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On-resonance Rydberg atom-based radio-frequency (RF) electric field sensing methods remain
limited by the narrow frequency signal detection bands available by resonant transitions. The use
of an additional RF tuner field to dress or shift a target Rydberg state can be used to return
a detuned signal field to resonance and thus dramatically extend the frequency range available for
resonant sensing. Here we investigate three distinct tuning level schemes based on adjacent Rydberg
transitions, which are shown to have distinct characteristics and can be controlled with the tuning
field frequency or field strength. We further show that a two-photon Raman peak can be used as an
effective tuning feature separate from conventional Autler-Townes splitting. We compare our tuning
schemes to AC Stark effect-based broadband RF field sensing and show that although the sensitivity
is diminished as we tune away from a resonant state, it nevertheless can be used in configurations
where there is a low density of Rydberg states, which would result in a weak AC Stark effect.

INTRODUCTION

Rydberg atom sensors have emerged as a promising
quantum sensing technology for detecting electric (E)
fields in the MHz-GHz range [1]. The E fields couple
to a resonant transition between two Rydberg states [2],
and the resulting effect on one of these states is measured
via the electromagnetically induced transparency (EIT)
detected using a two-photon ladder scheme that couples
to this state [3–5]. In contrast to traditional antennas,
the atom sensor size can be independent of the RF wave-
length used and the atoms themselves do not significantly
perturb propagating fields. The full realization of the po-
tential of Rydberg atoms for radio frequency (RF) field
sensing for communications and data transfer applica-
tions will require simultaneous high data rate bandwidth
[6–11], sensitivity [12–15], and frequency multiplexing.

Rydberg E-field sensing is typically performed using
a mixer configuration, where an RF-frequency local os-
cillator (LO) is used to generate a known intermediate
frequency (IF) from the signal, which dramatically im-
proves sensitivity [12–14] while simultaneously provid-
ing frequency selectivity. The broadband detection of
nonresonant fields is readily possible based on the AC
Stark shift [16–18], albeit at the cost of reduced sensi-
tivity compared to resonant field sensing [19]. Although
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resonant Autler-Townes (AT) splitting-based field sens-

ing can achieve sensitivity as high as ≈ 5 µV/m·
√

Hz [12–
14], it is only sensitive to RF fields resonant with discrete
dipole-allowed Rydberg transitions that are adjacent to
the optically coupled state, and thus of limited utility for
wideband sensing and multiplexing. A recently demon-
strated way to improve the spectral range over which
resonant Rydberg sensing can be used is to engineer the
available Rydberg states – and thus available transitions
– using an additional “tuner” RF field [20]. By using this
tuner field to, e.g., shift a target Rydberg state via AT
splitting to return a detuned signal field to resonance,
the sensitivity can be improved.

The continuous range of Rydberg states in terms of
the principal and angular momentum quantum numbers
[21] can provide a broad manifold of available states for
a given signal and tuner frequency of interest. As such, a
wide range of possible arrangements of the tuner and sig-
nal fields – tuning schemes – are available, each with char-
acteristic tuning behavior and associated benefits and
drawbacks. In this work, we investigate three possible
arrangements of tuner and signal fields, including the
one described previously [20], which we here term se-
quential tuning, as well as two additional schemes termed
split tuning and inverse sequential tuning. Based on the
arrangements of these tuning schemes, different spectral
tuning features may be available, including avoided cross-
ings of the AT-split peaks as well as an EIT feature aris-
ing from a two-RF photon Raman transition. The tun-
ing control parameter can be either the frequency or field
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strength of the tuning field.

EXPERIMENTAL

Our experimental setup is based on the cesium two-
photon EIT ladder scheme shown in Fig. 1(a), which has
found widespread application in Rydberg electrometry
[13, 22–24]. Electric fields are sensed via the Autler-
Townes splitting of the Rydberg state by an adjacent
RF-frequency transition. Our E-field detection is based
on the the Rydberg-atom mixer approach introduced in
[25]. Typically an applied LO is detuned from the signal
(Sig) field of interest by approximately 10 kHz and the
resulting atom-mixed EIT beat frequency (beat note) is
then demodulated via lock-in detection. It is inherently
challenging to achieve perfect frequency synchronization
in simultaneous sweeping of the LO abnd Sig frequencies.
In order to avoid resulting errors, unless otherwise noted
we use amplitude modulation (AM) of the LO field to
generate the carrier and sideband to simulate the hetero-
dyne/superheterodyne Rydberg mixer configuration.

To enable direct comparison between the different tun-
ing schemes we use the same 56D5/2-54F7/2 transition for
our LO/Signal field in all cases as illustrated in Fig. 1(b).
This transition manifold is chosen to leverage the high
linearity of the D-F transitions [23] and the absence of
nearby transition frequencies as is the case for, e.g., the
S-P transitions [26]. Our tuning schemes are arranged
by optically exciting to either the 56D or 57D states and
tuning with either the 53F-56D or 54F-57D transitions.
The corresponding state arrangements for our split tun-
ing, sequence tuning, and inverted sequence schemes are
shown in Fig. 1(c)–(e), respectively.

The coupler and probe laser beams are sent through a
Cs vapor cell in a counterpropagating direction and the
EIT probe and reference intensity beams are detected
using a balanced photdodiode as illustrated in Fig. 2(a).
The RF fields are applied using a horn antenna covering
the frequency range 18 GHz – 26.5 GHz with all opti-
cal and RF fields co-polarized orthogonal to the plane of
propagation. Importantly, our choice of RF transitions
allows us to use the same horn for all Sig/LO/tuner fields,
ensuring that all fields are co-propagating and optimally
overlapped.

Although both the AC Stark shift and AT splitting
can be described as Stark shifts, the former represents
a non-resonant case with a square dependence on the
RF electric field while the latter is resonant and exhibits
a linear dependence on the incident RF field. The AC
Stark shift represents an established path and a baseline
for broadband Rydberg atom-based field sensing [17, 18].
Shown in Fig 2(b) is the non-resonant AC Stark shift of
the 56D EIT peak as a function of LO frequency. The
field strength is set to 31 V/m at the resonant 24.7 GHz
56D-53F transition and the output power held constant
throughout this sweep. We expect significant variations
in field strength within the vapor cell over the frequency

range measured due to the frequency-dependent standing
mode profile. These variations have been shown to range
from a few percent to over 70% [4, 27]. This is further
influenced by effects such as beam positioning and the
amount of deposited cesium on the cell walls.

Shown in Fig 2(c) is the resonant AT splitting of the
56D5/2 EIT peak due to an RF field applied at the 56D-
53F tuning transition at 24.7 GHz. We use an amplifier
to generate large tuner fields > 120 V/m to yield Rabi
frequencies Ωt/2π > 2 GHz. Shown in Fig 2(d) is the AT
splitting of the same peak due to a field applied on the
56D-54F signal/LO transition at 18.3 GHz. For the sig-
nal/LO transitions we achieve more moderate maximum
fields on the order of 15 V/m. Also shown is the EIT peak
due to the 56D3/2 transition at ∆c/2π = −396 MHz that
we use to set our laser-scanned frequency axis.

Lastly, in Fig. 2(e) we show the effect of two simul-
taneously applied RF fields producing an EIT peak due
to a two-photon Raman transition, which we term the
”Raman Peak”. Here, the coupling laser is resonant with
the 57D EIT peak and we apply a constant RF field of
strength Ω/2π = 180 MHz set to the 57D-54F transi-
tion at f = 23.4 GHz that produces the AT doublet.
As we increase the strength of the second RF field at
f = 18.3 GHz on the 54F-56D transition, we see the emer-
gence of an EIT peak feature near ∆c = 0. This feature
is due to a two-RF photon Raman transition between
the 57D and 56D states. We base this conclusion on the
observation that we see this peak when ∆t = −∆sig for
our signal/tuner arrangement, i.e, the sum of the photon
energies matches that of the 56D-57D transition (see also
the discussion of the inverted sequence scheme below, as
well as appendix B). Also, in our previous work we ob-
served a residual EIT peak at ∆c = 0 with two resonant
RF fields applied, which we attributed to transitions be-
tween magnetic sublevels that are forbidden with the π
transitions induced by our linear polarization [26]. How-
ever, here our EIT peak structure can be reproduced by
our numerically solved 5-level model as well as an ana-
lytical 3-level model (see Appendices) without the need
for additional magnetic sublevels or angular momentum
states. As this Raman peak originates from a two-RF
photon transition adjacent to the optically coupled Ryd-
berg state, it is not observed in the split tuning case. It
is notable that this EIT feature was not previously ob-
served in comparable two-RF photon schemes driven by
a single RF field [28, 29].

RESULTS

Split Tuning: We begin by discussing the conceptu-
ally simple split tuning scheme schematically described
in Fig. 3(a). We use the strength of the tuner field (Ωt)
as the control parameter to return a signal field for a
given ∆sig to resonance, which we refer to as power tun-
ing. Here the signal and tuning fields are both adjacent
to the optically coupled state – 56D in this case. We use
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FIG. 1. (a) Schematic of the Cs EIT ladder scheme to access (b) the Rydberg state manifold used. In all cases we use the
56D-54F RF transition for our signal field. We explore three different tuning configurations by optically exciting to either the
56D or 57D states and tuning with either the 53F-56D or 54F-57D transitions. The state arrangements are shown for our
split tuning (c), sequence tuning (d), and inverted sequence (e) schemes. State numbers in (c)–(e) correspond to the five-level
models described in the Appendix.

FIG. 2. (a) Schematic of the experimental setup with counterpropagating probe and coupler beams and the orthogonal horn
antenna that is used to broadcast all RF fields used. (b) Shift of the 56D EIT peak due to the AC Stark shift induced by the
LO field of varying frequency. The resonant 56D-54F and 56D-53F transitions are just out of view below and above the image,
respectively. (c) AT splitting of the 56D EIT peak with an RF field applied to the 56D-53F tuning transition at 24.7 GHz
along with (d) the splitting of the same peak in response to an RF field applied to the 56D-54F signal/LO transition at 18.3
GHz. Dashed lines are a guide to the eye. (e) With the coupling laser frequency set to the 57D state and a constant RF field
of strength Ω/2π = 180 MHz applied to the 57D-54F transition (f = 23.4 GHz), we see the emergence of a two-RF photon
Raman peak at ∆c = 0 as the strength of the second RF field on the 54D-56F transition at f = 18.3 GHz is increased.

the tuning field to induce AT-splitting the target state
(56D) and the Sig/LO fields are returned to resonance
when one of the resulting peaks matches the detuned
Sig/LO frequencies and coupler frequencies:

Ωt/2 = |∆sig| and ∆sig = −∆c . (1)

Shown in Fig. 3(a) and (b) are the measured and mod-
eled EIT spectra, respectively, as a function of Ωc with
Ωsig/2π = 30 MHz and ∆sig indicated. The details of
the model are presented in Appendix A. The experi-
mental traces appear similar and are dominated by the
tuner-induced AT splitting with the residual signal field-
induced AT splitting at weak tuner field strengths clearly
seen in the model. The modeled data shows an avoided
crossing – the tuning feature of interest – that appears
near the condition where ∆sig = −∆c = Ωt/2. These
features are also seen in the experimental EIT traces,
though they are less well-defined due to peak broaden-
ing not present in the model. These tuning features can

be more readily resolved using amplitude modulation as
shown in Fig. 3(d), which also serves to underscore the
practical implications of using a tuning scheme.

For large signal field detuning values >150 MHz we see
the benefits of the tuning scheme relative to the residual
EIT signal with no applied tuning field or laser detuning.
Although the models clearly show the expected behavior
of Eq. (1) we find experimentally that this is not the case
for our choice of states and that ∆sig > ∆c. We attribute
this primarily to the presence of the 56D3/2 transition,
which is clearly visible at ∆c/2π = -396 MHz. Because
of the simultaneous presence of both the 56D3/2 and the
dressed 56D5/2 state for ∆c/2π ≈ 400 MHz, the resulting
mixing shifts the position of the dressed state. While we
show an illustrative tuning range of only 400 MHz here,
we note that arbitrarily large tuning ranges are possi-
ble in principle, but they are practically limited by peak
broadening at larger tuner field strengths.
Sequential Tuning: We now turn to the previously
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FIG. 3. (a) Schematic of the states used for power tuning in the split tuning scheme. (b) False color plots of the experimental
EIT as a function of the tuner Rabi frequency and the coupler laser detuning, with different values of signal frequency detuning
for each plot indicated. (c) The corresponding modeled EIT shows the location of the tuning peaks obtained, which are clearly
visible in (d) the Rydberg mixer plots.

FIG. 4. (a) Schematic of the tuning schemes used in the sequential arrangement. Experimental EIT (b) and mixer (c) plots of
power tuning. Here, the signal field is set to the resonant 56D-54F transition and the tuning field is applied to the 54F-57D
transition with increasing strength, inducing the observed AT-splitting in the 54F state. A set of false-color plots of sweeps of
∆t and ∆sig showing the experimental EIT (d), the modeled EIT (e), and the experimental mixer data (f) as a function of
increasing tuner field strength.

considered case of sequential tuning [20]. Sequential tun-
ing as shown here can operate using of two control param-
eters as schematically shown in Fig. 4(a). On one hand,
it can readily be power tuned, where we hold ∆t = 0 and
increase Ωt in order to control the amount of induced
AT splitting. However, it also allows for using two dis-
tinct frequency tuning features. In one case it can be
frequency tuned using the Raman peak feature. If Ωt is

kept constant, we can also use ∆t as the control param-
eter to keep the signal field on a resonance by tracking
the Ωt-dependent signal maxima.

The power tuning is shown in the false color plots of
the experimental EIT shown in Fig. 4(b) and the corre-
sponding mixer signal in Fig. 4(c). Here the signal field
links the optically coupled 56D state to 54F while the
tuner field applied along 54F-57D is used to split and
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tune the energy levels of 54F. For these plots we lock
the coupler laser to the EIT maximum and sweep ∆sig

while increasing Ωt and maintaining ∆t = 0. The tuner-
induced splitting of the 54F state can clearly be seen
providing a means to return the detuned signal field to
resonance.

The more general utility of sequential tuning is shown
in Fig. 4(d)-(f), showing the experimental EIT, modeled
EIT, and the experimental mixer signals, respectively, as
a function of ∆sig and ∆t for tuner Rabi frequencies in-
dicated. Here the coupler laser is again locked to the
56D EIT maximum, giving rise to an overall large trans-
parency. At low tuner Rabi frequencies the effect of the
tuner field is limited, and the EIT behavior is dominated
by reduced transparency resulting from the signal field-
induced AT splitting near ∆sig = 0. As the tuner Rabi
frequency is increased, it AT splits the 54F state and the
resulting dressed states are seen as ωsig is swept. At large
values of Ωt, the ωsig-dependent EIT peaks begin shift-
ing and the mixer signal becomes asymmetric due to the
AC stark effect.

One further feature of note is seen in Fig. 4(d)-(f). A
feature of increased EIT is seen for ∆t = −∆sig in the
model results, which is not clearly seen in the experimen-
tal EIT but is apparent in the mixer signal. This EIT
feature is due is the Raman peak previously shown in
Fig. 2(e), which will be discussed in further detail in the
next section.

Inverted Sequence: We now turn to the last of the
three tuning schemes addressed in this work, the inverted
sequence. Although conceptually similar to the sequen-
tial tuning arrangement, reversing the order of the sig-
nal and tuning fields has significant consequences for the
tuning mechanisms available and their efficacy. In order
to maintain consistency and enable a direct comparison
with the other tuning schemes we maintain the 56D-54F
signal transition and the 57D-54F tuner transition as il-
lustrated in Fig. 5(a). We invert the sequence by chang-
ing the coupler laser frequency to probe the 57D state.
With the tuner transition adjacent to the optically cou-
pled state we can use stronger fields than those desir-
able for the LO, in order to leverage the benefits of large
Rabi rates and associated AT splitting. On one hand, as
further discussed below we can apply large values of Ωt

in order to effectively split the 57D EIT peak to access
the Raman peak feature for frequency tuning. On the
other hand, the inverted scheme also readily lends itself
to power tuning comparable to the split scheme discussed
above.

Power tuning of the inverse sequence scheme is shown
in Fig. 5(b)-(d). Since we established the baseline util-
ity of power tuning in Fig. 3, we show a larger cou-
pling laser frequency range here in order to illustrate a
few key features and differences. First, due to the ar-
rangement of the states used, we find for our inverted
scheme here, negative ∆sig is tuned into resonance at
negative values of ∆c. Secondly, the Raman peak is seen
at ∆c = ∆sig = 0 in the experimental and modeled EIT,

as well as the mixer signal. This feature is weak, but
is identified by the black/white arrows. Since we show
larger values of ∆c here, two tuning peaks become visi-
ble, where we note that similar peaks would also be seen
in the split tuning case. These arise from two distinct
signal transitions: The 56D-54F transition of interest, as
well as the 55F-57D transition at ωsig = 17.4 GHz that
is simultaneously measured in a split tuning scheme. Al-
though our interest here is in the 56D-54F signal tran-
sition, the simultaneous presence of an additional signal
arising from a split scheme provides a direct compari-
son. With a difference in transition dipole moments of
< 5%, the equivalent signal levels achieved in the peaks
at ∆sig = − 600 MHz and −400 MHz reflect the re-
sult that the three-level Hamiltonians produce the same
eigenvalues for both of these schemes when ∆t = 0
(Appendix B). As in the split scheme, in contrast to the
models we again find that |∆sig| > ∆c. We note that
this is not generally the case and in the absence of a fine
structure peak these two values remain equal in magni-
tude.

The inverted sequence scheme also provides an oppor-
tunity to use the Raman peak discussed previously and
schematically shown in Fig. 6(a). Shown in Fig. 6(b)-(d)
are false-color plots of frequency tuning with the cou-
pling laser locked to the EIT maximum. Although we
show a range of ±1 GHz in tuning in the modeled EIT
in Fig. 6(c), the experimental EIT in Fig. 6(b) and mixer
signals in Fig. 6(d) are shown only for ∆sig > −600 MHz
because the signal becomes dominated by the resonant
57D-55F transition at ∆sig ≈ −900 MHz. The residual
non-resonant background seen in the mixer signal is due
to this transition via the AC Stark effect, which is further
influenced by the tuner at higher field strengths. With
the laser locked to the maximum of the 57D EIT peak,
the primary effect of the tuner field is AT splitting of
the peak, reducing the overall EIT maximum. At low
tuner coupling frequency the induced splitting is small
and the magnitude limited for small values of ∆t. As Ωt

increases, however, the values of ∆t affected by the AT
splitting increases.

The tuning-relevant feature seen in all traces of Fig. 6
is the increased EIT amplitude on the diagonal where
∆sig = −∆t, corresponding to the Raman feature seen
in Fig. 2(e). As seen in the model EIT plots, this feature
persists over a broad range of frequency detuning largely
independent of Ωt. However, in practice – as seen in both
the experimental EIT as well as the mixer signal plots –
the tunability of this feature is limited and increases with
Ωt. This is because this Raman feature is weaker than
the resonant EIT peak, and as such only becomes dis-
cernible once the EIT peak is sufficiently split to separate
it from the Raman peak of interest. As a consequence,
larger values of ∆sig require increasingly large values of
Ωt. The mixer signal clearly reveals the inherent broad-
band tunability of the frequency tuning in the inverted
sequence scheme, but unless the Raman peak is clearly
distinguished from the resonant EIT peak, residual AC
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FIG. 5. (a) Schematic of power tuning in the inverted sequence. False color plots of power tuning using the inverted scheme
with the experimental raw EIT signal (b), the modeled EIT signal (c), and mixer signal (d). Red arrows in (d) indicate EIT
features due to the 56D-54F transition while the violet ones indicate those arising from the 57D-55F transition. Note different
x-axis scaling between experimental and modeled data. Black/white arrows indicate the position of the Raman peak.

FIG. 6. (a) Schematic of frequency tuning in the inverted sequence. False color plots of frequency tuning using an inverted
sequence with the experimental EIT (b), the modeled EIT (c), and experimental mixer signal (d).

Stark effects from nearby transitions can interfere with
signal detection. The mixer data at Ωt/2π = 195 MHz
also cautions that the Raman peak-based tuning scheme
shown here is approximately of comparable magnitude as
the nonresonant background arising from the AC Stark
effect.

Sensitivity Comparison

We provide a direct comparison between tuning
schemes by performing baseline sensitivity measurements
using a Rydberg mixer using two separately sourced sig-
nals detuned by a beat note frequency of 11.2 kHz. All
measurements are acquired with the coupling laser tuned
to the 56D transition used throughout this work. Shown
in Fig. 7(a) are curves showing the Rydberg mixer sig-
nal as a function of signal field strength, Esig, for on-



7

FIG. 7. (a) Comparison of the baseline sensitivity of on-
resonance detection on the 56D-54F transition, the Raman
EIT peak, and the AC stark shift at 21.5 GHz. (b) Roll-off
of the mixer signal for the different tuning mechanisms: Split
scheme power tuning (cyan triangles), sequential scheme fre-
quency tuning (magenta stars), and inverted sequence Raman
peak-based frequency tuning (blue squares).

resonant AT-based field sensing, the Raman peak, and
off-resonant AC Stark sensing at 21.5 GHz (see Fig. 2(b)).
Also shown are the measurement noise-floor (dashed line)
calculated as the mean of the data points below the detec-
tion threshold that represent the measurement noise, and
the signal amplitude corresponding to a signal-to-noise
ratio (SNR) of 1. Alternatively, the noise floor could
be characterized using a spectrum analyzer. We empha-
size that throughout the measurements for the sensitivity
comparison we were careful to maintain consistent exper-
imental conditions to enable a direct comparison.

We use a lock-in time constant of τ = 1 s, resulting
in a bandwidth of BW = 1/2πτ . Thus the on-resonant

sensitivity here is approximately 300 µV/m ·Hz−1/2 As
expected, the on-resonant mixer provides the highest sen-
sitivity, approximately 3 times better than the Raman
peak, which is in turn twice as sensitive as the AC Stark
effect. It is important to note that although the AC Stark
effect here is measured far-detuned from resonance, it is
nevertheless in a frequency range with a large manifold of
D-F transitions. We expect that the relative sensitivity
would be lower in a spectral range where fewer nearby
transitions are available such as, e.g., at lower principal
quantum number n.

We further explore the roll-off in the measured mixer
signal as a function of ∆sig. Shown in Fig. 7(b) are the
mixer signals normalized to their on-resonance value, as

a function of ∆sig for split power tuning (cyan triangles,
data from sequence partly shown in Fig. 3(d)), the in-
verted sequence Raman peak for Ωt/2π = 195 MHz (blue
squares, data from Fig. 6(d)), and the sequential scheme
frequency tuning for Ωt/2π = 109 MHz (magenta stars,
data from Fig. 4(f)). For the inverted tuning scheme we
further correct the data by subtracting the background
that originates from the AC stark shift. It can readily be
seen that although the sensitivity of split scheme power
tuning and sequential scheme frequency tuning roll off
rapidly, diminishing to around 10% of their on-resonant
value within 200 MHz of detuning, the inverted sequence
Raman peak diminishes much more slowly, reaching 10%
of the peak value at around 800 MHz of detuning.

DISCUSSION

Throughout this work we have described several tun-
ing schemes and mechanisms that can be used to re-
turn a detuned signal field to resonance in order to
achieve continous frequency detection. This is done us-
ing an additional tuner RF field in addition to the sig-
nal/LO fields used for conventional Rydberg mixer mea-
surements. These tuning mechanisms rely on either using
tuner field-induced AT splitting of a target state to en-
gineer a resonant signal transition (power tuning), or by
using a two-RF photon transition to link two real Ryd-
berg states (frequency tuning). In all cases, there is a
net loss in sensitivity compared to the on-resonant sens-
ing case. This can be attributed to a distribution of the
transition oscillator strength of the bare state into the
two AT-split peaks. Further limitations in tuning sensi-
tivity not accounted for in our models include linewidth
broadening due to the field inhomogeneity typical of va-
por cells and the effects of magnetic sublevels [23].

In all schemes shown here, power tuning leverages
tuner field-induced AT splitting. Thus, an overarch-
ing challenge presented by power tuning are the large
and uniform tuner fields required by the general con-
dition for an on-resonant tuner field that Ωt = 2 ∗
|∆sig|. Thus, for our chosen states here, a detuning of
∆sig/2π = 1000 MHz requires Ωt/2π = 2000 MHz, cor-
responding to an electric field E > 100 V/m. Although
we can readily achieve such fields with our setup, most
signal generators (including ours) require an additional
amplification stage to produce sufficiently high fields with
a horn antenna.

Leveraging the Raman peak resulting from the coher-
ent interaction of the tuner and LO fields for field sensing
presents an approach here for Rydberg field sensing. This
inverted tuning scheme was also explored in recent work
[30], though the contribution of a two-photon Raman
peak was not reported. As we show in Fig. 7 the overall
sensitivity is not significantly diminished compared to the
resonant EIT signal, though we note that at low tuner
field strengths, where the resonant EIT peak is not fully
split, an additional nonresonant EIT response can con-
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tribute too. Tuning using the Raman peak also benefits
from the comparably slow roll-off of the senstivity. In
terms of practical implementations, a frequency tuning
scheme based on the Raman peak is attractive because it
is easier to tune the RF frequencies rather than the laser
as required for power tuning.

Lastly, it bears emphasizing that the AC stark sensi-
tivity remains good and benefits from needing merely an
LO field rather than an additional tuner field. However,
the required LO fields are typically significantly stronger
than those yielding optimal sensitivity in other schemes.

We conclude by noting that we have demonstrated a
set of tuning schemes that can be used for resonant fre-
quency detection by engineering the Rydberg energy lev-
els to return a detuned signal field to resonance using a
tuner field. These include tuner field-induced AT split-
ting as well as producing a Raman peak feature that can
resonantly link two otherwise dipole-forbidden states. In
the present case the benefits relative to an AC Stark-
based approach are marginal. However, we must empha-
size that the details of the sensitivity depend delicately on
all aspects of the Rydberg atoms used, including atomic
species as well as the principal and angular momentum
quantum numbers. Our choice of states was driven pri-
marily by the desire to have a manifold of transitions
available within the bandwidth of our K-band microwave
electronics and horn, which leads to inevitable tradeoffs
in terms of nearby transition frequencies. As such, we do
not expect that our results are quantitatively universal,
but our experience and modeling does suggest that these
tuning schemes are generally applicable.

Appendix A: Master-equation model

We use a master-equation model of the EIT signals
for the various atomic transition schemes used here.
Fig. 1(c)–(e) labels each of the five states addressed in
the split, sequence, and inverted sequence tuning config-
urations for ease in referencing. The power of the probe
beam measured on the detector (the EIT signal, i.e., the
probe transmission through the vapor cell) is given by
[31]

P = P0 exp

(
−2πL Im [χ]

λp

)
= P0 exp (−αL) , (A1)

where P0 is the power of the probe beam at the input of
the cell, L is the length of the cell, λp is the wavelength
of the probe laser, χ is the susceptibility of the medium
seen by the probe laser, and α = 2πIm [χ] /λp is Beer’s
absorption coefficient for the probe laser. The suscepti-
bility for the probe laser is related to the density matrix
component (ρ21) by the following [31]

χ =
2N0℘12

Epε0
ρ21D

=
2N0

ε0~
(d e a0)2

Ωp
ρ21D

, (A2)

where d = 2.02 [32] is the normalized transition-dipole
moment for the probe laser, Ωp is the Rabi frequency for

the probe laser in units of rad/s, and e and ~ are the el-
ementary charge and reduced Planck’s constant, respec-
tively. The subscript D on ρ21 presents a Doppler aver-
aged value. N0 is the total density of atoms in the cell
and is given by

N0 =
p

kBT
, (A3)

where kB is the Boltzmann constant, T is temperature
in Kelvin, and the pressure p (in units of Pa) is given by
[32]

p = 109.717− 3999
T (A4)

In eq. (A2), ℘12 is the transition-dipole moment for the
|1〉-|2〉 transition, ε0 is the vacuum permittivity, and Ep

is the amplitude of the probe laser E-field.
The density matrix component (ρ21) is obtained from

the master equation [31]

ρ̇ =
∂ρ

∂t
= − i

~
[H,ρ] + L , (A5)

where H is the Hamiltonian of the atomic system un-
der consideration and L is the Lindblad operator that
accounts for the decay processes in the atom. The H
and L matrices for the three different tuning schemes
are given below.

We numerically solve these equations to find the
steady-state solution for ρ21 for various values of Rabi fre-
quency (Ωi) and detunings (∆i). This is done by forming
a matrix with the system of equations for ρ̇ij = 0. The
null-space of the resulting system matrix is the steady-
state solution. The steady-state solution for ρ21 is then
Doppler averaged [31]

ρ21D
=

1√
π u

∫ 3u

−3u

ρ21

(
∆′p,∆

′
c

)
e

−v2

u2 dv , (A6)

where u =
√

2kBT/m and m is the mass of the atom.
We use the case where the probe and coupling laser are
counter-propagating. Thus, the frequency seen by the
atom moving toward the probe beam is upshifted by
2πv/λp (where v is the velocity of the atoms), while the
frequency of the coupling beam seen by the same atom
is downshifted by 2πv/λc. The probe and coupling beam
detuning is modified by the following

∆′p = ∆p −
2π

λp
v and ∆′c = ∆c +

2π

λc
v . (A7)

1. Split Tuning

For the split tuning scheme shown in Fig. 1(c), the
Hamiltonian can be expressed as:

H =
~
2


0 Ωp 0 0 0

Ω∗p A Ωc 0 0
0 Ω∗c B Ωsig Ωt

0 0 Ω∗sig C 0
0 0 Ω∗t 0 D

 , (A8)
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FIG. 8. Level numbers referenced in the Master-equation model of each tuning scheme.

where Ωp, Ωc, Ωsig, and Ωt are the Rabi frequencies of
the probe laser, coupling laser, signal field, and tuner field
coupled states, respectively, and Ω∗ denotes the complex
conjugate. Also,

A = −2∆p

B = −2(∆p + ∆c)
C = −2(∆p + ∆c + ∆sig)
D = −2(∆p + ∆c −∆t),

(A9)

where ∆p, ∆c, ∆sig, and ∆t are the detunings of the
probe laser, couple laser, signal field, and tuner field,

respectively, defined as

∆p,c,sig,t = ωp,c,sig,t − ω12,23,34,35 , (A10)

where ω12,23,34,35 are the on-resonance angular frequen-
cies of transitions |1〉-|2〉, |2〉-|3〉, |3〉-|4〉, and |3〉-|5〉, re-
spectively, and ωp,c,sig,t are the angular frequencies of
the probe, coupling, signal, and tuner fields, respectively.
Notably in this scheme, ∆t/2π = 0 MHz because the tun-
ing field is locked to the |3〉-|5〉 transition.

L =


Γ2ρ22 −γ12ρ12 −γ13ρ13 −γ14ρ14 −γ15ρ15

−γ21ρ21 Γ3ρ33 − Γ2ρ22 −γ23ρ23 −γ24ρ24 −γ25ρ25

−γ31ρ31 −γ32ρ32 Γ4ρ44 + Γ5ρ55 − Γ3ρ33 −γ34ρ34 −γ35ρ35

−γ41ρ41 −γ42ρ42 −γ43ρ43 −Γ4ρ44 −γ45ρ45

−γ51ρ51 −γ52ρ52 −γ53ρ53 −γ45ρ45 −Γ5ρ55

 (A11)

For this system, the L matrix is given in Eq. (A11),
where γij = (Γi + Γj)/2 and Γi,j are the transition decay
rates. Since the purpose of the present study is to ex-
plore the intrinsic limitations of Rydberg-EIT field sens-
ing in vapor cells, no collision terms or dephasing terms
are added. While Rydberg-atom collisions, Penning ion-
ization, and ion electric fields can, in principle, cause de-
phasing, such effects can, for instance, be alleviated by re-
ducing the beam intensities, lowering the vapor pressure,
or limiting the atom-field interaction time. In this analy-
sis we set, Γ1 = 0, Γ2 = 2π×(6 MHz), Γ3 = 2π×(3 kHz),
and Γ4,5 = 2π×(2 kHz). Note, Γ2 is for the D2 line in
133Cs [32], and Γ3,4,5 are typical Rydberg decay rates.

2. Sequential Tuning

For the sequential tuning scheme shown in Fig. 1(d),
the Hamiltonian can be expressed as:

H =
~
2


0 Ωp 0 0 0

Ω∗p A Ωc 0 0
0 Ω∗c B Ωsig 0
0 0 Ω∗sig C Ωt

0 0 0 Ω∗t D

 , (A12)

where Ωp, Ωc, Ωsig, and Ωt are the Rabi frequencies of
the probe laser, coupling laser, signal field, and tuner
field coupled states, respectively. Also,

A = −2∆p

B = −2(∆p + ∆c)
C = −2(∆p + ∆c + ∆sig)
D = −2(∆p + ∆c + ∆sig + ∆t),

(A13)

where ∆p, ∆c, ∆sig, and ∆t are the detunings of the
probe laser, couple laser, signal field, and tuner field,
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respectively, defined as

∆p,c,sig,t = ωp,c,sig,t − ω12,23,34,45 , (A14)

where ω12,23,34,45 are the on-resonance angular frequen-
cies of transitions |1〉-|2〉, |2〉-|3〉, |3〉-|4〉, and |4〉-|5〉 for
the probe, coupling, signal, and tuner fields, respectively,
and ωp,c,sig,t are the angular frequencies of the probe,
coupling, signal, and tuner fields, respectively.

The L matrix of this system is given in eq. (A15).

L =


Γ2ρ22 −γ12ρ12 −γ13ρ13 −γ14ρ14 −γ15ρ15

−γ21ρ21 Γ3ρ33 − Γ2ρ22 −γ23ρ23 −γ24ρ24 −γ25ρ25

−γ31ρ31 −γ32ρ32 Γ4ρ44 − Γ3ρ33 −γ34ρ34 −γ35ρ35

−γ41ρ41 −γ42ρ42 −γ43ρ43 Γ5ρ55 − Γ4ρ44 −γ45ρ45

−γ51ρ51 −γ52ρ52 −γ53ρ53 −γ45ρ45 −Γ5ρ55

 (A15)

Once again γij = (Γi+Γj)/2 and Γi,j are the transition
decay rates, where Γ1 = 0, Γ2 = 2π×(6 MHz), Γ3 =
2π×(3 kHz), and Γ4,5 = 2π×(2 kHz).

3. Inverted Sequence

For the inverted sequence scheme shown in Fig. 1(e),
the Hamiltonian can be expressed as:

H =
~
2


0 Ωp 0 0 0

Ω∗p A Ωc 0 0
0 Ω∗c B Ωt 0
0 0 Ω∗t C Ωsig

0 0 0 Ω∗sig D

 , (A16)

where Ωp, Ωc, Ωt, and Ωsig are the Rabi frequencies of
the probe laser, coupling laser, tuner field, and signal

field coupled states, respectively. Also,

A = −2∆p

B = −2(∆p + ∆c)
C = −2(∆p + ∆c −∆t)
D = −2(∆p + ∆c −∆t −∆sig),

(A17)

where ∆p, ∆c, ∆t, and ∆sig are the detunings of the
probe laser, couple laser, tuner field, and signal field,
respectively, defined as

∆p,c,t,sig = ωp,c,t,sig − ω12,23,34,45 , (A18)

where ω12,23,34,45 are the on-resonance angular frequen-
cies of transitions |1〉-|2〉, |2〉-|3〉, |3〉-|4〉, and |4〉-|5〉 for
the probe, coupling, tuner, and signal fields, respectively,
and ωp,c,t,sig are the angular frequencies of the probe,
coupling, tuner, and signal fields, respectively.

The L matrix of this system is given in eq. (A19).

L =


Γ2ρ22 −γ12ρ12 −γ13ρ13 −γ14ρ14 −γ15ρ15

−γ21ρ21 Γ5ρ55 − Γ2ρ22 −γ23ρ23 −γ24ρ24 −γ25ρ25

−γ31ρ31 −γ32ρ32 −Γ3ρ33 −γ34ρ34 −γ35ρ35

−γ41ρ41 −γ42ρ42 −γ43ρ43 Γ3ρ33 − Γ4ρ44 −γ45ρ45

−γ51ρ51 −γ52ρ52 −γ53ρ53 −γ45ρ45 Γ4ρ44 − Γ5ρ55

 (A19)

Again γij = (Γi + Γj)/2 and Γi,j are the transition
decay rates, but this time Γ1 = 0, Γ2 = 2π×(6 MHz),
Γ3,4 = 2π×(2 kHz), and Γ5 = 2π×(3 kHz).

Appendix B: Simple three-level model

Here we describe a simple three-level model to under-
stand the EIT peak position in our experiments. We
consider three bare Rydberg states in the sequential tun-
ing arrangement of Fig. 1(d), |I〉 ≡ |56D〉, |J〉 ≡ |54F 〉,
and |K〉 ≡ |57D〉, with two RF fields applied, one at
frequency ωsig detuned by ∆sig from the |I〉 → |J〉 tran-

sition, and the other at frequency ωt detuned by ∆t from
the |J〉 → |K〉 transition.

These bare states and fields produce three nearly de-
generate energy levels. The first is defined by the atom
in state |I〉 with Nsig photons at frequency ωsig and Nt

photons at frequency ωt. The second state is defined by
the atom in state |J〉 with Nsig − 1 photons at frequency
ωsig and Nt photons at frequency ωt. The third state is
defined by the atom in state |K〉 with Nsig − 1 photons
at frequency ωsig and Nt − 1 photons at frequency ωt.
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These states can be labeled

|i〉 = |I,Nsig, Nt〉
|j〉 = |J,Nsig − 1, Nt〉
|k〉 = |K,Nsig − 1, Nt − 1〉,

(B1)

with energies

Ei = EI +Nsig~ωsig +Nt~ωt

Ej = EJ + (Nsig − 1)~ωsig +Nt~ωt

= EA + ~∆sig

Ek = EK + (Nsig − 1)~ωsig + (Nt − 1)~ωt

= EA + ~(∆sig + ∆t).

(B2)

The Hamiltonian in the rotating wave approximation is
then

Hseq = Ei + ~∆sig|j〉〈j| − ~(∆sig + ∆t)|k〉〈k|
+

~Ωsig

2 (|j〉〈i|+ |i〉〈j|)
+ ~Ωt

2 (|k〉〈j|+ |j〉〈k|),
(B3)

which can be rewritten as

Hseq = Ei + ~

 0 Ωsig/2 0
Ωsig/2 −∆sig Ωt/2

0 Ωt/2 −∆sig −∆t

 . (B4)

Similarly, we can write the Hamiltonian matrix for the
inverted tuning as

Hinv = Ek + ~

∆sig + ∆t Ωsig/2 0
Ωsig/2 −∆t Ωt/2

0 Ωt/2 0

 . (B5)

Considering the different arrangement of Rydberg states,
|H〉 ≡ |53F 〉, |I〉 ≡ |56D〉, and |J〉 ≡ |54F 〉, and apply-
ing the signal field along |I〉 → |J〉 and the tuner along

|H〉 → |I〉 we can write the split tuning case as

Hsplit = Ej + ~

 ∆t Ωt/2 0
Ωt/2 0 Ωsig/2

0 Ωsig/2 −∆sig.

 (B6)

Lastly we turn to the special case in the sequential
tuning case where ∆sig = −∆t, which we noted is the
condition where the Raman EIT peak emerges. In this
case three energy eigenvalues can be calculated

E0,± = Ei, Ei +
~
2

(
−∆sig±

√
Ω2

sig + Ω2
t + ∆2

sig

)
. (B7)

Here, the E± solutions correspond to AT splitting with
an effective Rabi frequency Ω2 = Ω2

sig + Ω2
t . However,

the third peak, E0, is fixed in frequency at the location
of the main EIT peak and corresponds to the two-photon
Raman peak we observe.
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