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The thermal conductance and thermal conductivity of surface plasmon-polaritons propagating
along a metallic nanofilm deposited on a substrate are quantified and analyzed, as functions of
the film thickness, length, and temperature. This is done by analytically solving the dispersion
relation of plasmons for their wave vectors and propagation length. It is shown that the plasmon
energy transport along the film interfaces is driven by two modes characterized by symmetric and
antisymmetric spatial distributions of the magnetic field. For a gold nanofilm deposited on a silicon
substrate, both modes have comparable contributions of the plasmon thermal conductance, which
takes higher values for hotter and/or longer nanofilms, and saturates for films thicker than 50 nm.
This saturation arises from the decoupling of the plasmon modes, whose transition to a coupled
state for thinner films, maximizes the plasmon thermal conductivity. For a 1-cm-long gold nanofilm
at 300 K, the maximum thermal conductivity appears for a thickness of 10 nm and takes the value of
15 Wm−1K−1, which is about 25% of its electron counterpart. As a result of the huge propagation
distance (> 1 cm) of plasmons, this plasmon thermal conductivity significantly increases with the
film length and temperature, and it could therefore be useful to improve the heat dissipation along
metallic nanofilms.

I. INTRODUCTION

Heat dissipation from nanomaterials is one of the most
important issues in the development of modern devices
due to the usual reduction of their thermal performance
as their dimensions scale down to a few tens to hundreds
nanometers. In nanofilms, this reduction gets stronger
for thinner films, and is generated by the decrease of
their thermal conductivity that results from the increas-
ing boundary scattering of phonons or electrons prop-
agating inside their volumes mainly. However, as the
surface-to-volume ratio (∝ 1/thickness) increases as the
film thickness decreases, the predominant surface effects
in nanofilms indicate that they could support the heat
conduction not only inside their volumes but also along
their interfaces. This interfacial heat transport can be
driven by surface electromagnetic waves, such as the sur-
face phonon-polaritons (SPhPs) and surface plasmon-
polaritons (SPPs) that appears in polar and metallic
nanofilms, respectively [1–7]. The in-plane propagation
and cross-plane evanescent nature of these surface waves
enable them to propagate distances (> 1 mm) much
greater than the typical mean free path of phonons and
electrons [8–11], at speeds close to the speed of light in
vacuum [1, 2, 12, 13]. The fast and long-range surface
waves can thus be powerful energy carriers capable of
enhancing the in-plane heat conduction in nanofilms.

The SPhPs are generated by the coupling of infrared
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photons with optical phonons at the interface of polar
materials [7, 14]. Previous theoretical [1, 2, 15] and ex-
perimental [16–18] works reported that the SPhP con-
tribution to the in-plane thermal conductivity of sus-
pended polar nanofilms can actually be comparable to
or higher than its phonon counterpart. These exper-
imental works showed that thinner [16], hotter[17], or
longer[18] nanofilms exhibit a higher SPhP thermal con-
ductivity, as predicted by theory [1, 2, 15]. This ther-
mal performance enhancement arises from the evanes-
cent coupling of the SPhPs propagating along the two
nanofilm interfaces and their ability to propagate dis-
tances much longer than the typical lateral dimensions
(∼ 1 mm) of the nanofilms [2]. The SPhP coupling shows
up not only in single nanofilms, but also in micro-sized
structures made up of a thick silicon layer sandwiched
by polar nanofilms [19]. As a result of the strong cou-
pling of SPhPs propagating along its two SiO2 nanofilms,
this SiO2/Si/SiO2 structure can efficiently enhance the
in-plane SPhP heat transport to values ten times higher
than the corresponding one of a single SiO2 nanofilm [20].
The suspended nanofilms and microscale sandwiches are
symmetrical structures that support the long-range prop-
agation of SPhPs in a broad range of frequencies [1, 2].
By contrast, for supported structures, such as a nanofilm
deposited on a substrate, the propagation distance and
frequency spectrum of SPhPs are significantly reduced
due to the mismatch of the emissivities of its surround-
ing media and the existence of the SPhP resonance of
polar materials [Re(permittivity) < 0] in a limited fre-
quency interval [2]. These two reductions significantly
suppress the SPhP contribution to the thermal conduc-
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tivity of supported polar nanofilms, even though they
provide better conditions than suspended ones for prac-
tical use. SPhPs therefore open a heat transport channel
in suspended nanofilms and symmetric structures mainly.

By analogy with polar dielectrics supporting the prop-
agation of SPhPs, metals support the existence of SPPs,
which results from the hybridization of photons and free
electrons propagating near the metal interfaces [21–23].
The abundance of these free electrons in metals leads to
a high plasma frequency ωp determining the upper limit

(ωp/
√

2) of the frequency spectrum supporting the prop-
agation of SPPs [7, 23]. In contrast to polar dielectrics,
the high ωp of metals (i.e. ωp/2π = 2196.34 THz for
gold [24, 25]) and the (relatively large) negative values of
the real part of their permittivity for frequencies smaller
than ωp, enable the existence and propagation of SPPs
in a very broad range of frequencies [3, 7, 26, 27]. Ther-
mally excited SPPs are thus wide spectrum energy car-
riers and their cross-plane propagation was applied to
enhance and tailor the near-field thermal radiation [28–
30]. The impact of SPPs in heat conduction, on the
other hand, is less explored [30–32]. Special attention
has been dedicated to the temperature profile of plas-
monic nanoparticles excited with an optical heating at
a given frequency [33–35]. This single-frequency exci-
tation generates SPPs of a unique frequency and with
many observable thermal effects, however, it does not en-
able to fully take advantage on the broad frequency range
of SPPs. The broad spectrum excitation and propaga-
tion of SPPs can be achieved with thermal sources and
could significantly enhance the heat transport in metallic
nanofilms, as they support the SPP propagation over dis-
tances of some centimeters [4, 36]. As metallic nanofilms
with these lateral dimensions can nowadays be fabricated
by depositing them on a substrate, they provide a suit-
able medium to capitalize on the full propagation poten-
tial of SPPs. However, despite of their close analogy with
SPhPs, the contribution of SPPs to the thermal conduc-
tivity of metallic films is not explored yet.

In this work, we theoretically determine the SPP con-
tribution to the thermal conductance and thermal con-
ductivity of a metallic nanofilm, as functions of its thick-
ness, length, and temperature. This is done by analyt-
ically solving the dispersion relation of SPPs for their
wave vectors and propagation length. The existence of
two SPP modes with propagation parameters strongly
determined by the permittivity of the nanofilm surround-
ing media is found. For a gold nanofilm deposited on
a silicon substrate, both SPP modes have comparable
contributions to the SPP heat conductance, which takes
higher values for hotter and/or longer nanofilms, and sat-
urates for thicknesses greater than 50 nm.

II. THEORETICAL MODEL

Let us consider a metallic film supporting the prop-
agation of SPPs along its interfaces with its substrate
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FIG. 1: Scheme of a metallic film supporting the
propagation of SPPs along its interfaces with the
substrate and superstrate of relative permittivities ε1
and ε3, respectively. The film has a relative
permittivity ε2 and thickness d. The SPPs and their
heat flux propagate from the red zone (high
temperature) to the yellow one (low temperature).

and superstate, as shown in Fig. 1. These top and bot-
tom materials have relative permittivities ε1 and ε3, re-
spectively; and they are separated by the film of relative
permittivity ε2 and thickness d. Considering that the
surface x = 0 of the metallic film is uniformly heated
up with a thermal bath or laser beam, its free electrons
oscillate and emit an electromagnetic field. These os-
cillations induce the excitation of neighboring electrons,
which keeps the field propagation along the film inter-
faces mainly. This thermally excited field represents a
SPP able to propagate in a broad range of frequency,
as reported in the literature [32, 37]. Under this condi-
tion, the heat propagates along the x axis mostly via the
combined dynamics of electrons and SPPs. Given that
SPPs, as SPhPs, are bosons [7], the Boltzmann transport
equation establishes that the SPP contribution G to the
in-plane thermal conductance of the nanofilm is given by
[5]

G

a
=

1

2π2

∫
~ωRe(β)τ(ω)

∂f

∂T
dω, (1)

where a is the film width (dimension perpendicular to
the xy plane), ~ is the Planck’s constant divided by 2π,
Re(β) is the real part of the in-plane SPP wave vector

β, f = [exp (~ω/kBT )− 1]
−1

is the Bose-Einstein distri-
bution function, T is the average temperature, kB is the
Boltzmann constant, ω is the spectral frequency, and τ
is the transmission probability defined by[5]

τ =
π

2µ

(
1− 4ψ(0)

πµ

)
, (2)

where µ = l/Λ, Λ = [2Im(β)]
−1

is the in-plane SPP
propagation length, and ψ(ξ) = E5(ξ)−E5(µ− ξ), with
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En(x) =
∫ π/2
0

cosn−2(θ)e−x/ cos(θ)dθ. The transmission
probability τ represents the probability that the SPPs
transmit from x = 0 to x = l along the film interfaces and
its definition in Eq. (2) was derived by comparing Eq. (1)
with the well-known Landauer formula for the thermal
conductance of a thin film. Equation (2) thus establishes
that the transmission of SPPs along the film length l is
determined by µ. In the diffusive regime (µ = l/Λ� 1),
the ratio ψ(0)/µ → 0 and τ ≈ 0, while in the ballistic
limit (µ� 1), 1−4ψ(0)/πµ→ 2µ/π and τ ≈ 1. The SPP
heat transport is hence enhanced along a film with a lat-
eral dimension smaller than the SPP propagation length
(l � Λ), as indicated by Eq. (1). Equation (1) was de-
rived by considering that the temperature difference be-
tween the hot (x = 0) and cold (x = l) sides of the film is
much smaller than their average temperature T [5]. For
a temperature difference up to a few tens of degrees, this
condition is well satisfied for temperatures comparable
to or above room temperature, as is the case of practical
interest. The SPP thermal conductance G (W/K) repre-
sents the thermal power (W) generated by SPPs per unit
of temperature (K) and is independent of the excitation
source required to excite SPPs and measure its value in
a particular experiment. For an arbitrary transmission
probability τ(ω) = τ(l/Λ) = τ(2lIm(β)) (0 < τ < 1)
and according to Eqs. (1) and (2), the SPP thermal con-
ductance depends on the material properties through the
product = Re(β)τ(2lIm(β)) driven by the real and imag-
inary parts of the SPP wave vector β(ω), which is given
by the dispersion relation of SPPs propagating along the
film shown in Fig. 1. As G increases with this product,
the optimal material configuration to maximize the SPP
heat transport is given by a large wave vector Re(β) and
a long propagation length (small Im(β)). After solving
the Maxwell equations under proper boundary conditions
for the transverse magnetic polarization required for the
existence of SPPs[1], the following dispersion relation is
obtained[7, 38]

p2
ε2

(
p1
ε1

+
p3
ε3

)
+

(
p22
ε22

+
p1
ε1

p3
ε3

)
tanh (p2d) = 0, (3)

where the cross-plane wave vectors pn are given by p2n =
β2 − εnk

2
0, with k0 = ω/c and c being the wave vec-

tor and speed of light in vacuum, respectively. Equation
(3) was derived by matching the tangential components
of the electric and magnetic fields at the film interfaces
y = ±d/2 and therefore it is equally valid for finite or
infinitely long films. These boundary conditions are nec-
essary and sufficient for describing the propagation of TM
waves [38]. As Eq. (3) is independent of any condition
at x = 0, the thermal excitation of SPPs at this position
could be done by considering x = 0 as the lateral surface
of the film, as shown in Fig. 1, or as a medium position
of the sample. For a very thin film (d → 0), Eq. (3)
becomes independent of the film parameters and reduces
to the well-known dispersion relation p1/ε1 + p3/ε3 = 0

(β =
√
ε1ε3/(ε1 + ε3)) of a single interface between the

substrate and superstrate. On the other hand, for a very

thick film (|p2| d � 1), the SPPs propagating along the
two film interfaces decouple and propagate with a wave
vector βn =

√
εnε2/(εn + ε2) for n = 1 and 3. None

of these two limiting cases thus allow to capitalize on
the SPP coupling across the film to enhance its SPP
heat transport. The effect of the film thickness on G is
therefore expected to appear for intermediate thicknesses
mainly.

As the surface confinement of SPPs in medium n =
1, 2, 3 is driven by Re (pn)[38], the solution of Eq. (3)
for the SPP wave vectors β = k0

√
ε and pn = k0

√
ε− εn

are generally determined by ε changing between ε1 and
ε3. This constraint on the possible solutions for ε indi-
cates that if the permittivity amplitude of the metallic
film is much greater than the corresponding ones of its
surrounding media (|ε2| � |ε1| and |ε3|), the transverse
wave vector p2 = k0

√
ε− ε2 ≈ k0

√
−ε2 becomes inde-

pendent of the film thickness and the permittivities of
the surrounding media. Under this key condition, Eq.
(3) takes the form

√
ρ− ε12
ε12

+

√
ρ− ε32
ε32

+

(√
ρ− ε12
ε12

√
ρ− ε32
ε32

− 1

)
γ = 0.

(4)
where ρ = ε/ε2, εnm = εn/εm, γ = tan

(
λ
√
ε2
)
, and

λ = k0d. To better understand the solutions of Eq. (4),
the following limiting cases are considered:

A. Thick film limit: d > 4δ2

Taking into account the identity tan(x + iy) =
[tan(x) + i tanh(y)] / [1− i tan(x) tanh(y)] = i for
tanh(y) = 1, which is well satisfied for y > 2, Eq. (4) can
be solved with γ = i for λIm(

√
ε2) > 2. In this case, the

two solutions of Eq. (4) are given by
√
ρ− εn2 = iεn2,

which in terms of the effective permittivity ε yields

ε = εn

(
1− εn

ε2

)
, (5)

with n = 1 and 3. The first solution (n = 1) is related to
the SPP propagation along the superstrate-film interface,
while the second one (n = 3) drives the propagation along
the film-substrate interface. As each of these two solu-
tions depends of the permittivity of a single surrounding
material, the SPP propagation along an interface is not
affected by the one along the other interface. This SPP
decoupling arises due to the fact that the film thickness

d = λ/k0 > 2
[
k0Im(

√
ε2)
]−1

= 2 [k0Re(
√
−ε2)]

−1
= 4δ2

is greater than four times the SPP penetration depth [38]

δ2 = [2Re (p2)]
−1

inside the film. In terms of the real and
imaginary parts of the film permittivity ε2 = εR + iεI ,
this later condition reads

ε2I(ω) >

(
4

λ

)2
[
εR(ω) +

(
2

λ

)2
]
. (6)
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The parabolic inequality in Eq. (6) thus determines the
range of frequencies in which Eq. (5) applies. This lat-
ter equation establishes that the cross-plane wave vectors
pn = k0

√
ε− εn are given by

p1
k0ε1

=
p3
k0ε3

=
1√
−ε2

=

√
|ε2| − εR + i

√
|ε2|+ εR√

2 |ε2|
,

(7a)

p2
k0

=
√
−ε2 =

1√
2

(√
|ε2| − εR − i

√
|ε2|+ εR

)
. (7b)

Taking into account that the confinement of SPPs to
both film interfaces increases with Re(pn) [4, 7], Eqs.
(7a) and (7b) indicate that this confinement becomes
stronger in metallic films with higher absorption (εI � 1)
and/or εR � 0. If the substrate and superstrate are
non-absorbing media (Im(ε1) = Im(ε3) = 0), the real
and imaginary parts of the in-plane wave vector β =
βR + iβI = k0

√
εn
√

1− εn/ε2 ≈ k0
√
εn (1− εn/2ε2), for

n = 1 and 3, are given by

βR = k0
√
εn

(
1− εnεR

2 |ε2|2

)
, (8a)

βI = k0
εI
√
εn

3

2 |ε2|2
. (8b)

Equation (8b) indicates that the SPP propagation length

Λ = (2βI)
−1 ∝ ε−1

I ε
−3/2
n increases as the film absorp-

tion decreases (εI → 0) and it takes longer values along
the film interface with the medium of lower permittiv-
ity. This distance Λ drives the spatial decay of SPPs,
as established by the intensity of their electrical field
|E|2 ∝ exp (−x/Λ) [38]. This relation and Eq. (8b) thus
indicate that the SPP decay increases with εI , which,
for gold, is pretty much independent of temperature, for
temperatures lower than 600 K [25]. Therefore, the SPP
decay in gold is not expected to be significantly affected
by temperature (< 600 K). However, the evanescent SPP
propagation along the film interfaces enhance the heat
dissipation from a hot spot and therefore lowers its tem-
perature with respect to its value in absence of SPPs.
This temperature results from the simultaneous propa-
gation of SPPs and electrons inside the metallic film and
is expected to exhibit a non-linear spatial distribution, as
shown in the literature for SPhPs [5]. According to Eq.
(8a), the SPPs propagate the distance Λ with a wave
vector βR > 0, for frequencies satisfying the condition
|ε2|2 > εnεR/2, which yields(

εR −
εn
4

)2
+ ε2I >

(εn
4

)2
. (9)

As εI > 0, the constraint in Eq. (9) establishes that in
the plane (εR, εI), the SPPs propagate outside the semi-
circle centered at (εn/4, 0) with a radius εn/4. Under
the thick film limit (d > 4δ2), the existence and propa-
gation of SPPs is thus determined by Eqs. (6) and (9),
respectively. Both constraints are satisfied by a relatively

.. ..

FIG. 2: Map of the region supporting the existence and
propagation of SPPs along a thick film (d > 4δ2) with
complex permittivity ε2 = εR + iεI .

high imaginary part εI falling within the highlighted area
shown in Fig. 2. Note that the values of εI allowing the
SPP propagation are only determined by the parabolic
constraint in Eq. (6), for εR < 0. This latter condition is
well satisfied by the permittivity of metals in a wide fre-
quency spectrum and therefore it is expected to facilitate
an abundant presence of SPPs.

Considering that the permittivity of the metallic film
is described by the Drude model, as is usually the case for
a wide variety of pure metals, the frequency dependence
of ε2 is given by [7, 39]

ε2(ω) = 1−
ω2
p

ω2 + iΓω
, (10)

where ωp is the plasma frequency and Γ a damping factor
driving the material energy absorption. After inserting
Eq. (10) into Eqs. (7) and (8), the SPP wave vectors
reduce to

p1
k0ε1

=
p3
k0ε3

=
ω√
2ωp

(√
χ+ 1 + i

√
χ− 1

)
, (11a)

p2 =
ωp√
2c

√
χ+ 1− i

√
χ− 1

χ
, (11b)

βR = k0
√
εn

[
1 +

εn
2

(
ω

ωp

)2
]
, (11c)

βI =
Γ
√
εn

3

2c

(
ω

ωp

)2

. (11d)

where χ =

√
1 + (Γ/ω)

2
and the practical approxima-

tion ω � ωp was used due to the relatively high plasma
frequency (ωp/2π & 100 THz) of usual metals[39]. In
this case, for frequencies much lower than ωp, but much
higher than Γ (Γ � ω � ωp), χ ≈ 1 and the SPP pen-

etration depth δ2 = [2Re(p2)]
−1 ≈ 0.5c/ωp inside the

metal film becomes independent of frequency, as estab-
lished by Eq. (11b) and is well-known in the literature
[7]. For a gold film (ωp/2π = 2196.34 THz), for instance,
this characteristic penetration depth δ2 = 10.9 nm, which
indicates that the film becomes thick for the SPP prop-
agation when its thickness d > 4δ2 = 43.6 nm. By con-
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trast, the penetration depth within the surrounding me-
dia reduces to [38] δn = [2Re(pn)]

−1 ≈ cωp/εnω
2, which

is inversely proportional to the square of frequency. The
confinement of SPPs outside and near the two film inter-
faces therefore increases with the frequency (δ−1

n ∝ ω2).
This frequency dependence of δn is also exhibited by the
propagation length Λ = (2βI)

−1
, which increases as the

absorption parameter Γ decreases, as reported in the
literature [40]. Considering that the SPPs are able to
propagate a distance much longer than the film length
(Λ � l), the transition probability in Eq. (2) becomes
unity and according to Eqs. (1) and (11c), the contri-
bution Gn of mode n = 1 and 3 to the SPP thermal
conductance G = G1 +G3 of the metallic film is given by

Gn = G0
√
εn

[
1 + 10

z(5)

z(3)
εn

(
kbT

~ωp

)2
]
, (12)

where G0/a = 12z(3)k3BT
2/ch2 is the quantum of

thermal conductance of polaritons propagating along a
nanofilm[5], h is the Planck’s constant, and z(.) is the
Riemann zeta function. Equation (12) was derived by
assuming that the SPPs propagate for a wide enough
frequency window to integrate the integral in Eq. (1)
from 0 to ∞. The thermal conductance Gn in Eq. (12)
thus represents the maximum contribution of mode n to
the SPP thermal conductance. The ballistic heat trans-
port of SPPs therefore increases with temperature and
the permittivity of the surrounding media, but it takes
lower values along metallic films with higher plasma fre-
quencies, as established by Eq. (12).

B. High permittivity limit: |ε2| � |ε1| and |ε3|

When the amplitude of the metallic film permittivity is
much greater than the ones of the surrounding media, the
solution of Eq. (4) can conveniently be obtained in terms
of a series expansion on εn2 = εn/ε2, regardless of the
thickness d. The square roots and symmetric dependence
on ε12 and ε32 of Eq. (4) indicate that its solutions for
n = 1 and n = 3 accept the following expansion

ρ = εn2 + (αεn2)2
(
1 + a1εn2 + a2ε

2
n2 + ...

)
. (13)

For an approximation up to ε4n2 and n = 1, the combina-
tion of Eqs. (4) and (13) yields the following expressions
for the parameters α, a1 and a2:

α = γ − 1 + γ2

γ − i√ε32
, (14a)

a1 =

√
ε23
(
1 + γ2

)(
γ − i√ε32

) (
γ
√
ε32 − i

) , (14b)

a2 = −
√
ε23

3 (1 + γ2
) (
γ
√
ε32A+ iB

)
4
(
γ − i√ε32

)3 (
γ
√
ε32 − i

)2 , (14c)

where A = 3 − 11ε32 + 4γ2
(
ε232 − 1

)
and B = 4ε32 −

γ2 (3ε32 + 1) (4ε32 − 3). These three coefficients deter-
mine all wave vectors via the effective permittivity ε =
ε2ρ, which, according to Eq. (13), is given by

ε = ε1
[
1 + ε12α

2
(
1 + a1ε12 + a2ε

2
12

)]
. (15)

Note that ε is not only determined by the permittivities
of both surrounding media but also by the film thick-
ness d through the parameter γ. In the thick-film limit
(d > 4δ2), γ = i = α, a1 = a2 = 0, and Eq. (15)
reduces to Eq. (5), as expected. Equation (15) thus rep-
resents the solution of the SPP dispersion relation for an
arbitrary film thickness, provided that |ε2| � |ε1| and
|ε3|. This first solution (n = 1) drives the propagation of
SPPs along the interface with the superstrate and under
the influence of the SPPs propagating along the other
interface. The symmetry of Eq. (4) on ε1 and ε3 estab-
lishes that the second solution (n = 3) is related to the
SPP propagation along the interface with the substrate
and is given by Eqs. (14) and (15) under the exchange
of the sub-indexes 1↔ 3.

III. RESULTS AND DISCUSSION

The propagation and thermal properties of SPhPs
propagating along a gold nanofilm deposited on a silicon
substrate (ε3 = 11.7) and surrounded by air (ε1 = 1) are
now going to be determined numerically. These two sur-
rounding media do not absorb energy in a large frequency
range [39] and therefore they favor the propagation of
SPPs over long distances. On the other hand, gold is a
good SPP conductor due to its high plasma frequency
(ωp/2π = 2196.34 THz) and relatively low absorption
(Γ/2π = 15.92 THz) [24, 25], which enable the long-range
propagation of SPPs in a wide frequency range. These
values of ωp and Γ do not change significantly with tem-
perature, for temperatures lower than 600 K and allow
the Drude model to describe well the gold permittivity
for frequencies lower than 2 eV = 483.6 THz [41]. This
frequency windows (ω/2π < 483.6 THz) is broad enough
to cover the spectrum of the SPP thermal conductance
that extends up to 50 THz mainly, as shown below.

The in-plane wave vector βR and propagation length Λ
of SPPs propagating along an gold nanofilm are respec-
tively shown in Figs. 3(a) and 3(b), for four represen-
tative film thicknesses. The mode n = 1 (n = 3) drives
the SPP propagation along the air-film (film-substrate)
interface. For both modes, βR linearly increases with
frequency through values pretty much equal to the wave
vector (

√
εnk0) of light in medium n, regardless of the

film thickness, for its considered values. This photon-like
nature of SPPs indicates that their propagation along
a film interface is nearly independent of the one along
the other interface. For the mode propagating along the
interface with Si, the surrounding medium with higher
permittivity, small deviations from the light line are ob-
served for the thinnest film (d = 10 nm) at high frequency
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FIG. 3: Spectra of the in-plane (a) wave vector and (b)
propagation length of SPPs propagating along the
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nanofilm. Calculations were done for four representative
film thicknesses. The continuous and dashed lines in (a)
are pretty much overlapping with their corresponding
black ones.

mainly, as predicted by Eq. (15). This mode (n = 3)
exhibits the higher wave vector but the shorter propaga-
tion length with respect to mode n = 1, as shown in Fig.
3(b). The values of Λ increase with the film thickness
and monotonically decrease as the frequency increases.
In contrast to the behavior of βR, the saturation of Λ
appears for film thicker than 50 nm only. This behav-
ior holds for both SPP modes and indicates that the
coupling of SPPs propagating along the film interfaces
reduces their propagation length, for films thinner than
50 nm. This destructive coupling is generated by the
permittivity difference between the substrate and super-
strate (ε3 − ε1 = 10.7), which increases the SPP energy

loss as the film thickness decreases. The film thickness re-
duction thus leads to enhanced absorption resulting from
the amplification of the fields inside the gold film and its
broadband absorption spectrum. By contrast, for a film
surrounded up and down by the same material, the SPP
energy loss is lower for thinner (less absorbing) films and
therefore Λ increases when the film thickness reduces, as
in the case of polar nanofilms [1, 2].

Note that the SPP propagation along the gold nanofilm
satisfies the condition Im(β) � Re(β), which indicates
that the SPP propagation length Λ = [2Im(β)]−1 �
[2Re(β)]−1 is generally greater than the in-plane wave-
length 2π/Re(β), as shown by Figs. 3(a) and 3(b). The
relatively long distances (Λ ∼ 1 cm) that the SPPs prop-
agate, show their high potential to carry heat along the
nanofilm interfaces, as established by Eq. (1). The re-
duction of the propagation length for high frequencies
and thinner films is also exhibited by the SPP skin (pen-
etration) depth into the air (δ1) and Si (δ3) surrounding
the gold nanofilm, as shown in Figs. 4(a) and 4(c), re-
spectively. The absorption of the SPP energy by the film
hence reduces both the in-plane and cross-plane propa-
gation distances of SPPs. SPPs with shorter (in-plane)
propagation lengths are thus more confined to the film in-
terfaces. In both surrounding media, the first SPP mode
(n = 1) penetrates deeper than the second one (n = 3),
such that they both go deeper into the air than into Si
(δ1 > δ3), for a given frequency and film thickness. Note
that the penetration depth of the second mode into the
Si substrate is independent of the film thickness and ex-
hibits the strongest confinement (smallest skin depth) to
the film interface. The skin depth δ2 of SPPs propagat-
ing inside the film also exhibits this thickness indepen-
dence and takes values much smaller than δ3 due to the
nanofilm energy absorption, as shown in Fig. 4(b). These
values of δ2 are the same for both modes and are accu-

rately determined by δ2 = [2k0Re(
√
−ε2)]

−1
, which con-

firms the validity of the approximation (p2 ≈ k0
√
−ε2)

used to derive and solve the dispersion relation in Eq.
(4). As the frequency increases, δ2 decreases and tends
to 0.5c/ωp = 10.9 nm, as predicted by Eq. (11b). For
films thicker than 50 nm, d > δ2 for the vast majority
of frequencies and therefore the SPPs propagating along
both film interfaces are decoupled. This fact indicates
that the SPP propagation becomes independent of the
film thickness for thicknesses d > 50 nm, as established
by Eq. (5). For thinner films, on the other hand, the in-
trafilm skin depth can be greater or smaller than the film
thickness, within a representative frequency interval, and
hence the coupling (thickness) effects show up, as shown
in Figs. (3) and (4).

The contributions of the two SPP modes to the spec-
trum Gω/a of the SPP thermal conductance per unit
width (G =

∫
Gωdω in Eq.(1)) of the gold nanofilm are

shown in Fig. 5(a), for four representative film thick-
nesses. The maxima of Gω and their frequencies of oc-
currence increase with the film thickness until reaching
saturation for d > 50 nm. This saturation is related to
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FIG. 5: (a) Spectrum of the SPP thermal conductance
of a 1-cm-long gold nanofilm and its (b) integrated
counterpart as a function of temperature. Calculations
were done for both SPP modes, four film thicknesses,
and T = 300 K in (a).

the one of the propagation length (see Fig. 3(b) and Eq.
(1)) and arises from the decoupling (d > δ2) of the plas-
mon modes propagating along the two film interfaces, as
shown in Fig. 4(b). These peak frequencies maximize
both βR and Λ, and therefore their vicinity provides the
major contribution to the SPP thermal conductance. For
frequencies higher than a given peak frequency, the sharp
reduction of Gω is driven by the exponential decrease
of the Bose-Einstein distribution function (see Eq. (1)),
such that its values nearly vanish for ω/2π > 50 THz.
For a given film thickness, the peak frequency of mode
n = 1 is higher than that of mode n = 3, which has a
higher amplitude than the former one, for d ≥ 25 nm.
This fact indicates that both modes have a significant
contribution to G, as shown in Fig. 5(b). Note that the
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FIG. 6: (a) SPP thermal conductance per unit width
and (b) thermal conductivity of a gold nanofilm as
functions of its thickness. Calculations were done by
summing the contributions of the two SPP modes
predicted by Eq. (3), for film lengths of 1, 5, and 10 cm;
and three representative temperatures.

contribution of mode n = 1 is generally higher than the
one of mode n = 3, especially at high temperature. The
near-linear increase of G with temperature deviates from
the quadratic one predicted by Eq. (12) for the ballistic
regime (l� Λ), because the propagation length shown in
Fig. 3(b) takes smaller and greater values than the film
length l = 1 cm considered in Fig. 5(b). This fact indi-
cates that in the intermediate ballistic-diffusive regime,
the SPP thermal conductance increases with temperature
slower than in the pure ballistic one.

The sum of the contributions of both SPP modes to
the SPP thermal conductance G per unit width of the
gold nanofilm is shown in Fig. 6(a), as a function of its
thickness d. Note that G increases with d until reaching
a plateau for d > 50 nm, due to the uncoupling (d > δ2)

of the SPP modes propagating along the film interfaces,
as shown in Fig. 4(b). This maximum G value increases
with the film length and temperature, as a result of the
longer propagation distance in a wider frequency range,
as established by the Bose-Einstein distribution function
in Eq. (1). Given that our calculations are done with
temperature-independent properties, the strong enhance-
ment of G with temperature is driven by the relatively
board frequency spectrum (from 0 to 50 THz mainly)
supporting the flow of the SPP thermal energy, as shown
in Fig. 5(a). Given that the upper bound of this thermal
spectrum is much smaller than the gold plasma frequency
(50 THz� ωp/2π = 2196.34 THz), the frequency spec-
trum of the SPP thermal conductance is not limited by
ωp, which results in the absence of the saturation of G
at high temperature, for the considered temperatures in
Fig. 6. For thinner films (d < 50 nm), on the other hand,
G decreases with d as a consequence of the destructive
coupling of SPPs propagating along the film interfaces.
In terms of the thermal conductivity κ = Gl/ad, the
coupling-uncoupling transition of G appears as a max-
imum due to its division by the film thickness d. This
maximum appears for a film thickness increasing with
temperature and film length, as shown in Fig. 6(b). For
a 1-cm-long nanofilm at 300 K, a maximum thermal con-
ductivity of 15 Wm−1K−1 appears at the thickness of 10
nm. This SPP thermal conductivity is about 25% of its
electron counterpart [42–44], and takes higher values for
longer and/or hotter films, without increasing its thick-
ness (d < 25 nm) significantly. The sizable increase of the
SPP thermal conductivity with its relatively long length,
while its electron counterpart keeps independent of it, in-
dicates that the SPPs can be powerful heat carriers able
to enhance the in-plane heat transport of metallic films,
especially at temperatures higher than room tempera-
ture.

The SPP thermal conductivity could be measured
by means of the micro time-domain thermoreflectance
(µTDTR) or the steady-state thermoreflectance (SSTR)
methods, which have been used to experimentally probe
the polariton thermal conductivity of suspended SiN
membranes [17] and supported Ti nanofilms [32], respec-
tively. These heat-dissipation-based techniques measure
the local temperature drop at a heated spot of samples.
Whether the polariton heat transport is diffusive or bal-
listic, it enhances the heat dissipation from the heated
spot and therefore lowers its temperature with respect
to its value in absence of polaritons. This enhanced dis-
sipation is thus expected to allow probing the predicted
SPP thermal conductivity by fitting the measured tem-
perature to a proper heat transport model.

IV. CONCLUSIONS

Based on the Maxwell equations of electromagnetism
and the Boltzmann transport equation, the plasmon ther-
mal conductance and thermal conductivity of a metallic
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nanofilm deposited on a substrate have been quantified
and analyzed, as functions of the film thickness, length,
and temperature. It has been shown that the propagation
of surface plasmon-polaritons along the film interfaces is
driven by two modes related to the nanofilm surround-
ing media. For a gold nanofilm deposited on a silicon
substrate, both plasmon modes have comparable contri-
butions to the plasmon thermal conductance, which satu-
rates for thicknesses greater than 50 nm. This saturation
arises from the decoupling of the plasmon modes, whose
coupling for thinner films maximizes the SPP thermal
conductivity. For a 1-cm-long gold nanofilm at 300 K,
the maximum thermal conductivity appears for a thick-
ness of 10 nm and takes the value of 15 Wm−1K−1, which
is about half of its electron counterpart. As a result of
the huge propagation distance (> 1 cm) of plasmons,

higher plasmon thermal conductivities are obtained for
longer and/or hotter nanofilms, without significantly in-
creasing its thickness (< 25 nm). The obtained results
thus show that the surface plasmon-polaritons are pow-
erful energy carriers able to enhance the heat conduction
along metallic nanofilms.
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