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In this work, we show a correspondence between linear support vector machines (SVMs) and en-
tanglement witnesses, and use this correspondence to generate entanglement witnesses for bipartite
and tripartite qubit (and qudit) target entangled states. An SVM allows for the construction of
a hyperplane that clearly delineates between separable states and the target entangled state; this
hyperplane is a weighted sum of observables (‘features’) whose coefficients are optimized during the
training of the SVM. We demonstrate with this method the ability to obtain witnesses that require
only local measurements even when the target state is a non-stabilizer state. Furthermore, we show
that SVMs are flexible enough to allow us to rank features, and to reduce the number of features
systematically while bounding the inference error. This allows us to derive W state witnesses ca-
pable of detecting entanglement with fewer measurement terms than the fidelity method dominant
in today’s literature. The utility of this approach is demonstrated on quantum hardware furnished
through the IBM Quantum Experience.

I. INTRODUCTION

The entanglement of high-dimensional quantum sys-
tems is the critical enabling resource in many applica-
tions of quantum information science, quantum commu-
nications [1, 2], imaging [3], and information processing
[4]. The systems with the smallest dimension capable of
exhibiting entanglement are those of two qubits. Two
possible routes to realizing quantum systems with higher
dimensionality include increasing the number of subsys-
tems (i.e., moving from systems of two qubits to those
of N qubits) [5] or increasing the dimension of the exist-
ing subsystems (from d = 2 qubits to d > 2 to qudits)
[6, 7]. Current developments in quantum technologies are
adopting both approaches.

It is therefore crucial to have an efficient method that
allows us to experimentally detect the presence of en-
tanglement in high-dimensional quantum systems. The
brute force approach is to fully characterize a system by
performing quantum state tomography and calculating
separability measures from the recovered density matrix.
However, tomography is experimentally and computa-
tionally demanding. For a state consisting of N parti-
cles, with each residing in a d-dimensional Hilbert space,
we would have to perform M = O(d2N ) measurements
[8]. In addition to the sheer number of measurements re-
quired, there is also the computational cost of regression
to recover the density matrix. With full characterization
of a high-dimensional quantum state being so expensive
experimentally and computationally, classification of a
state becomes a more attractive option.

Recent studies of the entangled-separable quantum
state classifiers have utilized aspects of machine learn-
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ing, such as neural networks [9], and convex hull approx-
imations [10]. Yet others have attempted to improve re-
sources scaling of full state tomography by replacing or
augmenting conventional approaches to state reconstruc-
tion (such as those based on maximum-likelihood esti-
mation [11] or Bayesian methods [12]) using deep learn-
ing methods [13–15]. However, the number of features
(or observables) required to provide correct classification
and estimation for such systems often grow to the num-
ber required for full state tomography.

A more efficient approach is to construct an observable
known as an entanglement witness Ŵ . The expectation
value of this observable would give a non-negative value
for all separable states, while a target entangled state
would give a negative value. Simply measuring the ex-
pectation value 〈Ŵ 〉 for a given system is enough to tell
us if it is close to the desired entangled state, without
the need to find the full density matrix. There is also
at least a quadratic reduction in the number of measure-
ments required, O(dN ), compared to O(d2N ) for state
tomography 1.

There is extensive literature on constructing entangle-
ment witnesses. These include using the stabilizer for-
malism [16] to derive witnesses for multi-partite, graph
and cluster states. Witnesses can also be constructed
through the ‘fidelity method’ [17]:

Ŵ = cI − |ψtarget〉〈ψtarget|, (1)

with c simply a classical c-number, and |ψtarget〉 the tar-
get state. However, this often results in witnesses that

1 For an N-particle d-dimensional space, we posit that Ŵ will have
no more than (d+ 1)N features; we arrive at this expression be-
cause a particle of dimension d will have at most (d+1) mutually-
unbiased bases, with each basis corresponding to its own gener-
alized Pauli matrix σk.
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require a large number of measurements [17].
In this work, we note the analogy between linear sup-

port vector machines (SVMs) [18] and entanglement wit-
nesses and use this as a means of deriving witnesses for
entangled states. An SVM is a supervised machine learn-
ing (ML) technique that uses a hyperplane to perform
binary classification. This is analogous to an entangle-
ment witness W ; on one side of the hyperplane lie all
the separable states (tr(ρŴ ) ≥ 0), while the other side

(tr(ρŴ ) < 0) contains only entangled states, including
the target state. A depiction of the analogy between
SVMs and entanglement witnesses is shown in Fig. 1.

We will limit ourselves to local measurements; the
ansatz we will use for the witness is:

Ŵ =
∑

k1,k2,··· ,kN

ak1,k2,··· ,kNσk1 ⊗ σk2 ⊗ · · · ⊗ σkN . (2)

Each term of the witness is simply a string of (general-
ized) Pauli matrices σk ∈ {I,X, Y, Z} with a real weight
ak. The length of the string corresponds to the number
N of qubits (qudits) in the system. In the case of qudits
(d > 2), each Pauli string would be a sum of the gen-
eralized Pauli string and its Hermitian conjugate. More
details can be found in Section III.

The training of the SVM consists of first generating
the separable and entangled states. For each of these
states, the expectation values of all the Pauli strings
(x~k ≡ 〈σk1 ⊗ σk2 ⊗ · · · ⊗ σkN 〉) are then computed; these
will be the ‘features’ used to train the SVM. Optimization
of the SVM involves varying the coefficients a~k so that

the weighted sum of the features (〈Ŵ 〉 =
∑
~k a~kx~k) gives

the correct classification for each state. We note that,
unlike many other ML techniques such as deep learning,
the training of an SVM is convex, meaning if a solution
exists for the given target state and ansatz, the optimal
SVM 2 will be found.

In what follows, we will demonstrate that our SVM
approach allows for the derivation of entanglement wit-
nesses for bipartite (Section I) and tripartite qubit states
(Section II), as well as bipartite qudit states (Section III),
and show how the technique can be extended to higher
dimensions and particles. In particular, we recover a
witness for tripartite W states that utilizes only local
measurements, but requires far fewer features and has
comparable noise tolerance to what has previously been
demonstrated [17, 19]. Additionally, we show that our
SVM formalism allows for the programmatic removal of
features, i.e., reducing the number of experimental mea-
surements, in exchange for a lower tolerance to white
noise, in a manner similar to [20].

In Section IV, we verify our derived witnesses for the
tripartite W-state on a physical system in the form of

2 By ‘optimal’, we mean that the hyperplane is ‘optimally’ trained
with respect to the training data and ansatz, not that the result-
ing witness is ‘optimal’.

a quantum circuit run on the IBMQ cloud and compare
its performance to the standard fidelity witness (Eq 1)
using the same platform. We find the derived witnesses
to have comparable immunity to decoherence than the
fidelity-based witness. Perhaps the most salient feature,
we show that a SVM-derived witness implemented on real
IBMQ hardware requires fewer measurements to verify
entanglement than the fidelity-method counterpart.

The use of statistical learning methods for deriving
witnesses is a largely unexplored area. This work calls
into question the criteria by which an operator could be
practically proven as a formal entanglement witness. We
shall leave any rigorous analysis and optimization of our
witnesses for future work; the work that follows merely
serves as a proof-of-concept for a potentially powerful
technique capable of characterizing entanglement in high-
dimensional systems.

II. BASIC SCHEME AND APPLICATION TO A
SIMPLE EXAMPLE

As we saw in Eqn 2 and the discussion that followed,
an SVM is a linear classifier that takes a weighted sum of
‘features’ (expectation values x~k ) of an object (quantum
state) and predicts whether it belongs in one class (en-
tangled) or another (separable). More formally, we can
write the classifier as:

y =
∑
a~kx~k

If separable : y ≥ 0
If entangled : y < 0.

(3)

What is shown in (3) refers to a constraint imposed on
our classifier and is not true for entanglement witnesses
in general. The coefficients a~k are ‘learned’ by using a
set of training examples, each with label ŷ and features
x~k; the labels for entangled states will be ŷ = −1, and
ŷ = +1 for separable states. The learning involves the
minimization of the loss function:

L =
1

T

T∑
t=1

[
max(0, 1− ŷ(t) · y(t))

]m
+ λ

∑
~k

|a~k|, (4)

with respect to the coefficients a~k. The first summation

is over all training examples T , ŷ(t) (y(t)) is the label
(prediction) for a particular example, m = 1 or 2, and

the second summation (over ~k) is a regularization term
(whose relative importance can be varied with a scaling
factor, λ) to limit the number of non-zero features.

The first term of the loss function (Eqn 4) is known
as the hinge loss. When m is equal to either 1 or 2, the
loss function is a convex function of the coefficients a~k;
that is, the loss function has only a single global mini-
mum for a set of training examples, though the trained
coefficients for m = 1 will be different from m = 2. We
will use m = 1 so that there are fewer non-zero features
present (the SVM uses ‘sparse’ features); however, m = 2
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FIG. 1. (a) An illustration of a Support Vector Machine (SVM) in feature space for a bipartite system. A hyperplane (green
solid line) defined by an SVM is separated from two classes of data A and B by the maximally allowed margin (dashed

black line). (b) An entanglement witness Ŵ (green solid line) can be viewed as a hyperplane in Projective Hilbert Space that
separates all separable states (which form a convex set) from a subset of entangled states. (c) A depiction of an SVM-derived
entanglement witness that combines the concepts from (a) and (b). As shown in Section I, entangled state data is sampled
from a set of Werner states, which can be viewed as a line segment between a target state |ψ〉 and the maximally mixed state
at the center of the separable state region. The length of the line segment is determined by the range of p in Eq(6): the larger
the p, the closer is the entangled Werner state to the separable states. All separable states used for training throughout this
work are pure and lie along the surface of the set of separable states.

may be needed when the separation between the separa-
ble training states and the entangled training states is
narrow [21]. Throughout this work, we consider the de-
tection of entangled states that are well separated from
the set of separable states. An example in which the
two classes of data are close to one another would be
the detection of highly mixed entangled states, which lie
close to the boundary between the set of entangled and
separable states.

To illustrate the training of the SVM, we use a sim-
ple illustrative example. Let us find the entanglement
witness for the bipartite qubit Bell-state:

|ψtarget〉 =
1√
2

(|00〉+ |11〉) , (5)

with |0〉 and |1〉 being the eigenstates of the Pauli matrix
σz. We can construct a set of density matrices (represent-
ing the class of entangled states) by adding white noise
to a target bell state |ψtarget〉

ρent(p) = (1− p)|ψtarget〉〈ψtarget|+
p

4
I, (6)

and varying p uniformly over the range
[
0, 23
)
. One

could show that (6) represents a convex set by virtue
of the intermediate points all being convex sums of the
states lying at the boundaries defined by p = 0 and
p = 2/3. Each training example for the entangled class
will consist of the label ŷ(p) = −1 and the features
{x~k(p)} = {tr(ρent(p)σk1 ⊗ σk2)}.

On the other hand, when constructing the training
data for bipartite separable states we can simply use
pure states, due to the linear nature of the entanglement

witness 3. Random separable states are constructed by
taking the tensor product of two haar-distributed, single-
qubit states. Each training example |ψsep〉 for the sep-
arable class consists of the label ŷ = +1 and features
{x~k} = {〈ψsep|σk1 ⊗ σk2)|ψsep〉}.

Four thousand examples of each class are generated
using NumPy, a linear algebra library in Python, and the
ML library Tensorflow [22] is used to train the SVM.
The process is repeated for the three other Bell states,
and the results are tabulated in Table I. Only features in
the trained SVM with coefficients whose absolute value
greater than 0.01 are shown; all other features are dis-
carded. The choice of keeping terms that satisfy this cri-
teria allows us to ignore terms that account for changes in
|〈W 〉| of less than 1% of the maximum achievable value.
The witness is verified using 104 samples of separable
states and 104 samples of entangled states with noise in
the range of p ∈ [0, 14 ] 4. The SVM is observed to give
the right classification 100% of the time.

The accuracy of the witnesses in Table 1 is unsurpris-
ing; these operators are in exact correspondence with
those derived according to Terhal’s method prescribed
in [23]. The most remarkable feature is that the the-
oretically optimal witnesses have been derived from a

3 Consider an arbitrary separable state ρsep =∑
i pi|ψsep,i〉〈ψsep,i|, where ψsep,i are fully-separable states.

Then tr(ρsepŴ ) =
∑

i pi〈ψsep,i|Ŵ |ψsep,i〉 ≥ 0. This means
that using pure fully-separable states as training examples is
equivalent to training with mixed fully-separable states.

4 One could consider an even larger interval of p over which the
entangled states are defined, but with the modification of us-
ing an m = 2 hinge loss function to account for the decreased
separation between sampled entangled and separable states.
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Target State Witness
|Φ+〉 = 1√

2
(|00〉+ |11〉) I ⊗ I −X ⊗X + Y ⊗ Y − Z ⊗ Z

|Φ−〉 = 1√
2

(|00〉 − |11〉) I ⊗ I +X ⊗X − Y ⊗ Y − Z ⊗ Z

|Ψ+〉 = 1√
2

(|01〉+ |10〉) I ⊗ I −X ⊗X − Y ⊗ Y + Z ⊗ Z

|Ψ−〉 = 1√
2

(|01〉 − |10〉) I ⊗ I +X ⊗X + Y ⊗ Y + Z ⊗ Z

TABLE I. Bell states and their corresponding witnesses ob-
tained from our method

relatively small data set of 104 points in each category
(separable and non-separable).

III. APPLICATION OF THE METHOD TO
TRIPARTITE QUBIT STATES

In this section, we will extend the method presented
in Section I to the tripartite qubit states:

|GHZ〉 =
1√
2

(|000〉+ |111〉) ,

|W 〉 =
1√
3

(|001〉+ |010〉+ |100〉)
(7)

We first point out that, unlike the bipartite Bell states,
the GHZ and W states are not interconvertible with the
use of local unitary operations; they belong to separate
classes of entanglement [24]. Moreover, separable states
in tripartite systems can be further divided into (1) fully-
separable (fs) states:

ρ
(1,2,3)
fs = ρ1 ⊗ ρ2 ⊗ ρ3 (8)

and (2) biseparable (bs) states, which can be in one of
the forms:

ρ
(1,2,3)
bs = ρ(1) ⊗ ρ(2,3)ent ,

ρ
(2,1,3)
bs = ρ(2) ⊗ ρ(1,3)ent ,

ρ
(3,1,2)
bs = ρ(3) ⊗ ρ(1,2)ent

(9)

where any 2 particles are entangled, but separable from
the third.

All the pure states lie on the boundary between W and
biseparable states [25]; this indicates that the derived
witness is largely determined by the entangled and pure
biseparable state training data. The relationship between
the purity of the (bi)separable state training data and
its distance from the boundary defined by the derived
witness is explored more formally in the Appendix.

Fully separable states are constructed by taking the
tensor product of 3 single-qubit Haar-distributed states.
Likewise, biseparable states may be obtained by tak-
ing the tensor product of single- and two-qubit Haar-
distributed states, followed by random SWAP operations

on each of the three qubits. The last step ensures that
all possible permutations shown in (9) are considered.

Instead of explicitly measuring the biseparability of
each state used for training, we rely on the fact that two-
qubit Haar-distributed states are concentrated towards
highly entangled states when considering the ensemble’s
average concurrence [26]. This result allows us to guaran-
tee that many states labelled as biseparable can only be
decomposed into two parts. Consequently, the method
will also result in the mislabelling of a small portion
of separable states being considered biseparable. How-
ever, this does not impact the efficacy of our derived wit-
nesses: a classifier between a set of entangled states and
the union of the separable and biseparable states.

As for the entangled state, we again use the Werner
state (Eqn. 6 ) to generate the training data for that
class of states. Werner-states are uniformly sampled over
the range p ∈ [0, 0.3). The training data consists of 105

biseparable and separable states (in equal proportion)
and another 105 entangled states.

ŴGHZ = 2I ⊗ I ⊗ I −X ⊗X ⊗X + Per{X ⊗ Y ⊗ Y } (10)

FIG. 2. Barplot showing the normalized non-zero coefficients
(exceeding 0.01) of the SVM-derived witnesses for the GHZ
state. The witness is explicitly defined in (10) below the plot;
the operator Per{·} denotes the sum of all possible permuta-
tions of the operators within the brackets.

Bar graphs indicating the non-zero coefficients for the
two derived witnesses (Eqn. 7) are shown in Fig. 2 and
Fig. 3. The coefficients are normalized to a maximum
value of 1; any coefficients with a magnitude of less than
0.01 is removed. We note that the SVM-derived witness
for the GHZ state is equivalent to the theoretical witness
obtained with Mermin’s inequality, with the features cor-
responding to the stabilizers of the GHZ state [16]. This
agreement further validates the SVM scheme.

What is noteworthy, though, is that the W state is a
non-stabilizer state. For such a state, it is not possible
to find stabilizing operators that are the tensor products
of single-qubit operations [16, 27]. Therefore, W state
witnesses derived in previous works either consisted of
non-local stabilizing operators [16] or were based on the
fidelity method [17]. Our proposed W state witness pro-
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FIG. 3. Systematic removal of features from a witness using
Recursive Feature Elimination (RFE). The W state witness
derived by the SVM initially has 8 coefficients, including the
intercept term (I⊗I⊗I). This initial witness has a noise tol-
erance of up to 0.42. In each iteration of the RFE algorithm
we discard the feature with the smallest effect on pmax. We
find that the minimum number of coefficients that the witness
can have without misclassifying separable states is 5. How-
ever, this reduction decreases the noise tolerance p ≤ 0.27).

vides an alternative to existing methods while only re-
lying on local operations. It tolerates white noise up
to p = 0.42 (Fig. 3), which is larger than the limit of
p < 8/21 allowed by the fidelity method [17]. It should
be noted that the noise tolerance of our proposed witness
is still within the theoretical limit of p ≈ 0.52, at which
point the state is considered to be biseparable [28].

The derived witnesses can be further simplified
through the process of the Recursive Feature Elimination
(RFE) algorithm [29]. This allows us to systematically
reduce the number of features in the witness to lower ex-
perimental complexity, but at the expense of lower noise
tolerance. The goal of RFE is to eliminate less essential
features by recursively considering smaller and smaller
subsets of the original features using a greedy algorithm.
Initially, RFE takes the SVM we trained and ranks the
features according to their effect on the noise tolerance
pmax, removing the one with the smallest effect; then
the model is retrained with the remaining features. This
process is repeated until the desired number of features
is reached, or when pmax drops below a certain thresh-
old. Figure 3 shows the noise tolerance pmax as the RFE
algorithm removes more and more terms.

FIG. 4. The SVM-derived coefficients of the witnesses for
three target qudit (d=3) bipartite entangled states are shown.
The features with coefficients whose magnitudes exceed than
0.01 are highlighted, and the tolerable white noise for each
witness (state) is given on the right hand side.

IV. BIPARTITE QUDITS

In the case of particles residing in higher dimensional
(d > 2) Hilbert spaces, the ansatz witness (Eqn 2) would
need to be constructed with generalized Pauli matrices.
However, these matrices exist only for dimensions that
are prime P (or powers of prime P d); the eigenvectors
of the matrices correspond to mutually-unbiased bases
(MUBs), while the eigenvalues are complex.

In general, there are d+ 1 MUBs [30] when d is prime.
The set of corresponding Pauli matrices are:

S = {X,Z,XZ,XZ2, · · · , XZd−1}, (11)

where X is the row-shifted d-dimensional identity matrix:

X =


0 0 · · · 0 1
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 (12)

and Z is the diagonal matrix:

Z =


1 0 · · · 0 0
0 ω · · · 0 0
...

...
. . .

...
...

0 0 · · · ωd−2 0
0 0 · · · 0 ωd−1

 , ω ≡ ej 2π
d . (13)
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From Eq 13, we see that the eigenvalues of these gen-
eralized Pauli matrices are complex. Limiting the dimen-
sionality to d = 3, the set of generalized Pauli matrices
for each particle becomes:

σ1, σ2 ∈ {I, V,X, Y, Z, V †, X†, Y †, Z†},

with Y ≡ XZ and V ≡ XZ2.
The ansatz for the witness given in Eqn 2 is modified so

that it will give real expectation values [20]; the modifica-
tion involves hermitianizing each term in the summation:

Ŵ =
∑
k1,k2

ak1,k2

(
σk1 ⊗ σk2 + σ†k1 ⊗ σ

†
k2

)
. (14)

Once again, to generate the training data, the sepa-
rable states are constructed in a Haar-distributed man-
ner, and the entangled states are generated by adding
white noise to the target pure state (Eqn. 6). The
results for three different states are shown in the form
of a histogram in Fig 4; witnesses for each target state
are trained with a maximum white noise content of
p = 0.125. Even then, the derived witnesses can toler-
ate significantly more white noise than is present in the
training data.

We perform convergence testing to investigate how
much training data is required for the SVM-derived wit-
ness to converge (Fig 5). We vary the training data size
from 104 to 3 × 107. For each training data size, a wit-
ness for the target state |ψ〉 = 1√

3
(|00〉+ |11〉+ |22〉)

is trained five times, each with different randomly-
generated data. The ratio of the standard deviation of
each non-zero coefficient Sak to its mean value coefficient
〈ak〉 is plotted. What we observe from Fig. 5 is that
the coefficients have negligible uncertainty (within 1%)
and converge to the asymptotic value when training data
consisting of more than 106 states points are used.

In what follows, we shall estimate a simple scaling rule
for the number of separable state data points required
until the SVM to converge to a single solution. Such a
rule is unnecessary for determining the required amount
of entangled state data since these states are sampled
uniformly according to a single parameter. The question
of sampling pure separable states is far more complex due
to the larger space of parameters that must be sampled.
A pure separable state, for which d > 2, is defined by
4(d−1) independent parameters. If one were to uniformly
sample each parameter, such that each parameter has
a probability of 1

m of being drawn, this means that we

would need ∼ m4(d−1) data points to span our space of
separable states. This rule implies that if one were to cast
m = 10, they would need to define 108 data points for
d = 3. However, this theoretical prediction is in contrast
to the empirical results shown in Fig. 5, that point to
convergence for less than ∼ 106 data points. This gives us
confidence that we can efficiently extend our SVM-based
method to higher dimensions and more particles.

We do not prescribe a similar scaling rule for the train-
ing data required for multipartite entanglement detec-
tion. Much like the two-qubit case, the entangled state

FIG. 5. Convergence testing: How big must the training
data be for us to be able to generate a witness whose co-
efficients converge to its asymptotic value? The target state
|ψ〉 = 1√

3
(|00〉+ |11〉+ |22〉) is used; its coefficients are shown

graphically in Fig. 4. The metric for stability is the ratio of
the standard deviation of each non-zero coefficient Sak to its
mean value coefficient 〈ak〉. The training data size is varied
from 104 to 3 × 107. For large data sizes (> 106), we see
asymptotic convergence to a noise floor which we attribute to
discretization noise.

data of a multipartite system would only depend on a
single parameter p for defining a Werner state. Unlike
the two-qudit states, the biseparable state training data
will have the most significant impact on the derived clas-
sifier. A more thorough examination of this result can
be found within the Appendix. The proposed approach
applied to the scalability of separable state data, cannot
be extended to biseparable states due to the difficulty of
prescribing a parameterization that spans the entire class
of pure biseparable states. The optimal method of sam-
pling biseparable states so as to minimize the number of
required data points remains an open question and shall
be left to future work.

Higher d-dimensional states will require even larger
training data sets; we will need to implement online
training of the SVM, which involves training the SVM
in batches, with different data fed in at each batch. This
is in contrast to offline data, where all the data is avail-
able to the SVM for training initially. To do this, we
implement an SVM structure in Tensorflow [22], using a
single input layer (the features), and single output with
no hidden layer. The loss function (Eqn 4) remains the
same, but we instead use Adaptive Momentum (ADAM)
[32] as the optimizer.

V. PHYSICAL VERIFICATION OF W STATE
WITNESSES

In this section we seek to quantify the performance of
our W state witnesses in the face of real non-idealities en-
countered on noisy-intermediate scale quantum (NISQ)
devices such as noise and cross-talk [33]. The noise tol-
erance of each witness is compared against the fidelity
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Measurement 
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FIG. 6. (a) The circuit used to generate a W-state on IBMQ hardware [31]. Indeed, this can be done with a series of Z-rotations,
whose angles are labelled, Hadamard gates, controlled-NOT operations, and controlled Z-gate operations. (b) The segment
in which a variable number of identity operations are appended to the W-state circuit in (a). (c) The measurement circuits
corresponding to fidelity and SVM-derived witnesses. (d) The density matrix for an ideal W-state. (e) The density matrix for
the W-state generated by (a). (f) The density matrix for a W-state after it has undergone 22 identity operations on ibm perth.
The fidelity values of the states in (e) and (f) to the ideal W state are 0.801 and 0.074 respectively.
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method witness [17] as a benchmark. The quantum com-
puting platform provided by IBM (IBMQ) was chosen for
its ease of access and the maturity of its software develop-
ment kit, Qiskit [34]. All physical experiments that follow
are performed on the 7-qubit superconducting machine,
ibm perth [35].

We concern ourselves with our witnesses of three qubit
W states due to the many obstacles associated with cre-
ating entangled qudits on NISQ devices. As mentioned
prior, there is also a scarcity in W state witnesses reliant
entirely on local operations in existing literature; this
can be attributed to the fact that they are non-stabilizer
states. We do not attempt to measure the witness on
separable or biseparable states due to the large search
space that they occupy.

While bipartite Werner states have been demonstrated
on IBMQ by G̊arding et al. [36], there does not exist any
publicly available implementations of tripartite Werner
states. Furthermore, it was found that existing bipartite
Werner states implemented on IBMQ show highly unpre-
dictable behaviour as a result of the non-idealities pre-
sented in [33]. Due to the difficulty of generating precise
tripartite Werner states on IBMQ, we instead generate a
W-state followed by a variable number of identity oper-
ations. Fig. 6(a), (b), and (c) show the full circuit used
to test the separability of tripartite W states followed by
a variable number of identity operations on IBMQ hard-
ware. Our means of generating these W states, shown in
Fig. 6(a), is adopted from a deterministic method of gen-
erating arbitrary N-partite W states by Diker [31]. We
observe in Fig. 6(d) through (f) that the fidelity of the
state to an ideal W-state decreases monotonically with
the number of identity operations shown in Fig. 6(b).
This is based on the fact that these gates are prone to
unpredictable sources of error. We use this feature to
generate states with controllable values of fidelity to the
ideal W state.

After passing the W-state through a selected number of
identity operations, we perform projective measurements
onto each of the terms of our witnesses. Qiskit allows
users to convert a user-defined observable to a series of
measurement operators and their respective circuits [34].
Since our witness consists of operators in a non-diagonal
basis, we have an additional step of converting these to
a series of Hadamard and Z-rotations. This allows us to
approximate the expectations of observables composed
of non-diagonal operators when we are limited to only
measuring in the Z-basis. The expectation of each wit-
ness is calculated from the results of 1024 repeated pro-
jective measurements made on each term shown in Fig.
3. Fig. 6(c) represents the stage in which the desired
witnesses are measured according to the aforementioned
technique. Although not shown explicitly, each term of
the SVM-derived and fidelity witnesses has its own dis-
tinct measurement circuit. This means that an n term
witness will require a total of n× 1024 measurements to
determine the separability of a given state.

Fig. 7 shows that our witnesses with 6, 7, and 8

FIG. 7. A plot of the number of identity operations versus the
expectation of various entanglement witnesses discussed in
this paper. Error bars (1-sigma) were calculated by repeated
sampling of measurement circuits implemented on IBMQ, and
fitting a normal distribution to the measured values. The
SVM-derived witnesses have been scaled by a constant factor
for better comparison with the fidelity-method witness.

terms tolerate an amount of noise comparable to the
fidelity method witness before detecting separability 5.
The SVM-derived witnesses’ advantage lies in the fact
that they require far less measurements than the 20 term
fidelity method witness when measured in the Pauli basis
[17].

To supplement these physical experiments, we perform
a series of numerical simulations of the following state for
p ranging from 0 to 1:

ρ = (1− p) |W 〉 〈W |+ p

8
I. (15)

The simulation results shown in Fig. 8 agree with our
experimental data in the sense that the 6, 7, and 8 term
witnesses all show comparable noise tolerance to the fi-
delity method witness. It is important to note that al-
though the 7- and 8-term SVM-derived witnesses have
higher noise tolerance than the fidelity method, the phys-
ical experiments in Fig. 7 show that this is not necessarily
the case in practice. We attribute this result to the fact
that the noisy W states that we generate do not resemble
the states used for training presented in (15).

5 One may notice that all witnesses experience “jumps” in their
expectation values at regular intervals. This is attributed to
changes in the operational environment such as regular re-
calibration performed on devices.
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FIG. 8. A comparison between the noise tolerance of vari-
ous SVM-derived witnesses and the Fidelity method witness.
Simulations are based on the parameterized W-Werner state
defined in (6). Zero-crossings are indicated with dashed red
lines.

VI. DISCUSSION AND CONCLUSION

While in this work we have derived entanglement wit-
ness using the SVM method, we would like to remark the
important differences between an SVM classifier and an
entanglement witness.

First, an entanglement witness is only partially a clas-
sifier, since it is only required to place all separable states
on one side of the hyperplane while not required to (as
well as not possible to) place all entangled states on the
other side. In contrast, an ideal classifier should strictly
separate the two classes of states. Therefore, it is im-
portant when generating training data for the entangled
states to ensure that the entangled states introduced in
the training should still make it possible to have a hyper-
plane separating the entangled states from the separable
states. As a result of the Hahn-Banach theorem, a linear
SVM will necessarily return a hyperplane between two
classes of data so long as they form two disjoint convex
sets [37]. Thus, it is important to select the entangled
states from a convex set so that they may be distin-
guished from the separable states, which are known to be
closed and convex [25]. The set of Werner states is con-
vex when p is defined over a continuous interval, which
implies that the entangled states used throughout this
work are sampled from convex sets. Indeed, this moti-
vates our decision to use the Werner states for entangled
state data generation throughout this work.

Second, the SVM classifier tries to maximize the dis-
tance between the boundaries of the two classes of states,
whereas an ideal entanglement witness should be a hy-
perplane as close as possible to the convex space formed
by the separable states. This difference again points to
the importance of generating the training data for the
separable states as close to the boundary as possible on
one hand, while on the other hand, having training data

for the entangled states as close to the boundary as pos-
sible while still maintain convexity.

Thirdly, as suggested in Fig.1(c), the training data for
the separable states can sampled from a much smaller
subset of the set of all separable states, since only states
at the boundary closest to the target states, i.e. the sup-
port vectors, have a significant influence on the derived
witness. As detailed in the Appendix, these correspond
to pure biseparable states for the case of the tripartite
qubit states.

These differences not only elucidate the limitation of
this ML approach in deriving entanglement witnesses,
but also help to further improve the SVM approach by
improving upon the training data.

In summary, we have demonstrated using linear sup-
port vector machines (SVM) to derive entanglement wit-
nesses for both bipartite and tripartite qubit systems,
as well as bipartite qutrit systems. This method gener-
ates witnesses that require only local measurements and
whose tolerance to noise is on par with what is currently
found in the literature. In addition to deriving witnesses
for stabilizer states, our method also yields witnesses to
non-stabilizer states. Furthermore, we demonstrate the
ability to systematically reduce the number of features
in the witness, allowing us to reduce experimental com-
plexity at the expense of noise tolerance. Finally, we
have verified the SVM-derived witness for the W-state on
physical IBMQ hardware, with realistic and uncontrolled
noises added by quantum gates, and have shown that
the SVM-derived witnesses has a comparable noise toler-
ance to the fidelity witness while requiring significantly
fewer number of measurements. This SVM method is
straightforward to extend to higher-dimensions d for bi-
partite systems, involving online learning, and may also
be computationally efficient for deriving the witnesses of
systems consisting of larger particle numbers N . The
fact that the number of measurement terms of the SVM-
derived witnesses can be decreased at the cost of noise
tolerance makes them an appealing benchmark of multi-
partite and higher-dimensional entanglement in modern
NISQ devices.
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APPENDIX: SAMPLING RANDOM SEPARABLE
AND BISEPARABLE STATES

By virtue of being derived via statistical learning meth-
ods, the accuracy of our witnesses depends heavily on
having representative training data. We found that our
means of sampling random separable and biseparable
states used for training the SVM corresponding to our W
state witnesses had a dramatic impact on the witnesses’
accuracy in Section IV.

When choosing a data set, it is important to note that
data points closest to the boundary between classes will
have the most profound effect on the hyperplane corre-
sponding to a derived witness. We shall begin our explo-
ration by searching for a correspondence between the dif-
ferent methods of sampling data and their concentration
around the boundary defined by our classifier. Deter-
mining these data points, referred to as Support Vectors,
could allow us to considerably decrease the size of a data
set by primarily considering points close to the defined
boundary [38]. However, given the complex geometric
properties of sets in Hilbert space, it is important to
quantify the role of points interior to the set of bisepara-
ble states in training our SVM. In what follows, we justify
our choice of using entirely pure states as (bi)separable
training data throughout this work. Particular emphasis
is placed on the training data used for 3-qubit W states.

For the purposes of this study, pure and mixed fully-
separable states are constructed by taking the tensor
products of three single-qubit Haar-distributed and Mai-
Alquier (MA) distributed states [39] respectively. Indeed,
the MA-distributed states ρMA may be defined as a con-
vex combination of Haar-distributed states |ψj〉 weighted
by a Dirichlet random variable x distributed according to
Dir(x|α):

Dir(x|α) =
Γ(
∑K
j=1 αj)∏K

j=1 Γ(αj)

K∏
j=1

x
αj−1
j , (16)

ρMA =

K∑
j=1

xj |ψj〉 〈ψj | . (17)

Γ represents the Gamma function, αj is a positive real
number referred to as the “concentration parameter” and
K ≥ 2 is often referred to as the “number of categories” of
our Dirichlet distribution. In the case of MA-distributed
states defined in [39], one can assume that the weights
xj correspond to a symmetric Dirichlet distribution, such
that αj = α. Lohani et al. have shown in [39, 40] that
one may tune the statistics in purity of an ensemble of
MA-distributed states by their choice of α and K. The
single- and two-qubit MA-distributed states used in this
section have weights assigned according to a symmetric
Dirichlet distribution such that αj = α = 0.1 and K = 4.

Pure and mixed biseparable states ρ
(1,2,3)
bs are sam-

pled by taking the tensor products of single- and two-

Biseparable

Separable

Biseparable

Separable

Haar-Distributed States

MA-Distributed States

Pure States

Mixed States

(a) (b)

Single-Qubit States

Two-Qubit States

Tensor Product

FIG. 9. The schemes used to generate random fully separa-
ble and biseparable states for training the model presented in
Section II. Pure and mixed states are shown in (a) and (b)
respectively. We ensure that our training data covers multi-
ple classes of biseparable states by applying random SWAP
operations between qubits.

FIG. 10. A histogram of concurrence for bipartite MA-
distributed states for which αK = α = 0.1 and K = 4. The
data set consists of 5000 sample states.

qubit Haar and MA-distributed states. Much like their
fully-separable counterparts, biseparable pure states can
be found by taking the tensor product of single- and
two-qubit Haar-distributed states. Mixed biseparable
states are obtained by taking the tensor product of
either: a single-qubit Haar-random state with a two-
qubit MA-distributed state, or single- and two-qubit
MA-distributed states. The schema for sampling fully-
separable and biseparable states is summarized in Fig.
9.

We find that it is less common to obtain mixed bisep-
arable states from the scheme in Fig. 9 depending on
the average purity of the sampled MA-distributed states;
mixed states derived from this scheme are most likely
to be fully separable. When setting αk = α = 0.1 and
K = 4, we find a correspondence between the average
purity of random bipartite MA-distributed states, and
their respective concurrence. Histograms of the concur-
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FIG. 11. A histogram of purity for bipartite MA-distributed
states for which αK = α = 0.1 and K = 4. The data set
consists of 5000 sample states.

FIG. 12. A scatter plot that depicts the relationship between
the purity and 〈W 〉 of our 8-term W state witness derived
in Section II. 60 000 sample states are obtained by taking
the tensor product of single- and two-qubit Haar- and MA-
distributed states according to the scheme introduced in Fig.
9. All MA-distributed states (single and two-qubit states) are
tuned such that αK = α = 0.1 and K = 4.

rence and purity of bipartite MA-distributed states are
depicted in Fig. 10 and 11 respectively.

After having trained an SVM for a W state witness us-
ing the aforementioned (bi)separable state training data
along with the entangled states described in Section II,
we find a direct correspondence between the purity of a
state and its distance to the boundary defined by our
classifier. This result is shown in Fig. 12. The fact that
highly pure states are both furthest and closest to the
boundary defined by our classifier is an indicator that
our method of sampling likely spans the surface of the
biseparable states. Much like pure states, those with
high fidelity to the ideal W state will be close to this
boundary, as shown in Fig. 13.

The trend that separable states are “encapsulated” by
those that are biseparable in Fig. 10 and 11 resembles
the structure presented by Aćın and colleagues in [42],
an early formulation of the geometric properties of the

FIG. 13. A scatter plot that depicts the relationship between
the fidelity, as defined in [41], to the ideal W state and 〈W 〉
of our 8-term witness derived in Section II. We use a total of
60 000 separable and biseparable states obtained according
to the scheme in Fig. 9. All MA-distributed states (single
and two-qubit states) are tuned such that αK = α = 0.1 and
K = 4.

three-qubit states. Two questions naturally arise from
this study: (1) “Are mixed (bi)separable states neces-
sary in training an SVM for the detection of three-qubit
entanglement?” and (2) “Is fully-separable state training
data necessary for deriving a three-qubit witness?”.

The first of these two questions can be verified by com-
paring the derived witnesses that result from using mixed
and pure states sampled according to Fig. 9, in which a
total set of 2.5×106 combined separable and biseparable
and 2×106 entangled state data points are sampled. For
the case of W states, we find that the resulting coeffi-
cients remain the same as Fig. 3: which involved only
pure separable and biseparable states during training. In-
deed, this result is unsurprising considering that the pure
biseparable states correspond to our support vectors, and
have the most significant effect on the classifier’s deriva-
tion.

The second question can be answered by discarding all
training data from the previous case, with exception to
the entangled and pure biseparable state training data.
Upon retraining the SVM, we obtain the witness shown
in Fig. 14. The largest discrepancy in the derived coeffi-
cients also corresponds to the smallest term, Y ⊗ Y ⊗ I,
whose impact on the witness’s classification is negligible.
And thus, the noise tolerance remains unchanged from
the value of p = 0.42 reported in Fig. 3. The fact that
one can derive a W state witness with only pure bisep-
arable state data indicates the importance of informing
one’s choice of training data from physical arguments.
Future work shall build on this result further by demon-
strating how the required training data scales when de-
riving witnesses of entanglement in larger multiparticle
systems.
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FIG. 14. The 8-term W state witness derived with 2 × 106

entangled and 500× 105 pure biseparable state data points.
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