are often implemented using electromagnetic
pulse waveforms based on simple analytical shapes such
as square or Gaussian functions, with fidelities optimized
by adjusting amplitudes, timings, or bandwidths [1–
6]. Numerical pulse-shape optimization recipes such as
GRAPE or CRAB are also commonly employed to im-
prove fidelities further [6–13]. Such methods have led to
experimental demonstrations of high-fidelity entangling
gates in silicon quantum dots [14–20], superconducting
qubits [21–25], and trapped ions [26–28].

Despite the substantial progress that has been made
in recent years, further improvements in entangling gates
are still widely needed. In addition to the very high fi-
delities that are required to comfortably exceed error cor-
rection thresholds [29, 30], it is also important to reduce
gate times and pulse amplitude and bandwidth require-
ments as much as possible to speed up algorithms and
lessen the technological overhead. Finding pulse wave-
forms that are optimal with respect to all these factors
is generally a challenging task. While numerical tech-
niques address this issue to a large extent, it is often still
difficult to obtain globally time-optimal solutions with
numerical methods alone. This motivates the search for
complementary methods that provide a global, analytical
understanding of the space of pulse waveforms that gen-
erate a target gate operation. Such methods, in combi-
nation with numerical optimization protocols, could lead
to significant enhancements in gate performance.

Recently, it has been shown that there exists a cor-
respondence between quantum evolution and geometric
space curves [31]. This connection provides a global
perspective on the relationship between pulses and the
quantum evolution they generate through a formalism
called Space Curve Quantum Control (SCQC). This has

been exploited to design single- and two-qubit gates that
dynamically correct for noise that acts transversely to
the driving field [32–35]. In SCQC, noise-resistant pulse
waveforms are obtained from the geometric properties of
closed space curves. This technique was also applied to
study the speed limit of dynamically corrected gates [33],
noise-resilient Landau-Zener transitions [36], and gates
that are simultaneously robust against pulse errors and
transverse noise [37, 38].

In this work, we show that entanglement growth in
weakly coupled two-qubit systems can also be mapped
to space curves. We use this mapping to develop a geo-
metric framework for finding infinitely many pulses that
generate a target entangling gate. Remarkably, we find
that the net displacement of a space curve determines
the entangling power of the resulting gate. The pulses
that produce this entanglement can be obtained from the
generalized curvatures of the curve. This provides a gen-
eral method for finding pulses that implement gates with
a target entangling power. Moreover, the arclength of
the curve is equal to the gate time, providing a system-
atic way to find globally time-optimal pulses that cre-
ate a desired amount of entanglement. We demonstrate
this method in the context of silicon quantum dot spin
qubits, where we derive the minimal space-curve con-
ditions needed to produce CNOT-equivalent gates. We
show that the pulses extracted from these curves gener-
ate maximally entangling gates with fidelities exceeding
99% and gate times below 30 ns for typical experimental
parameters. We show that using these geometrically en-
gineered pulses as a seed in numerical optimization rou-
tines can further improve the fidelities beyond what is
achievable with random initial guesses. In this way, we
can inject global information about the control landscape
into numerical methods and thus help them avoid unnec-
essarily complicated pulse shapes and long gate times.

The paper is organized as follows. In Sec. II, we intro-
duce the two-qubit silicon spin system example that we
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focus on throughout this work. In Sec. III, we present
our geometric framework that relates two-qubit entan-
glement growth to space curves in three dimensions. We
provide explicit examples of driving pulses and the cor-
responding high-fidelity entangling gates they generate.
In Sec. IV A, we examine how the geometrically derived
pulses perform after numerical optimization.

II. SPIN QUBIT SYSTEM

Throughout this work, we focus on the case of sili-
con quantum dot spin qubits to illustrate our approach,
although the basic idea can be applied to any weakly cou-
pled qubit system. Single-electron spin qubits in silicon
quantum dots are a promising platform for quantum com-
putation, due to long coherence times, the availability of
all-electrical control, and the potential for scalability af-
forded by the existing silicon manufacturing infrastruc-
ture [39–42]. While high-fidelity single- and two-qubit
gates were demonstrated by several groups recently [15–
18, 43], further improvements in two-qubit gate fidelities
are still needed for most error correction schemes. The
fidelity is mainly limited by charge noise and nuclear spin
bath fluctuations [44–46]. Since the natural abundance
of the spinful isotope 29Si is only 4.7%, and can be fur-
ther reduced by isotopic purification [47], charge noise
is widely considered the dominant source of noise in the
system.

The specific system we focus on consists of two elec-
trons trapped in a silicon double quantum dot (DQD).
We begin by deriving an effective Hamiltonian for this
system following the analysis of Ref. [48]. In the following
section, we use this effective Hamiltonian to establish the
correspondence between two-qubit evolution and space
curves. The two electron spins are subject to an external
magnetic field from a micromagnet, which is designed to
maximize dBz/dx and dBy/dz. The first term gives rise
to the different Zeeman splittings of the two qubits since
they are separated along the x-axis, well separating the

resonance frequencies of the two qubits. The strong gra-
dient along the z-axis, i.e. dBy/dz, is designed for electric
dipole spin resonance (EDSR) control [49]. By applying
a microwave pulse to the metal gate, we can oscillate the
position of the electrons primarily in the z-axis, which
leads to an oscillating By magnetic field as seen by the
electron, enabling EDSR control. The exchange interac-
tion between the two spins, J(t), can be tuned by chang-
ing the energy barrier via a middle metal gate which also
controls the separation between the dots [50, 51]. Our
starting point is the Heisenberg Hamiltonian,

H(t) = J(t)

(
SL · SR −

1

4

)
+ SL ·BL + SR ·BR, (1)

where SL (SR) is the spin operator of the electron in the
left (right) quantum dot. The external magnetic field
BL,R has two components along the y and z-axes. The y-
component is time-dependent due to the drive field caus-
ing the electron oscillation in z-direction, i.e., By,q =
B0
y,q + B1

y,q(t) cos (ωt+ φ) , where q = L/R, ω and φ
being the driving frequency and phase, respectively. On
the other hand, the z-component of the magnetic field,
which sets the Zeeman splitting of the two qubits, is kept
constant throughout the control process. It is only slowly
changed while the exchange coupling J is being turned
on and off adiabatically, but in general, it is a function of
the exchange coupling Bz,q(J) = B0

z,q + B1
z,q(J), where

the first term is the field when J = 0.

Following Ref. [48], we work with the eigenbasis set of
the undriven version of the Hamiltonian in Eq. (1), i.e.
By,q = 0, where the computational basis |↑↓〉 and |↓↑〉
are superposed into |̃↑↓〉 and |̃↓↑〉 by the exchange cou-
pling. We then go to the interaction picture defined by
the undriven and uncoupled Hamiltonian (By,q = J = 0).
Together with the approximation justified by the larger
Zeeman splitting deference between the two qubits com-
pared to the exchange coupling, i.e. J � |Bz,L − Bz,R|,
the interaction picture Hamiltonian becomes

Hint =
1

2


2B̄1

z −i(By,L + ξBy,R)e−iα−t −i(By,R − ξBy,L)eiα+t 0

i(By,L + ξBy,R)eiα−t ∆B1
z − J + Jξ

2 0 −i(By,R + ξBy,L)eiα+t

i(By,R − ξBy,L)e−iα+t 0 −∆B1
z − J −

Jξ
2 −i(By,L − ξBy,R)e−iα−t

0 i(By,R + ξBy,L)e−iα+t i(By,L − ξBy,R)eiα−t −2B̄1
z

 ,

(2)

where B̄z =
(
B0
z,L +B0

z,R

)
/2, B̄1

z =
(
B1
z,L +B1

z,R

)
/2,

∆Bz = B0
z,R − B0

z,L, ∆B1
z = B1

z,R − B1
z,L, α± =

(∆Bz ± 2B̄z)/2, and ξ = J/(∆Bz + ∆B1
z ). This is the

Hamiltonian used in the numerical calculations through-
out this work, and we use the parameters reported in
Ref. [52]: J/2π = 19.7 MHz, B0

z,L/2π = 18.287

GHz, B0
z,R/2π = 18.501 GHz, B1

z,L/2π = 52.71 MHz,

B1
z,R/2π = 5.76 MHz, B0

y,L/2π = 5 MHz, B0
y,R/2π = 55

MHz and φ = 3π/2.

To gain a better understanding of the evolution gen-
erated by this Hamiltonian, it helps to further simplify
the model by switching to a rotating frame, Hrot =
UωHU

†
ω − iUωU̇†ω, with Uω = exp [iωt (Sz,R + Sz, L/~)],

and applying the rotating wave approximation. Since
our target is to obtain a certain entangling gate up to
local unitaries and the rotating frame evolution operator
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is only different from the interaction frame by local uni-
taries, the gate in both frames has the same entangling
properties. By matching the driving frequency ω to the
resonance frequency of the left qubit, the driving on the
right qubit becomes negligible compared to the Zeeman
splitting difference, B1

y,R � ∆Bz + ∆B1
z . Ultimately, we

obtain the simplified Hamiltonian:

Hrot =
1

4


0 B1

y,L(t) 0 0
B1
y,L(t) 0 0 0

0 0 −2J B1
y,L(t)

0 0 B1
y,L(t) 2J

 (3)

=
J

4
(ZZ − IZ) +

B1
y,L

4
IX. (4)

This describes two qubits coupled by a weak Ising in-
teraction, and only the second qubit is driven. In the
absence of an AC drive (B1

y,L = 0), we see that a two-
qubit CZ gate can still be generated up to a local Z gate
on the first qubit. However, a nontrivial AC pulse is nec-
essary to generate other types of maximally entangling
gates such as CNOT.

III. GEOMETRIC SPACE CURVES AND
CORRESPONDING PULSES

In previous works that used the SCQC formalism to
design pulses [31–37], the space curves represented the
effect of noise errors on the quantum evolution. Specifi-
cally, the net displacement between the initial and final
points of the curve quantified the importance of the first-
order term in a perturbative expansion of the evolution
operator in powers of the noise error. In this work, we
also use geometric space curves, but instead of quantify-
ing the error due to noise, the space curve here represents
the entanglement generated during the evolution.

Following the Hamiltonian in Eq. (4), we define the
single-qubit terms of the Hamiltonian as H0 = −J4 IZ +
Ω(t)

4 IX, where Ω(t) = B1
y,L is the driving pulse. We then

switch to the rotating frame defined by H0 so that the
two-qubit interaction term J

4ZZ is isolated. Again this
rotating frame transformation only involves local uni-
taries, and so has no effect on the entangling properties.
The evolution operator in this frame has the form

Ũ = T exp

[
−iJ

4

∫
dtU†0ZZU0

]
≈ exp

[
−iJ

4

∫
dtU†0ZZU0

]
= exp

[
−iJ

4
(R1(t)ZX +R2(t)ZY +R3(t)ZZ)

]
.

(5)

Here, we have kept only the first-order term in the Mag-
nus expansion of the evolution operator. The three com-
ponents {R1(t), R2(t), R3(t)} define the coordinates of a

3D space curve ~R(t) parameterized by evolution time t,
i.e.,

Ũ ≈ exp

[
−iJ

4
Z ⊗

(
~R(t) · ~σ

)]
. (6)

In what follows, we will see that truncating the Magnus
expansion at first order allows us to obtain simple an-
alytical conditions on the space curve that guarantee a
desired entangling power is achieved in the resulting gate.
Below, we will see that this is sufficient to achieve very
high gate fidelities for typical parameter values realized
in spin qubit experiments. One could also keep higher
orders of the Magnus expansion in Eq. (5), which would
result in more complicated expressions for the Makhlin

invariants in terms of ~R(t). As an example, we show the
resulting expressions up to second order in Appendix A.
Including these corrections would allow one to enforce a
target entangling power to still greater accuracy.

A. Makhlin Invariants

In order to study the entangling properties of this
two-qubit gate, we consider the Makhlin invariants in-
troduced in Ref. [53]:

G1 =
[Tr(M)]2

16 detU
, (7)

G2 =
[Tr(M)]2 − Tr(M2)

4 detU
, (8)

where U is a two-qubit unitary, and M is its symmetrized
version expressed in the Bell basis:

M =
(
Q†UQ

)T (
Q†UQ

)
, (9)

Q =
1√
2

1 0 0 i
0 i 1 0
0 i −1 0
1 0 0 −i

 . (10)

These two quantities are invariant under local operations
so that they encode only the entanglement information,
and any two-qubit unitaries with the same Makhlin in-
variants are equivalent up to local operations. Here, we
aim to design two-qubit entangling gates with specified
Makhlin invariants.

Using the fact that QQT = −Y Y , the trace of M can
be rewritten as

Tr(M) = Tr
(
Y Y UTY Y U

)
. (11)

We further exploit the fact that the symmetric two-qubit
Pauli terms in Eq. (6) commute with Y Y , while the
anti-symmetric term anticommutes with Y Y , therefore
Y Y ŨTY Y = Ũ . The trace of M can be further simpli-
fied

Tr (M) = Tr
(
Ũ2
)

= 4 cos

(
J

2
|~R|
)
, (12)

Tr
(
M2
)

= Tr
(
Ũ4
)

= 4 cos
(
J |~R|

)
. (13)
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The corresponding Makhlin invariants read as

G1 = cos2

(
J

2
|~R|
)
, (14)

G2 = 2 + cos
(
J |~R|

)
. (15)

Importantly, we see that the entangling power of the
pulse is governed solely by the net displacement between
the initial and final points of the space curve. For exam-

ple, we can see that at t = 0, ~R(0) = 0, and hence G1 = 1
and G2 = 3, which correspond to the identity operation.

When J |~R| = (2n + 1)π, we have G1 = 0 and G2 = 1,
which correspond to a CNOT-equivalent gate. Gener-
ally the Makhlin invariants for a conditional X-rotation
RX(θ) are

G1 = cos2 (θ) , (16)

G2 = 2 + cos (2θ) , (17)

and thus one can obtain a controlled-RX(θ) for any ar-

bitrary angle by tuning the final displacement |~R(tf )|.
The fact that only the net displacement matters in

determining the entangling power of the pulse not only
makes it simple to find pulses that generate a desired
amount of entanglement, but it also reveals how we can
obtain globally time-optimal entangling gates: Because
the gate time equals the arclength of the curve, pulses
that implement time-optimal gates can be obtained by
constructing minimal-length curves that satisfy the ap-
propriate net displacement. A similar observation was
made in Ref. [33] in the context of dynamically cor-
rected gates, where globally time-optimal pulses were
obtained by finding closed minimal-length curves with
bounded curvature. There, it was shown that the re-
sulting time-optimal pulses are consistent with Pontrya-
gin’s Maximum Principle [54] in the sense that the opti-
mal pulses saturate the chosen amplitude bounds at all
times. Such pulses have a square waveform unless addi-
tional constraints are imposed, for example on the pulse
bandwidth.

In the present work, we obtain smooth, nearly time-
optimal pulses by constructing smooth, “nearly straight”
curves with the desired displacement. Of course, the
shortest such curve is a straight line extending radi-
ally from the origin. We show below that this time-
optimal solution corresponds to the case of no AC pulse
(Ω(t) = 0), in which case we obtain a CZ gate when the

length of the curve is |~R| = π/J . Thus, other maximally
entangling gates with Ω(t) 6= 0 like CNOT necessarily
take longer to implement, with gate times lower-bounded
by π/J , which is equal to 25.4 ns for the device parame-
ters listed above.

B. Geometric properties of the space curve

After designing the 3D space curve ~R(t) with the de-
sired final displacement, the corresponding driving pulse

can be read from the geometric properties of the curve.
The local curvature κ(t) and torsion τ(t) can be obtained

from time-derivatives of ~R(t):

κR =
∣∣∣ ~̈R∣∣∣ =

Ω

2
, (18)

τR =

(
~̇R× ~̈R

)
·

...
~R∣∣∣ ~̇R× ~̈R

∣∣∣2 =
J

2
. (19)

We see that the driving pulse is equal to twice the
curvature of the space curve, while the torsion is J/2.

This means that all constant-torsion curves ~R(t) with

τR = J/2 and final displacement |~R(tf )| yield a pulse
Ω(t) = 2κR that generates a controlled–RX(θ) gate with

θ = J |~R(tf )|/2. One exception to this arises when the
curve is a straight line, in which case κR = 0⇒ Ω(t) = 0,
which corresponds to a time-optimal CPhase gate as dis-
cussed above. Other types of two-qubit gates require
nontrivial curves with varying curvature and constant
torsion. To design a constant-torsion curve, we follow
the approach of Ref. [36]. Consider the coordinate sys-

tem defined by the three orthonormal vectors {T̂ , N̂ , B̂}
associated with the curve, where T̂ = ~̇R is the tangent

vector, N̂ =
˙̂
T/
∣∣∣ ˙̂
T
∣∣∣ is the normal vector, and B̂ is the

binormal vector, given by B̂ = T̂ × N̂ . These vectors
obey the Frenet-Serret equations,

d

dt

 T̂N̂
B̂

 =

 0 κR 0
−κR 0 τR

0 −τR 0

 T̂N̂
B̂

. (20)

By manipulating the relation between {T̂ , N̂ , B̂}, we find

~R(t) =

∫ t

0

T̂ (t′)dt′ =

∫ t

0

N̂(t′)× B̂(t′)dt′

=−
∫ t

0

1

τR

dB̂

dt′
× B̂(t′)dt′ =

1

τR

∫
B̂ × dB̂. (21)

We can interpret B̂(t) as a curve in its own right. Thus,

we see that starting from an arbitrary B̂(t) curve, which
lies on a unit sphere, we can use this formula to find a

space curve with constant torsion. Note that since
∣∣∣ ˙̂
B
∣∣∣ =∣∣∣−τRN̂ ∣∣∣ = τR, the arclength along the binormal curve is

given by τRt, and the curvature of the binormal curve is

given by κB =
∣∣∣d2B̂

/
d(τRt)

2
∣∣∣.

We would also like to find a driving pulse which starts
and ends at zero amplitude, since these are typically eas-
iest to implement in hardware. This property can be
translated to the space curve side by rewriting the cur-
vature in terms of the TNB frame of the B̂ curve:

κR =

∣∣∣∣∣dT̂dt
∣∣∣∣∣ =

∣∣∣∣∣ d

dt

(
1

τR
B̂ × dB̂

dt

)∣∣∣∣∣ = τR

∣∣∣∣∣B̂ × d2B̂

d(τRt)2

∣∣∣∣∣
= τRκB

∣∣∣B̂ × N̂B∣∣∣ = τRκB sin θ. (22)
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Here θ denotes the angle between B̂ and N̂B . Since B̂
is a normal vector of the sphere, the term κB sin θ can
be recognized as the geodesic curvature of the binormal
curve, κB,g, and the expression above becomes κR/τR =
κB,g. Thus in order for the pulse amplitude to start and
end at zero, κB,g must vanish at t = 0 and t = tf . This is

equivalent to requiring that B̂ be parallel to N̂B at t = 0
and t = tf , or equivalently that B̂ trace a great circle in
infinitesimal neighborhoods around t = 0 and t = tf .

C. Examples

To demonstrate the above method, we now show ex-
amples of space curves satisfying the conditions described
above and their corresponding pulses. We use the follow-
ing ansatz for the B̂ curve:√

1− λ sin2 βl (cos l, sin l, 0) +
√
λ sinβl (0, 0, 1) , (23)

where λ and β are parameters that can be tuned to

achieve a desired value of J |~R(tf )|, and l parameter-

izes the B̂ curve, ranging from 0 to lf = π/β. Here we
choose specific values of β and perform a linear search for

λ ∈ [0, 1] to achieve J |~R(tf )| = (2n + 1)π. This ansatz
starts and ends as a great circle which ensures that the
corresponding pulse starts and ends at zero.

We obtain the corresponding pulse by first comput-

ing the space curve ~R(t) from B̂ using Eq. (21) and
then employing Eq. (18). We then numerically solve the
Schrödinger equation with the full Hamiltonian in Eq. (2)
to obtain the evolution operator Uint. Since the driving
pulses are designed to create gates locally equivalent to
a CNOT gate, we apply local unitaries before and after
Uint to bring it as close as possible to a CNOT:

U = K1UintK2, (24)

where the Ki are tensor products of single-qubit gates
on both qubits, so each Ki depends on 6 rotation angles.
The fidelity of U with a CNOT is then calculated using
the formula

F =
1

n(n+ 1)

[
Tr(U†U) +

∣∣∣Tr(U†targU)
∣∣∣2] , (25)

where n is the Hilbert space dimension, and Utarg is the
target gate (i.e. a CNOT gate). The local unitaries Ki

are chosen to maximize F . Fig. 1 shows two examples
of curves that yield CNOT gates up to local unitaries.

Panels (a) and (b) show space curves ~R(t) generated from

the B̂ ansatz Eq. 23, with J
∣∣∣~R(tf )

∣∣∣ = π and J
∣∣∣~R(tf )

∣∣∣ =

3π, respectively. Panels (c) and (d) then show the pulses
derived from these space curves. These pulses achieve
fidelities of 99.84% and 99.43%, respectively.

This fidelity could be further increased by taking into
account higher-order terms in the Magnus expansion of
Ũ in Eq. 5, which would give perturbative corrections to

the driving pulse (see Appendix A). However, it is much
simpler to use our first-order pulses as initial guesses for
numerical optimization.

For comparison, we also ran simulations of our no-AC-
pulse (Ω(t) = 0) CZ gate, finding that the fidelity in this
case is 1.80× 10−8.

IV. SPACE CURVE PULSES AS THE INITIAL
GUESS FOR NUMERICAL OPTIMIZATION

Although some optimal control theory problems may
be solved exactly, in many realistic cases one must resort
to finding a numerical solution to account for all of the
details in the model or experiment. In this section, we nu-
merically optimize our geometrically designed pulses us-
ing two widely used methods: GRAPE and CRAB. Our
goal is to show that such methods benefit from using ini-
tial pulses obtained from the SCQC formalism, because
such pulses are analytically guaranteed to be near a time-
optimal solution. This in turn allows us to more easily
constrain the shape of the optimized waveform to respect
experimental bandwidth limitations. We illustrate this
benefit by comparing our results to the gates that are
obtained by instead inputting a random initial pulse into
these numerical methods. In all examples considered, we
find that using a geometrically designed pulse as the ini-
tial guess in numerical optimizers leads to simpler wave-
forms without sacrificing gate fidelity. In fact, in most
cases, we also obtain significantly lower gate infidelities
using the SCQC approach. These improved seed pulses
and numerical optimization methods could be combined
with characterization and calibration tools to yield fur-
ther performance improvements in specific devices [55].

A. GRAPE

In quantum optimal control theory, one of the simplest
and most popular numerical algorithms is GRadient As-
cent Pulse Engineering, or GRAPE [7]. GRAPE works
by discretizing the control pulse and then using a gra-
dient ascent algorithm to find a pulse that maximizes
the fidelity of U with some target gate Utarg. Specif-
ically, to control a system with Hamiltonian H(t) ≡
H0 + Ω(t)Hc, the duration tf of the pulse is broken up
into N subintervals of length ∆t = tf/N , and Ω(t) is
taken to be piecewise constant within each subinterval,
Ω(t) = ΣN−1

k=0 ΩkΘ(t − k∆t)Θ((k + 1)∆t − t). U is then
approximated as

U = UN−1UN−2 · · ·U1U0,

Uk = exp(−i∆t(H0 + ΩkHc)). (26)

GRAPE then treats the pulse amplitudes Ωk as free
parameters, and numerically searches for values that
maximize the fidelity of U with Utarg (Eq. (25)).
This can be done using a gradient ascent opti-
mization, using the chain rule along with ∂U

∂Ωk
≈
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FIG. 1. (a) 3D space curve with J |~R(tf )| = π, found by setting β = 2π/3 and λ = 0.221163. (b) 3D space curve with

J |~R(tf )| = 3π, found by setting β = π/6 and λ = 0.561651. (c) Corresponding driving pulse of (a) starts and ends at zero.
It takes 28.3836 ns with fidelity 99.84% by complementing the two-qubit gate with 4 single-qubit gates. (d) Corresponding
driving pulse of curve in (b) with gate time 86.2373 ns and fidelity 99.43%.

−i∆tUN−1 · · ·Uk+1HcUk · · ·U0, valid to first order in ∆t.
Here U only needs to be locally equivalent to a CNOT,
and so we modify GRAPE to minimize a cost function C
given by the difference between the Makhlin invariants
of U and CNOT:

C = |G1|2 + |G2 − 1|2. (27)

We note that GRAPE has already been successfully em-
ployed in spin qubit experiments [10].

Although GRAPE is certainly a useful algorithm, it
does have limitations. Like any gradient-based optimiza-
tion algorithm, GRAPE will find a locally optimal so-
lution, but it will typically not find a globally optimal
solution if the initial pulse is not close to the global op-
timum. Additionally, in practice, the locally optimal
pulses found by GRAPE often have undesirable prop-
erties for experimental implementation, such as being

discontinuous, having high bandwidth, starting and/or
ending at nonzero values, or changing signs. They can
be mitigated to a large extent by starting from an initial
pulse that is already close to the global optimum.

Fig. 2 shows the result of GRAPE optimization start-
ing from the pulse shown in Fig. 1. The optimized pulses,
shown in magenta, are very close to the original pulses,
and still quite smooth, but the infidelities after optimiza-
tion have dropped by about a factor of 5: from 2.51×10−3

to 5.37 × 10−4 for the short pulse (Fig. 2(a)), and from
6.82× 10−3 to 1.65× 10−3 for the long pulse (Fig. 2(b)).

To showcase the power of the SCQC formalism as a
starting point in optimal control, we compare the con-
trol pulses obtained in this way to those from the method
introduced in Ref. [56] for obtaining low-bandwidth con-
trol pulses, where the pulse is represented as a linear
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FIG. 2. The initial geometrically designed pulses (blue) shown
in Fig. 1, and the GRAPE-optimized pulses (magenta). (a)
Faster, higher-amplitude pulses. The initial pulse (blue) has
infidelity 2.51×10−3, while the GRAPE-optimized pulse (ma-
genta) has infidelity 5.37×10−4. (b) Slower, lower-amplitude
pulses. The initial pulse (blue) has infidelity 6.82 × 10−3,
while the GRAPE-optimized pulse (magenta) has infidelity
1.65× 10−3.

combination of bandwidth-constrained Slepian sequences
[57]. In this work, we consider Slepian sequences with
two different bandwidths for each gate duration: high-
bandwidth Slepian sequences with standardized half-
bandwidth NW = 50, and low-bandwidth Slepian se-
quences with NW = 5. Fig. 3 shows a comparison of
pulses obtained starting from a geometric pulse, a high-
bandwidth Slepian pulse, and a low-bandwidth Slepian
pulse. For the 28.4 ns pulses (Fig. 3(a)), the geometric
pulse gives an infidelity of 5.37×10−4, while the high- and
low-bandwidth Slepian pulses only achieve an infidelity
of 3.53×10−3 and 4.32×10−3, respectively. For the 86.2
ns pulses (Fig. 3(b)), the geometric pulse gives an infi-
delity of 1.65× 10−3, while the high- and low-bandwidth
Slepian pulses achieve infidelities of 3.31 × 10−3 and
1.59 × 10−3, respectively. Thus we see that, in terms
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Optimized geometric
Random high BW
Random low BW

FIG. 3. Comparison of pulses obtained from GRAPE starting
from a geometric pulse (blue), and random Slepian pulses with
high (orange) and low (green) bandwidth. (a) Faster, higher-
amplitude pulses. The high- and low-bandwidth Slepian
pulses achieve infidelities of 3.53 × 10−3 and 4.32 × 10−3,
respectively. These should be compared to an infidelity of
5.37 × 10−4 for the GRAPE-optimized geometric pulse (ma-
genta). (b) Slower, lower-amplitude pulses. The high- and
low-bandwidth Slepian pulses achieve infidelities of 3.31 ×
10−3 and 1.59×10−3, respectively. These should be compared
to an infidelity of 1.65 × 10−3 for the GRAPE-optimized ge-
ometric pulse (magenta).

of fidelity, the optimized geometric pulses perform simi-
larly to (if not better than) pulses obtained from Slepian
sequences while yielding dramatically simpler (and thus
easier to implement in the lab) pulse shapes.

B. CRAB

Another example of a robust and widely used numer-
ical optimal control algorithm is the Chopped RAndom
Basis (CRAB) method [8, 12, 13]. CRAB expands the
driving pulse into a linear combination of predetermined
basis functions. To limit the number of basis functions
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FIG. 4. The initial geometrically designed pulses (blue) shown
in Fig. 1 and the CRAB-optimized pulses with low band-
width (green) and high bandwidth (red). (a) Faster, higher-
amplitude pulses. The infidelities of the CRAB-optimized
pulses are 2.96 × 10−5 (high bandwidth) and 1.03 × 10−4

(low bandwidth), respectively. (b) Slower, lower-amplitude
pulses. The infidelities of the CRAB-optimized pulses are
3.38 × 10−3 (high bandwidth) and 4.15 × 10−4 (low band-
width), respectively. In both panels, the higher-bandwidth
CRAB-optimized pulses (red) are obtained using 96 Slepian
basis functions, while the lower-bandwidth pulses (green) use
8 Slepian basis functions.

and hence the number of optimization parameters in-
volved, the expansion is normally truncated after a small
number of terms. The range of waveforms and gate oper-
ations that can be reached with this truncated form can
be enhanced by randomizing the choice of the basis. For
example, if one takes Fourier components as the basis
functions, small random shifts can be added to the nor-
mal mode frequencies of the functions to achieve this. In
one version of CRAB, one starts from an initial guess for
the pulse, expands it into a chosen set of basis functions
gk(t), and then further optimizes the coefficient parame-
ters ak in the expansion:

ΩCRAB(t) =
∑
k

akgk(t). (28)
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FIG. 5. CRAB-optimized pulses obtained by starting from
random Slepian initial pulses with low bandwidth (green) and
high bandwidth (red). (a) Faster, higher-amplitude CRAB-
optimized pulses. The infidelities are 5.28×10−3 (high band-
width) and 8.14 × 10−4 (low bandwidth), respectively. (b)
Slower, lower-amplitude CRAB-optimized pulses. The infi-
delities are 8.63 × 10−3 (high bandwidth) and 1.93 × 10−3

(low bandwidth), respectively. In both panels, the higher-
bandwidth CRAB-optimized pulses (red) are obtained using
96 Slepian basis functions, while the lower-bandwidth pulses
(green) use 8 Slepian basis functions.

This approach is most effective if one is able to choose
an initial pulse that can be readily expanded in terms of
a small number of basis functions. A second approach is
to instead modulate the initial pulse Ω0(t) using a linear
combination of basis functions fk(t) with coefficients ck:

ΩCRAB(t) = Ω0(t)

(
1 +

∑
k

ckfk(t)

)
. (29)

Here, we employ both versions of CRAB, and we choose
Slepian pulses as the basis functions as they are highly
concentrated in both the temporal and frequency do-
mains. As in the previous section, we will compare our
geometrically designed initial pulses to initial Slepian
pulses. In the case of random initial Slepian pulses, we
optimize over the Slepian coefficients as in Eq. (28). For
geometrically designed initial pulses, we use the second
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version of CRAB, Eq. (29), as our geometric pulses can-
not be easily expanded using a finite set of Slepian func-
tions. As before, we use the two Makhlin invariants as
the cost functions for the numerical optimization.

To illustrate the importance of a good initial pulse, we
use our geometrically designed pulses as initial guesses
in CRAB. The results are shown in Fig. 4, where we see
that, even without imposing any constraints, the CRAB-
optimized pulses remain close to the original geometric
pulses, which are simple waveforms that are easy to im-
plement experimentally. We see that CRAB reduces the
infidelity by an order of magnitude or more (depending
on the bandwidth of the Slepian basis that is used) for
both the faster (28.4 ns) and slower (86.2 ns) pulses.
These improvements are significantly better than those
afforded by GRAPE. When a low-bandwidth Slepian ba-
sis is used, these improvements are obtained using only
8 basis functions. This low overhead is consistent with a
general theorem about the number of control parameters
needed to reach target states or unitaries [58].

For comparison, we also consider random Slepian
pulses as initial pulses in CRAB, with the results shown
in Fig. 5. The CRAB-optimized Slepian pulses gener-
ally have more complicated shapes and lower fidelities
compared to those optimized starting from geometri-
cally designed initial pulses. One could consider impos-
ing additional constraints to further improve the CRAB-
optimized results. However, such constraints could pos-
sibly introduce additional local minima or false traps in
the optimization landscape, and modifications to CRAB
have been proposed to overcome this problem [12]. Here,
the use of a geometrically designed initial pulse can be
viewed as a shortcut to imposing constraints on the nu-
merical algorithm. We see that even when bandwidth
constraints are built directly into the basis functions, as
is the case when using Slepians, employing SCQC to in-
ject global information about the control landscape into
the initial condition for CRAB yields substantially sim-
pler, lower-bandwidth waveforms.

V. CONCLUSION

We introduced a geometrical approach for designing
entangling gates that provides a global view of the opti-
mal control landscape by mapping entanglement growth
to geometric space curves. We illustrated the method
by designing high-fidelity maximally entangling gates for
silicon quantum dot spin qubits. We derived the minimal
constraints on the space curves needed to guarantee the
resulting gates have the desired entangling power. The
pulses extracted from the geometric properties of these
curves are smooth, have low bandwidth, and start and
end at zero amplitude by design, making them experi-
mentally feasible. We showed that these pulses can be
further improved by GRAPE or CRAB optimization to
obtain higher-fidelity operations while keeping the nice
properties of the pulses. Our work illustrates how the

performance of numerical pulse optimization techniques
can be further enhanced by exploiting global informa-
tion about the optimal control landscape afforded by the
geometrical perspective.
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Appendix A: Higher-order terms in the Magnus
expansion

Here, we derive an expression for the Makhlin invari-

ants in terms of the space curve ~R that includes correc-
tions from the second-order term in the Magnus expan-

sion. Denoting U†0ZZU0 as Z ⊗
(
~̇R · ~σ2

)
, Ũ reads as

Ũ ≈ exp
[
− iJ

4
Z ⊗

(
~R(t) · ~σ2

)
− i
(
J

4

)2 ∫ t

0

dt1I ⊗
(
~̇R(t1)× ~R(t1)

)
· ~σ2

]
.

The second term in the exponent is proportional to the

area swept by ~R(t). To calculate the Makhlin invariants,
we need to calculate the trace of m:

Tr(m) = Tr[QT ŨTQ∗Q†ŨQ]

= Tr[QQT ŨTQ∗Q†Ũ ]

= Tr[Y Y ŨTY Y Ũ ].

In this case, since the second term in the exponent in Ũ
only involves single-qubit Pauli operators, we obtain

Y Y ŨTY Y ≈ exp
[
− iJ

4
σz1 ⊗

(
~R(t) · ~σ2

)
+ i

(
J

4

)2 ∫ t

0

dt1I1 ⊗
(
~̇R(t1)× ~R(t1)

)
· ~σ2

]
,

where the second term has a sign difference relative to
that in Ũ . If the area swept by the space curve is zero,
then the second-order term above goes to zero, bringing
us back to the expression obtained from keeping only the
first term in the Magnus expansion, i.e. Eq. (6). More
generally, the traces of m and m2 become

Tr(m) = 4 cos θ− cos θ+

+ 4

(
J

4

)2
(
J
4

)2 |~a(t)|2 −
∣∣∣~R(t)

∣∣∣2
θ−θ+

sin θ− sin θ+,
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Tr(m2)

(
θ2
−θ

2
+(

J
4

)4
)

=2

[
4

∣∣∣∣(J4
)
~a× ~R

∣∣∣∣2 (2 cos (θ− + θ+) cos (θ− − θ+)− 1)

+ 2

((
J

4

)2

|~a(t)|2 −
∣∣∣~R(t)

∣∣∣2) θ−θ+(
J
4

)2 sin (2θ−) sin (2θ+)

+ 2

(
θ2
−θ

2
+(

J
4

)4 − 2

∣∣∣∣(J4
)
~a× ~R

∣∣∣∣2
)

cos (2θ−) cos (2θ+)

]
,

with θ± = J
4

∣∣∣J4~a(t)± ~R(t)
∣∣∣ and ~a =

∫ t
0
dt1 ~̇R(t1)× ~R(t1).

With these expressions, we can obtain the modified an-
alytic expressions for the Makhlin invariants in terms of
~R(t) and then solve for the desired entangling power.
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