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Nanomagnets are the building blocks of many existing and emergent spintronic technologies. Mag-
netization dynamics of nanomagnets is often dominated by nonlinear processes, which have been
recently shown to have many surprising features and far-reaching implications for applications. Here
we develop a theoretical framework uncovering the selection rules for multimagnon processes and
discuss their underlying mechanisms. For its technological relevance, we focus on the degenerate
three-magnon process in thin elliptical nanodisks to illustrate our findings. We parameterize the se-
lection rules through a set of magnon interaction coefficients which we calculate using micromagnetic
simulations. We postulate the selection rules and investigate how they are altered by perturbations,
that break the symmetry of static magnetization configuration and spatial spin-wave profiles and
that can be realized by applying off-symmetry-axis or nonuniform magnetic fields. Our work pro-
vides the phenomenological understanding into the mechanics of magnon interaction as well as the
formalism for determining the interaction coefficients from simulations and experimental data. Our
results serve as a guide to analyze magnon processes inherently present in spin-torque devices for
boosting their performance or to engineer a specific nonlinear response of a nanomagnet used in
neuromorphic or quantum magnonic application.

I. INTRODUCTION

Nonlinear magnetization dynamics is an exciting field
of fundamental physics which bears tremendous potential
for applications in information technologies and beyond
[1–10]. In contrast to many other physical systems, non-
linearity is inherent to magnetic systems and of topologi-
cal origin [11] – the phase space for magnetization vector
motion is not a plane, but a sphere |M | = Ms. This re-
sults in nonlinearity although most magnetic interactions
(exchange, dipolar, uniaxial anisotropy, Dzyaloshinskii-
Moriya interaction) are quadratic functions of the mag-
netization M . Nonlinear processes can thus be observed
at relatively low excitation levels and exploited in appli-
cations – in particular in microwave electronics [4, 12, 13],
analog and digital signal processing [14–16], non-Boolean
computing such as magnetic neuromorphics [17, 18] and
quantum information systems [19–21].
At up to moderately high excitation levels, nonlinear

dynamics is often treated as interaction of linear spin
wave modes or, within the quantum picture, as scattering
of magnons (quanta of spin waves) [22–25]. For instance,
two-magnon processes can be the dominant contribution
to damping in thin films [26], three-magnon processes
can lead to parametric magnon excitation [27], and four-
magnon processes [28] are responsible for magnon ther-
malization and condensation [29, 30].
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Magnon processes have been extensively studied in
bulk samples and thin ferromagnetic films (see, e.g.
Refs. [2, 3, 24, 31, 32] and references therein). How-
ever, the obtained results cannot be directly transferred
to the case of micron- and nanoscale finite-size magnetic
structures. First, under strong geometric confinement,
the spin wave spectrum is discrete. The magnon pro-
cesses are resonant and occur principally within a well-
defined parameter sub-space (e.g. at particular external
fields) [33–36]. The discreteness of the magnon spectrum
in micro-/nano-magnets can lead to qualitatively differ-
ent behavior of magnon processes as compared to geo-
metrically extended systems [37]. Second, the spin-wave
eigenmodes can no longer be considered plane-waves like
in bulk samples and films. Their spatial profile as well
as the static magnetization configuration depend on the
shape of the magnet. Consequently, each micro-/nano-
magnet possesses an individual static magnetization con-
figuration and spin wave profiles, thus subjecting magnon
processes to a set of specific selection rules [38, 39]. Un-
derstanding, predicting, and controlling theses selection
rules is instrumental for designing functional spintronic
applications.

In this work, we parameterize the selection rules
through a set of magnon coupling coefficients for magnon
scattering processes. We systematically study the effect
of the symmetry of the static magnetization and spin
wave profiles on the magnon coupling coefficients. Our
results provide a comprehensive guide to understanding
and engineering nonlinear phenomena in micro-/nano-
magnets.

While the conceptual approach of our study can be ex-
tended to a variety of magnon processes, here, we mainly
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focus on the degenerate three-magnon confluence pro-
cess, in which two magnons of one kind fuse into a single
magnon of another kind. In nanomagnets, three-magnon
processes show a substantial effect on magnetization dy-
namics even at low excitation levels [33, 37, 40, 41], of-
ten constitute the main dissipation channel of primary
magnons, and can be used for enhancing functionality
of spintronic applications e.g. through frequency dou-
bling [42, 43]. Moreover, three-magnon processes have
been recently shown to invert a nanomagnet’s response
to spin-torque [37], thus having far-reaching implications
for spin-torque devices and potentially on magnetic neu-
ral networks.
In our recent work [44], we experimentally demon-

strated how a magnon coupling coefficient can be ma-
nipulated by altering the symmetry of spin wave profiles
via application of magnetic field with nanoscale nonuni-
formity. On the basis of such proof-of-concept, we sys-
tematically investigate avenues to controlling magnon in-
teraction and seek to provide a manual for engineering
nonlinearity in nanomagnets. As a sample platform for
our study, we consider thin elliptic ferromagnetic nan-
odisks in single-domain magnetization state (particular
attention is paid to the quasiuniform state). Nonethe-
less, the results of our study are directly applicable to
other shapes of nanomagnets that possess mirror sym-
metry respective to two perpendicular in-plane axes, e.g.,
rectangular, stadium-shaped, etc. At the same time, the
conceptual inferences, made in this paper, are expected
to be applicable universally to any thin nanomagnet.
The article is organized as follows: In Section II we de-

scribe the vectorial Hamiltonian formalism for nonlinear
spin-wave dynamics, which lays the basis for calculation
of the three-magnon coupling coefficients. Section III in-
troduces micromagnetic simulation methods of our study.
In Section IV, we investigate three-magnon process se-
lection rules in a systems with intrinsic, unperturbed
symmetry of magnetic configuration and spin-wave pro-
files. In Section V, we investigate the effect of symmetry-
breaking perturbation fields on the magnon coupling co-
efficients and discuss the routes to engineering magnon
coupling in experiments. Finally, conclusion are given in
Sec. VI.

II. THEORETICAL BASIS

A. Vectorial Hamiltonian formalism

We use the recently developed vectorial Hamiltonian
formalism [45] which allows one to easily account for spa-
tially nonuniform configuration of static magnetization
and complicated spatial spin-wave profiles. The standard
scalar Hamiltonian formalism, usually used for spatially-
uniform ground state [24, 25], can be generalized to non-
uniform case, e.g. a domain wall [46]. However, it is typi-
cally used with analytically-defined magnetization states
and magnon modes. Here, we will implement static mag-

netization configurations and spin-wave profiles obtained
from micromagnetic simulations and resort to the vec-
tor Hamiltonian formalism, which has been successfully
employed for studies of nonlinear frequency shift of edge
modes [45], three-magnon splitting in vortex-state mag-
netic dots [47] and nanotubes [48].
The dynamics of a constant-amplitude three-

dimensional magnetization vector on a unit sphere
|M(r, t)|/Ms = 1 is mapped to the dynamics of a
two-dimensional vector of dynamic magnetization on a
plane disk. This mapping is analogous to the Lambert
azimuthal equal-area projection [49]:

M(r, t)

Ms

=

(

1−
|s(r, t)|2

2

)

µ(r)+

√

1−
|s(r, t)|2

4
s(r, t) .

(1)
Here µ(r) = M0(r)/Ms is the spatial configuration of
the normalized static magnetization, Ms is the satura-
tion magnetization, and s(r, t) is the normalized dynamic
magnetization, which is perpendicular to the static one,
s⊥µ. The dynamic magnetization can be expanded in a
series of linear spin-wave eigenmodes sν of the system:

s(r, t) =
∑

ν

(cν(t)sν(r) + c.c.) , (2)

where cν are complex amplitudes of the spin-wave eigen-
modes. To arrive at the equations of motion for spin-wave
eigenmodes in a standard Hamiltonian form, spatial pro-
files of linear eigenmodes are normalized:

i

V

∫

s∗ν · µ× sν d
3r = 1 , (3)

where the integration goes over all the sample volume
V . Note, that, following P. Krivosik and C. Patton
[50], here we use a normalized spin-wave Hamiltonian
H = γE/(MsV ) which is measured in the units of fre-
quency, where E is the total magnetic energy. This ap-
proach is convenient for classical magnetic systems (for
normalizations of quantum system, see e.g. [51, 52]), as
the variable s has a clear sense of dimensionless (normal-
ized per Ms) dynamic magnetization, and all the coeffi-
cients of Hamiltonian expansion, including three-wave co-
efficients Vνη,ζ , are of the same frequency units having the
sense of effective interaction frequencies [50]. Within this
approach, normalization Eq. (3) ensures that quadratic
part of the Hamiltonian assumes the standard form in
terms of the spin-wave amplitudes: H(2) =

∑

ν |cν |
2ων

[45].
The three-wave term of the spin-wave Hamiltonian can

be written as:

H(3) = −
ωM

2V

∫

(|s|2µ) · N̂ · s d3r , (4)

where ωM = γµ0Ms, γ is the modulus of gyromagnetic
ratio and N̂ is a tensor operator describing magnetic self-
interactions.
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The interaction operator. The operator consists of
exchange, dipolar, anisotropy, and other contributions:
N̂ = N̂ (ex) + N̂ (dip) + N̂ (an) + . . .
The exchange operator is given by

N̂ (ex) = −λ2
exÎ∇

2 , (5)

where λex is the exchange length and Î is the identity
matrix.
The uniaxial anisotropy operator is

N̂ (an) = −
Ban

µ0Ms

ez′ ⊗ ez′ , (6)

where Ban = 2Ku/Ms is the anisotropy field, Ku is
the anisotropy constant, ez′ is the unit vector of the
anisotropy axis, and ⊗ denotes dyadic product of vec-
tors. If the coordinate system is chosen such that the
anisotropy axis coincides with a coordinate axis (e.g., z-
axis), the anisotropy operator has only one nonzero com-
ponent (e.g., Nzz).
The operator describing the magnetodipolar interac-

tion is expressed through the magnetostatic Green func-
tion Ĝ:

N̂ (dip) · s =

∫

Ĝ(r, r′) · s(r′) d3r′. (7)

In thin disks, which we consider here, magnetization
along the thickness coordinate (z) can be assumed uni-
form. In this case, integration over the volume V in
Eqs. (4, 7) is changed to the integration over the sample
area S, and the magnetostatic Green function can there-
fore be conveniently expressed via its Fourier-transform

Ĝ(r, r′) =
1

4π2

∫

N̂
(dip)
k

eik·(r−r
′) d2k , (8)

where k = kxex+kyey is a two-dimensional in-plane wave

vector and N̂
(dip)
k

is defined in Cartesian components as
[53]

N̂k =





k2xf(kh)/k
2 kxkyf(kh)/k

2 0
kxkyf(kh)/k

2 k2yf(kh)/k
2 0

0 1− f(kh)



 .

(9)
Here, f(x) = 1− (1−e−|x|)/|x| is the so-called “thin film
function” with the sample thickness h.
Interaction coefficients. Using the eigenmode ex-

pansion (2), Eq. (4) is transformed to the standard form
of spin-wave mode interaction:

H(3) =
1

3

∑

νηζ

(Uνηζcνcηcζ + c.c.)+
∑

νηζ

(

Vνη,ζcνcηc
∗
ζ + c.c.

)

(10)
The first sum here describes creation of three magnons
and inverse process of magnon annihilation, which can
be resonant only in active media (so called “explosive
instability” [24]), while the second sum corresponds to
three-magnon confluence and splitting.

Here, we consider degenerate three-magnon confluence
process where two magnons of the mode “ν” fuse into one
magnon of the mode “η” (in short notation, (ν+ν) → η).
This process is described by the term Vνν,η cνcνc

∗
η, and

the corresponding three-magnon (coupling) coefficient is
given by:

Vνν,η = −
ωM

2V

∫

(

2(sν · s
∗
η)µ · N̂ · sν

+ (sν · sν)µ · N̂ · s∗η

)

d3r .

(11)

This equation can be used for explicit calculation of the
three-magnon confluence coefficients Vνν,η . As input, it
requires the static magnetization configuration and spin-
wave modes profiles. They can be extracted from micro-
magnetic simulations, other numerical methods, or ana-
lytical approximation (in simple structures or as a zero
approximation). In our effectively two-dimensional ge-
ometry, the dipolar contribution to the magnon coupling
coefficient (11) (term with N̂ (dip)) can conveniently ex-
pressed via Fourier-images as

V (dip)
νν,η = −

ωM

8π2S

∫

(

2Fk

[

(sν · s∗η)µ
]

· N̂
(dip)
k

· F−k [sν ]

+ Fk [(sν · sν)µ] · N̂
(dip)
k

· F−k

[

s∗η
]

)

d2k ,

(12)

where

Fk[s] =

∫

s(r)eik·rd2r (13)

is the two-dimensional Fourier transform.
Equation (12) can be used to phenomenologically as-

sess how the symmetry of the static magnetization con-
figuration and spin wave profiles affect the three-magnon
coefficient. Utilization of Fourier-image in Eq. (12)
also reduces computational complexity of the evaluation
of magnetodipolar contribution to three-magnon coeffi-
cients; other contributions – exchange and anisotropy –
are directly calculated in coordinate space according to
Eq. (11).

B. Dynamics of interacting modes

Equations of motion for spin-wave amplitudes are
derived from the Hamilton formalism as dcν/dt =
−i∂H/∂c∗ν. We consider the mode ν excited by an exter-
nal drive with amplitude fe and frequency ωe. The mode
η is excited via the three-magnon process. The equations
of motions read

dcν
dt

+ iωνcν + Γνcν = −2iV ∗
νν,ηc

∗
νcη + fee

−iωet ,

dcη
dt

+ iωηcη + Γηcη = −iVνν,ηc
2
ν .

(14)
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Here, ων are the mode eigenfrequencies and Γν are the
intrinsic damping rates of the spin-wave modes. A de-
tailed analysis of the three-magnon dynamics including
its interaction with spin-torque can be found in Ref. [37].
It is worth pointing out two useful relations. If the

excitation levels are not too high, the spin-wave modes
ν and η can be assumed to oscillate at single and double
excitation frequency, cν ∼ e−iωet and cη ∼ e−2iωet, while
higher harmonics can be neglected. Then, one can write
the ratio of spin-wave amplitudes as

cη
c2ν

=
−iVνν,η

i(ωη − 2ωe) + Γη

. (15)

Another consequence of the three-magnon process is the
enhancement of the effective damping of mode ν by the
value 2|Vνν,η|

2|cν |
2Γη/(Γ

2
η + (ωη − 2ωe)

2), which is a di-
rectly detectable experimental evidence of three-magnon
confluence [37] (general case of an arbitrary excitation
level is considered in details in Ref. [37]).
Calculation of interaction coefficients. We thus

have found two approaches to quantitatively determin-
ing magnon interaction coefficients Vνν,η. (i) In what
follows, we will use Eq. (11) which requires static mag-
netization configuration µ and spin-wave profiles sν as
input. These input parameters will typically be obtained
from micromagnetic simulations. (ii) For validation pur-
poses in some instances, we shall also resort to Eq. (15)
which requires mode amplitudes cν – we will extract these
from micromagnetic simulations as well.
Potentially, the input parameters for the both said

equations could be obtained from experiment [54–56], al-
lowing to directly determine the interaction coefficients.
For instance, the mode amplitudes for Eq. (15) can of-
ten be determined directly, as can the damping varia-
tions [55]. Mapping static magnetization configuration
and spin wave profiles is experimentally more challeng-
ing [54–56], which makes Eq. (11) a valuable but mostly
theoretical tool.

III. MICROMAGNETIC SIMULATIONS

Figure 1(a) shows the sample model used in our micro-
magnetic simulations using MuMax3 software [57]. The
disk is representative of samples with mirror symmetry
with respect to its axes (x and y coordinate axes), which
is reflected in the symmetry of the static magnetization
configuration and spin-wave modes.
The sample parameters were chosen to mimic the

CoFeB-based nanodevices used in various experimental
studies [58, 59]. Lateral dimensions of the disk are
64 nm × 40 nm, the thickness is h = 1.5 nm. Saturation
magnetization is Ms = 1.6× 106A/m, exchange stiffness
is Aex = 2×10−11 J/m. Surface perpendicular anisotropy
is Ks = 1.8mJ/m2 (accounted for as the effective volume
uniaxial anisotropy Ku = 1.2× 106 J/m3 in simulations),
leading–with the demagnetization–to a total easy-plane
magnetic anisotropy of the sample. The Gilbert damping
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FIG. 1. (a) The sample model is a thin elliptical disk in
a bias magnetic field Be. (b) Bias field dependence of the
first six spin-wave modes’ eigenfrequencies for Be ‖ ex. The
dashed line shows the double frequency of the lowest mode
(quasiuniform, ν = 1). (c) Spin-wave profiles of the spin-
wave modes at Be = 10mT.

constant is αG = 0.007. A cell size of 1× 1× 1.5 nm3 was
used.
Spin-wave mode spectra were simulated by time-

domain Fourier-transform of time traces of the magne-
tization vector. Typically, magnetization was excited by
a short field pulse b = by(r, t)ey. To excite spatially
nonuniform modes, excitation field was applied in one
quadrant of the disk.
To obtain spin-wave modes profiles, we apply single-

frequency excitation field at the eigenfrequency of the
mode, b = by(r) cos[ωνt]ey and perform simulations until
stationary oscillation amplitude is reached. Complex-
valued spin-wave profiles are defined by

sν(r) ∼
1

Tν

t+Tν
∫

t

(m(r, t)− µ(r))eiωνtdt (16)

where m(r, t) is instant real magnetization distribution
in simulations. The integral over oscillation period Tν is
substituted by a sum in the evaluation of the simulations.
The profiles were subsequently normalized according to
Eq. (3). For visualizing the spin-wave profiles in figures
below, we plot the real part of their z-component.
Note, that if two spin-wave modes are adjacent in fre-

quency, microwave field at the frequency ω = ων ex-
cites not only the ν-th mode, but also can excite neigh-
boring modes with smaller, but still finite amplitudes.
Then, processing of the simulation results according to
Eq. (16) gives an admixture of true spin-wave modes,
sν → sν+

∑

η 6=ν ςν,ηsη with ςν,η ∼ Γη/|ων−ωη+iΓη| < 1.
As shown below, three-magnon interaction coefficients
are very sensitive to the mode symmetry, and such an
admixture may result in incorrect calculation results. To
avoid these artifacts, the symmetry of the excitation field
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was adjusted to be mode-specific, so that it excites given
mode, but not neighboring ones. To achieve this, we used
nonuniform excitation fields that have strong preferential
excitation for one mode but not for another. Such fields
can be selected based on the symmetry of the magnon
mode (e.g. see [60]). In our case, excitation fields that
are simply localized within a sub-area of the disk can
be chosen. For instance, a uniform drive field was used
for the (0, 0) mode, while the field was localized to the
the upper half of the disk for (0, 1) mode. Alternative
approach could be a reduction of the Gilbert damping,
which, however, would result in an increase of simulation
time.
Spin-wave modes. The first six spin-wave modes of

the disk are shown in Fig. 1(b,c). As the disk size is below
the edge-to-bulk mode crossover [61], there are no edge
modes and the lowest mode is the quasiuniform (0, 0)
mode. Higher modes are backward-volume-like modes
(nx, 0), Damon-Eshbach-like modes (0, ny), and mixed
modes [62] (n is the mode index, i.e. number of nodes
along the x or y directions). When external magnetic
field Be is aligned to the long axis of the disk, Be =
Bxex, the modes posses strictly symmetric (even mode
index nα) or strictly antisymmetric (odd nα) behavior
with respect to each (α = x, y) axis. The shown modes
cover all possible symmetries: (S,S), (S,A), (A,S), (A,A),
where “S” and “A” mean symmetric and antisymmetric,
respectively.
In what follows, we mostly study degenerate magnon

processes where two magnons of the lowest mode ν = 1
confluence into a magnon of mode η > 1. The variety
of modes depicted in Fig. 1(c) allows us to investigate
processes of various symmetry mixes. The processes in-
volving the confluence of the lowest mode are of particu-
lar importance for spintronics applications. Nonetheless,
the conclusions of our study are directly applicable to a
degenerate three-magnon process involving any combina-
tion of the spin-wave modes. We shall also touch upon
more general non-degenerate three-magnon processes.

IV. THREE-MAGNON CONFLUENCE

WITHOUT PERTURBATIONS

A. Uniform in-plane magnetization configuration

In this section, we consider the case when magnetic
field is applied along the major axis of the elliptical disk,
Be = Bxex, and preserves the symmetry of magneti-
zation configuration and spin-wave modes. It is conve-
nient to start from an idealized case of uniform mag-
netization, µ = ex. Since dynamic magnetization is
s = (0, sy, sz)⊥µ and the operators of exchange interac-
tion and uniaxial anisotropy are diagonal (see Eqs. (5,6)),
these interactions do not contribute to the three-magnon
scattering. In fact, the exchange interaction does not
contribute to the three-magnon scattering for any uni-
form magnetization configuration.

For the magnetodipolar contribution, we inspect the
second term in Eq. (12). The vector-function (sν · sν)µ
has only x-component and is symmetric for any symme-
try of mode sν . Its Fourier image is an even function of

both kx and ky. Since sη,x = 0, only the N
(dip)
k,xy com-

ponent is relevant – it is an odd function of kx and ky.
Thus, the integration in Eq. (12) gives a nonzero value
only if Fk[s

∗
η] is an odd function of both kx and ky. This

is only possible if sη is a fully antisymmetric mode, i.e.
antisymmetric with respect to both x and y axes.
The first term in Eq. (12) possesses the same fea-

tures. If mode sη is symmetric respective to the both
x and y axes, then both Fourier-images Fk

[

(sν · s∗η)µ
]

and F−k [sν ] posses the same symmetry – they both are
either even or odd functions of kx,y, depending on the
symmetry of the mode sν . The resulting integral with
the odd function Nk,xy is zero.
We conclude that in the idealized case of a uniform

symmetric sample, three-magnon confluence is possible
only into fully antisymmetric modes, e.g. into mode 5
in Fig. 1(c). This rule is valid independently of the
symmetry of the primary mode ν. Exceptions are edge
modes, present in sufficiently large samples, which –
strictly speaking – are neither symmetric nor antisym-
metric. Confluence of an edge mode into another mode
is always allowed but, since edge and volume modes spa-
tially overlap to little extent, their nonlinear interaction
is weak.

B. Nonuniform symmetric in-plane magnetization

configuration

The above conclusions can be generalized to a spa-
tially nonuniform but symmetric in-plane magnetic state.
As an example, we consider the so-called “leaf state”
in which magnetization near the edges is parallel to
the edge. We represent µ = (cosϕM , sinϕM , 0) and
sν = (−sν,ip sinϕM , sν,ip cosϕM , sν,z), where ϕM (x, y) =
−ϕM (−x, y) = −ϕM (x,−y) is an antisymmetric func-
tion for the leaf state, and sν,ip is an in-plane dynamic
magnetization component of ν-th mode.
The second term under the integral in Eq. (11) is ex-

panded as

Vνν,η ∼ − (sν · sν) cosϕMNxx sinϕMs∗η,ip

+ (sν · sν) sinϕMNyy cosϕMs∗η,ip

+ (sν · sν) cosϕMNxy cosϕMs∗η,ip

− (sν · sν) sinϕMNyx sinϕMs∗η,ip .

(17)

The terms with diagonal components Nxx and Nyy con-
tain the antisymmetric function sinϕM and thus give
a nonzero contribution only if sη,ip is antisymmetric.
Terms with off-diagonal components contain the sym-
metric function cos2 ϕM or sin2 ϕM , thus yielding the
same selection rules as for the uniform magnetization
configuration discussed above. Analyzing the first term
in Eq. (11) yields the same selection rules.
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For the case of symmetric nonuniform magnetization
configuration, it also should be noted that the exchange
operator does not contribute to the three-magnon inter-
action since it is diagonal and symmetric (its Fourier-
representation is proportional to |k|2). The uniax-
ial anisotropy operator also does not contribute if the
anisotropy axis is aligned to the dot symmetry axes (i.e.
x, y or z axis).
We conclude that, in a nonuniform but symmetric

magnetization configuration, three-magnon confluence is
possible into a fully antisymmetric mode only. Paren-
thetically should be mentioned that a similar behavior
has been reported in Ref. [42] for propagating spin-waves
in magnetic stripes. Also, in the inversion of the conflu-
ence process, only a fully antisymmetric can undergo a
degenerate three-magnon splitting. In fact, suppression
of the three-magnon splitting process was found in other
magnetic structures with high symmetry: in vortex-state
circular magnetic dots [38, 47], radial modes can undergo
only nondegenerate three-magnon splitting, i.e. into a
pair of different modes; in vortex-state magnetic nan-
otubes, the same restriction applies to the modes with
zero wave vector along the nanotube axis [48].

C. Nondegenerate magnon processes

The above analysis can be extended to the interaction
of three disparate modes. It shows that three-magnon in-
teraction of two symmetric modes with an antisymmetric
one is allowed. Interaction of three antisymmetric modes
is allowed as well, while interaction of two antisymmet-
ric modes with one symmetric and interaction of three
symmetric modes are prohibited. We can formulate the
following selection rule: both sums

∑

ν nν,x and
∑

ν nν,y

over the indices of three interacting modes should be odd
numbers (note that an odd n corresponds to an antisym-
metric mode profile in the used notations).

D. Other uniform magnetization states

All above-formulated rules for degenerate and nonde-
generate processes also apply for the case when the disk is
magnetized along its minor axis, µ = ey. For the perpen-
dicular magnetization, µ = ez , the situation is different.
Since off-diagonal componentsNxz = Nyz = 0 will vanish
for all operators, three-magnon interaction is completely
prohibited in thin disks, strips, and films with uniform
perpendicular magnetization configuration. Only atypi-
cal anisotropy [58, 63] with anisotropy axis which is not
parallel nor perpendicular to the z axis could allow for
it.
It should be noted that three-magnon confluence has

been experimentally observed in perpendicular nanodisks
incorporated in the magnetic tunnel junctions [37], sug-
gesting that some sample systems may substantially devi-
ate from the idealized case discussed so far (see discussion

Process Mode symmetry V11,η/2π (GHz)

1 + 1 → 2 (A,S) 4× 10−3

1 + 1 → 3 (S,S) < 10−4

1 + 1 → 4 (S,A) < 10−4

1 + 1 → 5 (A,A) 1.31

1 + 1 → 6 (A,S) < 10−4

TABLE I. Interaction coefficient for confluence processes 1 +
1 → η, with bias field applied along the long disk axis. Mode
symmetry (S,A) describes a mode profile that is symmetric
along x and antisymmetric along y axis, etc.

in Sec. VC).

E. Simulations

We carried out a series of micromagnetic simulations
to evaluate static magnetization configuration and spin-
wave profiles and calculated the three-magnon interac-
tion coefficients according to Eq. 11. The results are sum-
marized in Table I. Confluence of two magnons of mode
1 into a magnon of the mode 3, 4, and 6 is attributed
with a vanishing (below the accuracy of our calculations)
coefficient. In contrast, the process 1+1 → 5, i.e. conflu-
ence into a fully antisymmetric mode, is characterized by
a large three-magnon coefficient V11,5. All these features
are in full agreement with the above-mentioned theoreti-
cal predictions. Small but finite three-magnon coefficient
was found for the process 1 + 1 → 2 – this result is un-
expected. Further analysis shows that this process takes
place at a low negative magnetic field (Fig. 1(b)) associ-
ated with a strongly nonuniform magnetization configu-
ration, which partially breaks the symmetry restrictions.
To validate our results, we simulated magnon conflu-

ence dynamics directly by exciting mode 1 with a mi-
crowave field bz = 1mT. The excitation field is spatially
uniform; it thus cannot excite modes 2, 4, 5, and 6, while
its coupling to mode 3 is weak. The drive frequency is
varied with the external field to coincide with the eigen-
frequency of mode 1. We extracted the stationary am-
plitudes of the first and the second harmonics of magne-
tization oscillations.
Field dependence of the first harmonic demonstrates

a weakly decreasing trend because of increasing damp-
ing rate Γ1 ∼ ω1 ∼ Bx. A pronounced dip appears at
the resonance field for the 1 + 1 → 5 confluence pro-
cess (Fig. 2). The dip position is slightly shifted from
the three-magnon resonance field because of nonlinear
frequency shift of both the interacting modes. At the
same time, the amplitude of the second harmonic shows
a maximum in the same field range.
Note that the second harmonic peak appears only if

spatially-nonuniform dynamics is analyzed; we evaluate
magnetization oscillations averaged in one quadrant of
the disk. The total magnetization oscillations over the
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FIG. 2. Amplitudes of the first and second harmonics of mag-
netization oscillations mz(t) excited by a uniform microwave
field bz = 1mT at the eigenfrequency of mode 1. The bias
field is applied parallel to the long axis of the disk. Verti-
cal dashed lines indicate the fields of the three-magnon res-
onances 2ω1 = ωη. Left inset shows the dependence of the
second-harmonic amplitude on the first-harmonic amplitude
at Be = 241mT, which is the resonance point for the 1+1 → 5
process. The dependence is parabolic at low oscillation am-
plitudes. The spatial map of magnetization oscillations at
the second harmonic is shown; it corresponds to the profile of
mode 5.

entire disk do not demonstrate a peak at the double ex-
citation frequency. Thus the observation of the second
harmonic is not a spurious large-amplitude signal but,
instead, corresponds to another spin-wave mode at the
double frequency. Plotting the spatial profile of magne-
tization oscillations at the double excitation frequency
(Fig. 2) confirms that it is in fact mode 5. At the three-
magnon resonance fields of processes 1 + 1 → 3 and
1+1 → 4, which are within the scale of Fig. 2, we find no
characteristic features in the first and second harmonic,
confirming that these confluence processes are prohib-
ited.

We plot the second-harmonic amplitude mz(2ωe) (rep-
resentative of the final mode η = 5 amplitude) as
a function of the first-harmonic amplitude mz(ωe) in
Fig. 2(inset). It reveals a quadratic dependence at low
modes amplitudes, as is expected from the theoretical
considerations in Eq. (15). We extract the three-magnon
coefficient as V11,5 = 2π × 0.96GHz, which is reason-
ably close to the one calculated using Eq. 11. The dis-
crepancy is related to the influence of other nonlinear
processes on the magnetization dynamics (in particular
the nonlinear frequency shift) as well as to the edge ef-
fects – finite-difference-based micromagnetic solvers treat
a curved boundary in a complicated way that is not ac-
counted in our calculations.

Interaction kν 2kν k5 Vνν,5/2π

process (µm−1) (µm−1) (µm−1) (GHz)

1 + 1 → 5 (0,0) (0,0) (86,110) 1.58

2 + 2 → 5 (61,0) (122,0) (86,110) 2.0

3 + 3 → 5 (110,0) (220,0) (86,110) 0.28

6 + 6 → 5 (160,0) (320,0) (86,110) 0.16

4 + 4 → 5 (0,110) (0,220) (86,110) 0.91

5 + 5 → 5 (86,110) (172,220) (86,110) 1.65

TABLE II. Three-magnon interaction efficiency for the pro-
cess ν+ ν → 5 in a symmetric magnetization state. Bias field
Bx = 10mT is applied along the long axis of the disk. kν is
the position of the maximum of the spatial spectrum F̂ [sν,z].

F. Spatial spectrum considerations

Another interesting point is the dependence of three-
magnon coefficients on the modes indices. In bulk sam-
ples and thin films, the momentum conservation rule for
degenerate three-wave confluence is 2kν = kη. Spin-
wave modes in a small-size sample have a broad spa-
tial Fourier-spectrum instead of a single peak, but they
still can be characterized by the position of the spatial
spectrum maximum kν . Naturally, in the case of a broad
spatial spectrum one cannot expect a strict selection rule
for kν . However, a correlation between the three-magnon
coefficient and the spatial spectrum could exist. We thus
calculated three-magnon coefficients for the interaction
processes ν + ν → 5, as only these processes are allowed
for all ν modes. Of course, most of these processes can
never be resonant due to the field dependence of their fre-
quencies, see Fig. 1. Nonetheless, nonresonant processes
could also have a substantial impact on magnetodynam-
ics, in particular, via nonlinear frequency shift [24, 25].
Our conclusions can also be applied to other samples with
resonant processes.

The results summarized in Table II reveal the gen-
eral trend in the relation between spatial spectrum and
magnon processes. Among the (nν,x, 0) modes, the max-
imal three-magnon interaction is reached for the process
(2 + 2) → 5, which corresponds to the minimal devia-
tion from the condition 2kν,x = k5,x. We find that the
larger the difference |2kν,x − k5,x| is, the smaller is Vνν,5.
For the ky component, such dependence is hard to point
as only ny = 0 and ny = 1 modes are studied here. In
general, the largest three-magnon interaction is expected
for modes whose maximum of the spatial spectrum ap-
proaches the momentum conservation |2kν − kη| → 0.

However, it should be also pointed out that in the case
of standing spin waves, the term (sν · sν) in Eq. (11)
contains peaks not only at 2kν but also at k = 0. This
may lead to a more complex dependence of Vνν,η on the
mode numbers. In particular, one can expect nonvanish-
ing interaction of a pair of high-k modes with the lowest
antisymmetric mode.
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V. SYMMETRY-BREAKING PERTURBATIONS

A. Uniform tilt of bias field

Magnon interaction selection rules contain static
magnetization configuration and spin-wave profiles.
Symmetry-breaking magnetic fields applied to the sam-
ple can alter these two constituents and thus modify
the magnon interaction coefficients. A uniform magnetic
field, that is applied under an angle to the symmetry axis
of the sample, can lead to a uniform tilt of the magne-
tization configuration µ(r). For an in-plane tilt, we can
assume the “misalignment angle” ϕM in Eq. (17) to be
coordinate-independent. One finds that diagonal com-
ponents Nxx and Nyy start to contribute to the three-
magnon interaction for symmetric final-state modes sη.
This contribution is proportional to sin 2ϕM . For a small
tilt, it therefore linearly increases with the tilt angle.

The same behavior is expected for an out-of-plane
magnetization tilt at an angle θM . In this case, the term
proportional to (Nxx − Nzz) sin 2θM appears, to which
uniaxial anisotropy contributes as well. In general, a
magnetization tilt also changes the symmetry of spin-
wave modes. They attain a mixture of symmetric and
antisymmetric components, which can affect the three-
magnon interaction efficiency.

1. In-plane tilt of bias field

Figure 3 shows three-magnon coefficients as a function
of the field tilt ϕ. The coefficients are calculated at the
resonance fields of their confluence processes. We find
that while the tilt angle (in the presented range) does not
substantially alter the mode frequencies (∼50MHz), the
three-magnon interaction is drastically affected. For all
modes, that have vanishing confluence efficiency at zero
field tilt, the coefficient V11,η increases linearly with the
tilt angle. The strongest increase is observed for the fully
symmetric mode 3. As explained above, under a field tilt,
the symmetric diagonal components of the operator N̂

start to contribute to three-magnon interaction, which
allows for coupling to fully symmetric modes. Note that
both dipolar and exchange interactions contribute to this
coupling as the magnetization configuration in not per-
fectly uniform.

Modes 2 and 4, which have intrinsically a mixed sym-
metry – (A,S) and (S,A) respectively – are less affected.
Nonzero V11,ν in their case is caused by losing the mode
symmetry, which is clear from Fig. 3 – the nodal lines
of the modes rotate in the applied field direction (i.e.
try to align parallel and perpendicular to the static mag-
netization direction). The efficiency of confluence into
mode 5 shows a slight decrease with ϕ, which is ex-
plained by Eq. (17), where the leading term for this pro-
cess decreases as Nxy cos

2 ϕM . Despite this decrease, the
1 + 1 → 5 process remains the strongest.
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FIG. 3. Dependence of three-magnon interaction efficiency
V11,η on magnetic field’s in-plane tilt. Note the y-axis break.
Spin-wave profiles are shown for ϕ = 10◦.

FIG. 4. Amplitudes of the first and second harmonic of
magnetization oscillations mz(t) excited by microwave field
bz = 1mT at the eigenfrequency of mode 1. The bias field is
applied with an in-plane tilt of ϕ = 10◦. Vertical dashed lines
indicate fields of three-magnon resonance condition. Insets
show spatial distribution of the magnetization oscillations at
the second harmonic.

We again validate our results by inspecting the second-
harmonic signal as a function of the (tilted) bias field.
Figure 4 shows confluence process into mode 3 and into
mode 5, with the characteristic dips of the first harmonic
and peaks of the second harmonic. Their positions are
slightly shifted from the nominal three-magnon resonance
fields due to nonlinear frequency shift. From the depen-
dence c3(c

2
1) at ϕ = 10◦ (not shown), we extract the

coefficient V11,3 = 2π × 0.22GHz. It is very close to the
value of V11,3 = 2π×0.2GHz calculated via Eq. (11) and
shown in Fig. 3.
The low efficiency of the (1 + 1) → 4 process does not

allow for its direct observation in the second-harmonic
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FIG. 5. Dependence of three-magnon interaction coefficient
V11,η on the out-of-plane tilt of the bias magnetic field.

signal – it is overshadowed by the much more efficient
(1 + 1 → 5) process. This peculiarity underlines the
importance of simulating the spin-wave modes profiles
correctly. Even small admixture of another mode, excited
far from its own resonance, could significantly alter the
calculated value of the interaction coefficient. As pointed
out above, we use mode-specific spatial excitation fields
in our simulations.

2. Out-of-plane bias field tilt

As shown in Fig. 5, an out-of-plane field tilt has a very
similar effect as the in-plane field tilt. The three-magnon
interaction with all modes become allowed. The process
involving mode 3, which is fully symmetric in the unper-
turbed state, is maximally enhanced by the tilt. Nonzero
values of the coefficients V11,2 and V11,4 are related, as in
the previous case, with the breaking of the modes sym-
metry. This symmetry breaking is of a dipolar origin
and is similar to weak nonreciprocity of spin waves in
perpendicularly magnetized waveguides [64]. Although
the altered mode symmetry is barely distinguishable (in
plots like ones in Fig. 1), it is sufficient to achieve a no-
table change in the three-magnon coefficient.
Comparing Figs. 3 and 5, one can point out that in-

plane and out-of-plane field tilts at the same angle result
in comparable values of three-magnon coefficients V11,η

for η = 2, 3, 4. From theoretical considerations, it is clear
that the tilt of the static magnetization is determina-
tive for the three-magnon interaction, but not the tilt of
the applied field. In the considered sample, in-plane field
tilt causes larger magnetization tilt than the out-of-plane
one. For example, at the resonance field of 1+1 → 3 pro-
cess (|Be| ≈ 128mT), averaged magnetization is tilted at
ϕM = 7.5◦ if the field applied in plane at ϕ = 10◦, and
only out-of-plane angle θM = 4.4◦ is reached when the
field deviates at θ = 10◦ from the sample plane. Thus, we
can conclude that in the considered case three-magnon

interaction is more sensitive to out-of-plane static mag-

netization tilt than to an in-plane one, which is because
|Nzz| > |Nxx,yy|. For thin flat dots made of magnetically
isotropic material this relation always holds, while pres-
ence of anisotropy, both perpendicular or in-plane, can
alter this rule.

B. Spatially nonuniform bias field

In the previous subsection we considered effects of a
spatially uniform tilt of the bias field. From the theo-
retical analysis it is apparent that application of nonuni-
form but spatially symmetric magnetic field, Be(x, y) =
Be(−x, y) = Be(x,−y), does not alter the above-
formulated selection rules. Such field does not provide
additional symmetry breaking of the static magnetiza-
tion configuration or spin-wave modes compared to uni-
form field with the same components, i.e., it cannot make
symmetric or antisymmetric distribution nonsymmetric.
It also does not invoke any additional components of the
operator N̂ . In this Sub-Section, we thus consider the
symmetry-breaking effects of antisymmetric perturbation
fields.

1. Gradient field

First, we apply in-plane magnetic field along the disk’s
major axis that has a position-dependent magnitude. As
depicted in Fig. 6(b), the field has a gradient along the x
direction, which constitutes an antisymmetric perturba-
tion. Such perturbation does not invoke diagonal com-
ponents of the operator N̂ (at least when the averaged
field is strong enough to maintain uniform static magne-
tization). The effect of the perturbation is thus limited
to alteration of the spin-wave modes profiles and thereby
of the three-magnon interaction.
The effect is particularly pronounced for the lowest

mode 1 – the amplitude gathers in the lower-field region
of the disk (see Fig. 6(c)). Other modes’ symmetry along
the x axis is also diminished – their profiles sν are now
neither symmetric nor antisymmetric, but contain both
contributions. We thus expect that condition on the nx

index of the interacting modes is relaxed. At the same
time, modes’ symmetry in the y direction is preserved –
the requirement for the final mode being antisymmetric
in the y direction should remain valid.
Calculations of three-magnon coefficients based on

spin-wave profiles obtained from micromagnetic simula-
tions confirm the expected behavior (Fig. 6(a)). The pro-
cesses 1 + 1 → 3 and 1 + 1 → 6 remain prohibited. Con-
fluence into mode 4, which has (S,A) symmetry in the ab-
sence of perturbation, now shows an enhanced efficiency
V11,4. Despite the maximum gradient of the magnetic
field studied being just 14% (20 mT at B̄x ≈ 140mT), its
effect on magnon interaction is substantial, which demon-
strates that this perturbation method is more efficient
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in panel (b). The averaged field B̄x is adjusted so that the
three-magnon resonance condition is satisfied. (c) Mode pro-
files are calculated for ∆B = 20mT.

than tilting the field.
A field gradient along the y direction, Be = (Bx +

∆Bx(y))ex, would have an analogous effect, promoting
the confluence into modes of initially (A,S) symmetry –
e.g. (1 + 1) → 2 and (1 + 1) → 6. Other processes
would remain prohibited. A more complex perturbation
field with broken symmetry in both x and y directions,
∆Bx(x, y) 6= ∆Bx(−x, y) 6= ∆Bx(−x,−y), would enable
all confluence processes, in particular those into intrinsi-
cally fully symmetric (S,S) modes.

2. Nonuniform field tilt

Here, we consider a more complex but technologically-
relevant [44] symmetry-breaking field with a nonuniform
tilt – a tilt with an antisymmetric profile. We imple-
ment a uniform bias field Be = Bxex and a perturbation
By(r) or Bz(r) with linear coordinate dependence, i.e.
By = By,max · (2x/ax) (sample center is the coordinate
origin). As shown in Fig. 7, such perturbation field tilt
antisymmetric in the x direction allows for the confluence
into mode 2 and mode 6, i.e. into (A,S) modes. A Bz(x)
perturbation field has the same effect. Perturbation fields
antisymmetric in the y direction, on the other hand, en-
able the 1 + 1 → 4 process, i.e. confluence into (S,A)
modes. Other three-magnon processes are not affected.
We parameterize the nonuniform magnetic field by the

maximal angle of the field tilt ϕ or θ, which allows us
to compare these results with the case of spatially uni-
form field tilt (Figs. 3,5 vs. 7). While uniform in-plane
and out-of-plane field tilts result in comparable values of
V11,3 (for our particular geometry and material parame-
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Field nonuniformity is characterized by the maximum tilt an-
gle ϕ (a,b) or θ (c,d) at the edge of the sample. The coefficient
V11,3 is not shown since it is not affected by the shown fields
and remains negligibly small.

ters), nonuniform in-plane field tilt produces a more pro-
nounced effect than the nonuniform out-of-plane tilt.

Again, these observations can be explained by ana-
lyzing Eq. (17). When the static magnetization is tilted
away from the axis of symmetry (x in our case), symmet-

ric diagonal components of the tensor N̂ start to play a
role. An antisymmetric profile of the magnetization tilt
(sinϕM or sin θM ) is integrated with the mode profile.
If the latter is an antisymmetric function, the integral
returns a nonzero value. This explains why an antisym-
metric field tilt in the x or y direction allows for the
confluence into (A,S) or (S,A) modes, respectively.

Following this argument, we also find that a field tilt
antisymmetric in both x and y directions does not lead
to an additive effect and, instead, the effects in two di-
rections cancel each other. For such perturbation field,
confluence only into (A,A) modes should be allowed,
which is allowed without any perturbations anyway. We
already discussed this peculiarity when considering the
“leaf state” in Sec. IV.
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C. Summary of symmetry-breaking effects

The effect of symmetry-breaking perturbation fields is
summarized in Table III. Antisymmetric perturbations
have a mode-selective effect and allow for the confluence
into modes with specific symmetry – in addition to con-
fluence into fully antisymmetric (A,A) modes which is
always allowed. Uniform in-plane and out-of-plane field
tilts are less selective – they open confluence into mixed-
symmetry modes, but to a lesser extent than into fully
symmetric modes.

Table III is one the central results of this work. It
can serve as a guide to find which perturbation field is
required to open a particular three-magnon confluence
channel or, in turn, which type of imperfections should
be avoided to suppress a particular confluence process.

Additive effects. In general, effects of symmetry-
breaking perturbations are additive. If one perturba-
tion opens one confluence channel and the second per-
turbation opens another channel, then concurrent action
of both perturbations will enable confluence into both
channels. However, in some circumstances, e.g. at some
perturbation strength, different contributions may even-
tually cancel each other.

An exception to the additive behavior is a perturba-
tion field in y or z direction that is fully-antisymmetric
B(x, y) = −B(−x, y) = −B(x,−y), i.e. a combination
of By,z(x) and By,z(y). The effect of such combination
vanishes. In turn, a combination of two field components
that are anti-symmetric along a single axis, that differs
for these two component (i.e. Bα(x) = −Bα(−x) and
Bβ(y) = −Bβ(−y) with α 6= β ∈ {y, z}), remains addi-
tive.

Splitting and nondegenerate processes. As dis-
cussed above, degenerate three-magnon splitting obeys
the same rules that would now apply to the initial (split-
ting) mode.

Similar features are also expected for nondegenerate
three-magnon scattering processes ν1 + ν2 → ν3 and
ν3 → ν1 + ν2. As discussed above, in an unperturbed
state the selection rules require both

∑3
i=1 nx,νi and

∑3
i=1 ny,νi be an odd number. Perturbations that – ac-

cording to Table III – allow for the confluence into a mode
symmetric along x or y direction will allow for nondegen-
erate scattering processes, for which the sum

∑3
i=1 nx,νi

or
∑3

i=1 ny,νi is an even number, respectively.

Other types of perturbation. In this work, we
limit ourselves to the symmetry-breaking effects of ap-
plied magnetic fields. This approach is very promising
since it allows for dynamic and tunable manipulation
of the magnon processes. However, symmetry-breaking
effects can also be achieved by modification of sample
shape (by making it less symmetric, e.g. egg-shaped)
or by spatial modification of sample’s magnetic param-
eters (such as saturation magnetization or anisotropy).
For instance, in the case of fully saturated magnetiza-
tion configuration, we expect the effect of magnetic pa-

Mode symmetry

Perturbation field (S,S) (A,S) (S,A) (A,A)

no perturbation - - - +

By uniform (tilt) + weak weak +

Bz uniform (tilt) + weak weak +

∆Bx(x) antisymmetric - + - +

∆Bx(y) antisymmetric - - + +

∆Bx(x, y) antisymmetric + + + +

By(x) antisymmetric - + - +

By(y) antisymmetric - - + +

By(x, y) antisymmetric - - - +

Bz(x) antisymmetric - + - +

Bz(y) antisymmetric - - + +

Bz(x, y) antisymmetric - - - +

TABLE III. Effect of symmetry-breaking perturbation fields
on three-magnon confluence into modes of a particular sym-
metry. The symmetry of the final mode is characterized in
its unperturbed state. Here, “+” means that the conflu-
ence process is allowed, “−” – prohibited process, “weak”
– the process is allowed but with weak efficiency. Spatially-
symmetric perturbation fields have the same effect as uniform
fields. “B(x, y) antisymmetric” means that the perturbation
field is antisymmetric with respect to the inversion of both x
and y axes.

rameters varying spatially along an axis to be similar
to the effect of a magnetic field that breaks the symme-
try of a magnon mode along the same axis. Another
symmetry-breaking perturbations could be an atypical
anisotropy with anisotropy axis not aligned to any of the
sample symmetry axes. Finally, Dzyaloshinskii-Moriya
interaction has also symmetry-breaking effect, its effect
on three-magnon scattering in thin films has been dis-
cussed in [65]. Concurrent application of different types
of perturbations may become more complicated, beyond
simple additivity, and would warrant further considera-
tions.

Perturbations on other magnetization states.

The above discussion also pertains to the case when bias
magnetic field and static magnetization (unperturbed)
are aligned parallel to the y axis. The results of Table III
are directly applicable to this case with the coordinate
permutation x ↔ y.

The case of perpendicularly magnetized unperturbed
state reveals a different behavior. As discussed above,
three-magnon scattering is prohibited in an ideal per-
pendicular state (unless an extra-ordinary anisotropy or
Dzyaloshinskii-Moriya interaction are present). While
detailed consideration of this case lies out of the scope
of this work, some conclusions can be easily made. In
particular, uniform Bz tilt over µ = ex state is the same
as a perturbation field Bx applied to the perpendicular
state (note that we never invoke the smallness of per-
turbation in the above analysis). Thus, a uniform (and
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FIG. 8. (a) The magnetic disk (FL=free layer) experiences
the stray field (b) from the the auxiliary (CL=control layer)
disk.

spatially symmetric) tilt of the magnetization away from
the z direction opens all the confluence channels (with
varying efficiency). This tilt (e.g. due to stray fields of
neighboring magnetic elements) could be a contributing
factor to the three-magnon scattering observed experi-
mentally in perpendicular magnetic tunnel junctions [37]

D. Routes to experimental realization

To generate a local magnetic field at the position of the
sample, another small magnetic element can be placed in
the vicinity. The stray fields from this auxiliary magnet
can be engineered and dynamically switched/tuned to
achieve a required perturbation field.
We model a simple scenario of an auxiliary magnetic

disk (control layer) underneath the sample disk (free
layer) as shown in Fig. 8(a). If the control layer is
in a saturated state, its stray fields at the position of
the free layer have a symmetric Bx component and a
fully-antisymmetric By component – both do not affect
three-magnon interaction. However, the field also has
a Bz component antisymmetric in the x direction only
(Fig. 8(b)). As detailed in Table III, we thus expect
opening of confluence channels into (A,S) modes.
In our micromagnetic simulations, we choose disk

separation of 1.5 nm and saturation magnetization of
µ0Ms = 1T for the control layer. Our conclusions are
confirmed – we obtain substantial confluence coefficients
V11,2 = 2π × 0.2GHz for the 1 + 1 → 2 process and
V11,6 = 2π × 0.27GHz for the 1 + 1 → 6 process, while
confluence into modes 3 and 4 remains prohibited.
The magnetic parameters of the auxiliary layer should

be engineered such as to prevent hybridization of magne-
tization dynamics of both layers [55, 66]. For that pur-
pose, in our simulations we simply employed additional
magnetic anisotropy in the x direction for the control
layer, which pushes control layer modes to higher fre-
quency range.
The state of the control layer can be, in principle,

varied dynamically, thus allowing for dynamic control
of three-magnon splitting and confluence. For some-
what larger control layers, this could be done by utilizing
vortex-to-saturated state transition under applied field
or current. The control layer can also be replaced by a
nanoscale synthetic antiferromagnet. In its normal state,

the stray fields are vanishingly small, whereas trigger-
ing its spin-flop transition would switch on a nonuniform
stray field. Recently, this approach has been experimen-
tally realized in Ref. [44]. Other approaches involving
spin-torque, heat, and voltage-controlled anisotropy for
dynamic control of magnon scattering can be envisioned.

VI. SUMMARY

In summary, this work present a detailed theoreti-
cal/numerical study of magnon processes in laterally con-
fined thin-film magnets with discrete magnon spectrum.
The main focus lies on degenerate three-magnon conflu-
ence processes, in which two magnons fuse into one new
magnon.
Our theoretical framework on the basis of the vector

Hamiltonian formalism [45] describes magnon interaction
through an overlap integral that contains an interaction
operator with contributions from exchange, anisotropy,
and magnetodipolar interactions. Other contribution, for
instance, Dzyaloshinskii-Moriya interaction, can be also
accounted for if needed.
We find that three-magnon processes are crucially sen-

sitive to the symmetry of the static magnetic configura-
tion as well as to the profile symmetry of the participating
spin-wave modes. We completed a comprehensive study
for a thin elliptical disk and postulate selection rules for
the magnon process.
When a disk is strongly magnetized in-plane along one

of its axes, only confluence into a fully-antisymmetric
modes is allowed. In such highly-symmetric magnetiza-
tion state, only off-diagonal components of the magne-
todipolar interaction operator, which are antisymmetric,
contribute to three-magnon interaction, causing the se-
lection rules.
For degenerate three-magnon splitting processes, this

and other selection rules are valid – with the rules now
applicable for the initial splitting mode. In a general case
of a nondegenerate three-magnon splitting or confluence,
the selection rule for the high-symmetry case is trans-
formed to the requirement that the sum over indices nx

and the sum over ny are both odd.
Breaking the symmetry of static magnetization con-

figuration and/or spin-wave mode profiles results in re-
laxing the above-formulated selection rule. Typically,
symmetry-breaking perturbations are mode-selective and
enable confluence into modes of specific symmetry.
We provide guidelines for designating particular per-

turbation fields for opening distinct three-magnon con-
fluence channels. These guidelines range from (i) accu-
rate calculations of the magnon process efficiencies us-
ing magnetization configuration and spin-wave profile, to
(ii) calculations of efficiencies based on harmonic analy-
sis of magnetization dynamics, to (iii) relative estimates
based on the “minimum momentum detuning” rule.
The results of our work can be used for analyzing

and engineering a variety of scenarios. For instance,
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the symmetry-breaking can be naturally inherent or in-
tentionally implemented to a sample system via imper-
fections/defects [59] or texture [67], adjacent perturba-
tions [44, 68], spatial nonuniformity of magnetic prop-
erties [69]. On the other hand, the symmetry break-
ing can be induced via perturbation fields with auxil-
iary functionalities from heat or spin-torque driven dy-
namics, voltage-controlled anisotropy, light-control, and
others. Symmetry-breaking fields are of particular im-
portance for applications since they can be applied and
tuned dynamically. This approach, for which a proof-
of-principle has recently been demonstrated experimen-
tally [44], opens novel avenues for functionalizing nonlin-
earity in spintronic applications – controlling nonlinear
response of magnetic neurons in neuromorphic applica-
tions, improving performance of spin-torque devices, and
advancing magnet-based quantum information systems.
Our concept of symmetry analysis within vector

Hamiltonian formalism [45] is transferable to magnon
processes of higher order and other model geome-
tries. The developed framework allows for theoreti-
cal/numerical calculations of magnon processes and for

determining magnon interaction coefficients from exper-
imental data [54]. Nonlinear magnetization dynamics in
nanomagnetic systems, which are the building blocks of
modern spintronics technologies, can be a nuisance to be
mastered and an opportunity to create highly functional
devices. This work provides the critical theoretical ba-
sis and calls upon efforts to develop the corresponding
experimental tool set.

ACKNOWLEDGEMENTS

The work was supported by US National Science Foun-
dation through Grant No. ECCS-1810541, by the Na-
tional Academy of Sciences of Ukraine through Project
No. 23-04/13-2022, and by National Research Founda-
tion of Ukraine through Grant No. 2020.02/0261. JK
acknowledges support from the National Science Cen-
ter – Poland, Grants No. 2021/43/I/ST3/00550 and
No. 2020/37/K/ST3/02450. IB thanks NVIDIA Corpo-
ration for their support.

[1] A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, “Dy-
namical and topological solitons in a ferromagnet,” Phys-
ica D 3, 363 (1981).

[2] M. G. Cottam, ed., Linear and Nonlinear Spin Waves
in Magnetic Films and Superlattices (World Scientific,
Singapore, 1994).

[3] P. E. Wigen, Nonlinear Phenomena and Chaos in Mag-
netic Materials (World Scientific, Singapore, 1994).

[4] A. G. Gurevich and G. A. Melkov, Magnetization Oscil-
lations and Waves (CRC Press, New York, 1996).

[5] G. Bertotti, I. Mayergoyz, and C. Serpico, Nonlinear
Magnetization Dynamics in Nanosystems (Elsevier, Ox-
ford, UK, 2009).

[6] A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, “Mag-
netic solitons,” Phys. Rep. 194, 117 (1990).

[7] M. Cherkasskii, I. Barsukov, R. Mondal, M. Farle, and
A. Semisalova, “Theory of inertial spin dynamics in
anisotropic ferromagnets,” Phys. Rev. B 106, 054428
(2022).

[8] V. E. Demidov, S. Urazhdin, H. Ulrichs, V. Tiberkevich,
A. Slavin, D. Baither, G. Schmitz, and S. O. Demokritov,
“Magnetic nano-oscillator driven by pure spin current,”
Nature Mater. 11, 1028 (2012).

[9] Y. Li, W. Zhang, V. Tyberkevych, W.-K. Kwok, A. Hoff-
mann, and V. Novosad, “Hybrid magnonics: Physics,
circuits, and applications for coherent information pro-
cessing,” J. Appl. Phys. 128, 130902 (2020).

[10] Z. Duan, A. Smith, L. Yang, B. Youngblood, J. Lindner,
V. E. Demidov, S. O. Demokritov, and I. N. Krivoro-
tov, “Nanowire spin torque oscillator driven by spin orbit
torques,” Nat. Commun. 5, 5616 (2014).

[11] O. Prokopenko, D. Bozhko, V. Tyberkevych, A. Chumak,
V. Vasyuchka, A. Serga, O. Dzyapko, R. Verba, A. Ta-
lalaevskij, D. Slobodianiuk, Yu. Kobljanskyj, V. Moi-
seienko, S. Sholom, and V. Malyshev, “Recent Trends

in Microwave Magnetism and Superconductivity,” Ukr.
J. Phys. 64, 888 (2019).

[12] H. How, “Magnetic Microwave Devices,” in Encyclopedia
of RF and Microwave Engineering (John Wiley & Sons,
Ltd, 2005).

[13] M. Geiler, S. Gillette, M. Shukla, P. Kulik, and A. l.
Geiler, “Microwave Magnetics and Considerations for
Systems Design,” IEEE J. Microwaves 1, 438 (2021).

[14] A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and
B. Hillebrands, “Magnon spintronics,” Nat. Phys. 11, 453
(2015).

[15] P. Pirro, V. I. Vasyuchka, A. A. Serga, and B. Hille-
brands, “Advances in coherent magnonics,” Nature Rev.
Mater. 6, 1114 (2021).

[16] A. V. Chumak et al., “Advances in Magnetics Roadmap
on Spin-Wave Computing,” IEEE Trans. Magn. 58,
0800172 (2022).

[17] J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi,
G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros,
K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa,
M.k D. Stiles, and J. Grollier, “Neuromorphic comput-
ing with nanoscale spintronic oscillators,” Nature 547,
428 (2017).

[18] J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-
Sitte, S. Fukami, and M. D. Stiles, “Neuromorphic spin-
tronics,” Nature Electron. 3, 360 (2020).

[19] Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Ya-
mazaki, K. Usami, and Y. Nakamura, “Coherent Cou-
pling Between a Ferromagnetic Magnon and a Supercon-
ducting Qubit,” Science 349, 405 (2015).

[20] D. Lachance-Quirion, S. P. Wolski, Y. Tabuchi, S. Kono,
K. Usami, and Y. Nakamura, “Entanglement-Based
Single-Shot Detection of a Single Magnon with a Super-
conducting Qubit,” Science 367, 425–428 (2020).



14

[21] J. T. Hou and L. Liu, “Strong Coupling Between Mi-
crowave Photons and Nanomagnet Magnons,” Phys. Rev.
Lett. 123, 107702 (2019).
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