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Detecting a weak physical signal immersed in overwhelming noises entails separating the two, a
task for which machine learning is naturally suited. In principle, such a signal is generated by a
nonlinear dynamical system of intrinsically high dimension for which a mathematical model is not
available, rendering unsuitable traditional linear or nonlinear state-estimation methods that require
an accurate system model (e.g., extended Kalman filters). We exploit the architectures of reservoir
computing and feed-forward neural networks (FNNs) with time-delayed inputs to solve the weak
signal detection problem. As a prototypical example, we apply the machine-learning schemes to earth
magnetic anomaly field-based navigation. In particular, the time series are collected from the interior
of the cockpit of a flying aircraft during different maneuvering phases, where the overwhelmingly
strong noise background is the result of other components of the earth magnetic field and the fields
generated by the electronic devices in the cockpit. We demonstrate that, when combined with
the traditional Tolles-Lawson model for the earth magnetic field, the articulated machine-learning
schemes are effective for accurately detecting the weak anomaly field from the noisy time series.
The schemes can be applied to detecting weak signals in other domains of science and engineering.

I. INTRODUCTION

Detecting a weak physical signal from strong noises is a
challenging problem in many applications. Take, for ex-
ample, modern navigation based on the Global Position-
ing System (GPS). The GPS signals, due to their weak
intensity and the need to travel through vast distances,
are vulnerable to external interference such as jamming
and spoofing [1]. Because of the fragility of GPS, there
has been some recent interest in developing navigational
systems as alternatives to the GPS. A promising idea is
to exploit earth’s magnetic fields as a means to detect the
instantaneous locations of a moving object, e.g., an air-
craft [2, 3]. The underlying physical principle is that the
intensity of the magnetic field exuding from the earth’s
surface depends on the location as characterized by the
magnetic anomaly maps. Magnetic sensors or magne-
tometers attached to different parts of an aircraft could
then be used to detect the strength of the magnetic field,
thereby providing the locations of the airplane in refer-
ence to the magnetic anomaly maps. A great difficulty
is that the earth anomaly field is weak and the magnetic
signals collected by the magnetometers are noisy. Com-
pounding this difficulty is the various types of electronic
equipment and devices embedded in the cockpit, which
generate all kinds of electromagnetic noises that can not
only interfere with, but also overwhelm the desired mag-
netic signal. For the idea of magnetic navigation to be
feasible, to develop effective schemes to mitigate/remove
strong noise so as to extract the weak magnetic anomaly
signal is essential. We note that, for magnetic signals
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collected from the interior of the cockpit of an airplane,
jamming is usually not of concern because there is no
need to send the signals through a large distance.

The need to develop effective methods to remove
“noisy magnetic fields” to detect the real magnetic
anomaly signal can be further justified, as follows. The
Tolles-Lawson (TL) model [4–6] provides a means to iso-
late the aircraft magnetic field so that it can be removed
from the total magnetic field, ideally yielding only the
earth magnetic anomaly field that can be exploited for
navigation. This process is based on examining the per-
manent, induced, and eddy current aircraft magnetic
fields and using band-pass filtered measurements from
an additional magnetometer to remove these fields. How-
ever, this model works only when the magnetic field from
the aircraft is weak enough relative to that from the earth
at the sensor. One way to weaken the disturbing mag-
netic fields is to place the magnetometer onto the tail
stinger of the aircraft, but this may not be practical. Al-
ternatively, the magnetometer can be placed inside the
cockpit. The difficulty is then that the magnetometer
is now close to multiple magnetic interference sources
within the aircraft. A challenge is to detect the real mag-
netic anomaly signal from the noisy signals.

In this paper, we develop a general machine-learning
framework to address the problem of detecting extraordi-
narily weak electromagnetic signals from an overwhelm-
ingly strong noisy environment. The basic principle un-
derlying our work is that noise mitigation to detect the
magnetic anomaly signal can be viewed as a nonlinear
signal filtering problem that can be solved by employing
modern machine learning. The two distinct features of
the earth’s magnetic anomaly signal are its weak strength
and vulnerability to strong interference such as in-band
and overwhelming noises. A suitably trained neural ma-
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chine with features of the desired signal would view the
disturbances, e.g., cockpit noises, as undesired and re-
move them. The real data used in our work were from the
Open Call for developing machine-learning approaches to
signal enhancement for magnetic navigation (MagNav)
Challenge organized in 2020 by the Air Force-MIT Arti-
ficial Intelligence Accelerator, where the objective was to
use magnetometer readings recorded from within a cock-
pit and to remove the aircraft magnetic noise to yield a
clean magnetic anomaly signal [7].

How to select a suitable machine-learning architecture
to detect weak signals from strong noises? In this paper,
we study two machine-learning schemes: reservoir com-
puting and time-delayed feed-forward neural networks
(FNNs), for the following reasons. Consider again the
magnetic navigation problem. The magnetic field signal
detected by a flying aircraft can effectively be regarded
as a time series from a continuous-time nonlinear dy-
namical system. To detect such a signal from a noisy
background based on machine learning, the neural net-
works should possess certain memory capacity. The tra-
ditional multilayer perceptrons (MLPs) [8] do not have
memories, but recurrent neural networks do. Moreover,
because of the nature of the nonlinear signal prediction
and classification, reservoir computing [9–11], a class of
recurrent neural networks, may be suited. Further justi-
fication comes from the fact that there have been sig-
nificant recent efforts establishing reservoir computing
as a powerful paradigm for chaotic time series and sig-
nal prediction [12–32]. For example, reservoir comput-
ing has been demonstrated to be effective at distinguish-
ing and separating characteristically different chaotic sig-
nals [15, 31, 33]. As an alternative to reservoir comput-
ing, FNNs with time-delayed inputs, the so-called “next-
generation reservoir computing” [29, 30, 34] is also a vi-
able solution, which has a memory capacity and low com-
putational cost. Combining each of the machine-learning
methods with the standard Tolles-Lawson model, we
show that the magnetic anomaly signal hidden in strong
noises can be detected with high accuracy. Our success
represents a necessary step forward in the development
of magnetic-anomaly based navigation.

In Sec. II, we provide a brief overview of the physics
background of magnetic-anomaly based navigation and
existing signal-processing methods. The Tolles-Lawson
(TL) model for magnetic calibration, reservoir comput-
ing and time-delayed FNN based machine-learning ar-
chitectures, as well as a data description are presented
in Sec. III. Testing results with the MagNav Challenge
data are demonstrated in Sec. IV and the detection per-
formance of reservoir computing and time-delayed FNNs
are compared. A discussion and potential future studies
are presented in Sec. V.

II. PHYSICS OF MAGNETIC-ANOMALY
NAVIGATION AND CURRENT

SIGNAL-PROCESSING METHODOLOGIES

FIG. 1. Earth’s magnetic field simulated in a period of normal
polarity between reversals. Shown are the magnetic field lines,
blue when the field points towards the center and yellow when
pointing away [35] (from NASA image data sets in the public
domain that are not subject to copyright restriction.)

The total magnetic field of the earth, as schematically
illustrated in Fig. 1, is a linear superposition of several
fields, each with a distinct physical origin. The dominant
source is the core field. The north direction to which a
compass points is almost entirely due to the core field
whose magnitude ranges from 20 mT to 60 mT. The
anomaly field with the magnitude of about 100 nT is
the second source of the geomagnetic field, which is due
to the permanent or induced magnetization of the rocks
in the earth’s crust. The strength of the anomaly field
depends on the location, providing the possibility of ex-
ploiting this field for positioning and navigation. When
collected from, e.g., an airplane, the anomaly field is ef-
fectively a time series signal. Whereas both the core
and anomaly fields are generated inside the earth, the
third source is the temporal variations generated exter-
nally due to the field contributions from the ionosphere,
the magnetosphere, and the coupling currents between
the two. Usually, the magnitude of this third field is ten
times smaller than the anomaly field [36].

The magnetic anomaly field is a robust, accessible and
reliable source of information that can be used for po-
sitioning. The fact that GPS signals are not accessible
everywhere and are vulnerable to jamming [37] highlights
the importance of developing magnetic field-based nav-
igation. This is usually referred to as GNSS (Global
Navigation Satellite System) denied environments, exam-
ples of which include indoor environments (e.g., under-
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ground bunkers) and underwater (e.g., submarines) [38–
40]. Magnetic field aided navigation is passive and, be-
cause the strength of a magnetic field decreases with the
inverse cubic power of the distance, it is practically im-
possible to jam a magnetic field-based navigation device
from a distance by using another magnetic field [41]. In
some applications, magnetic field measurements gathered
from an array of magnetometers are incorporated into
Inertial Navigation Systems (INS) to correct the drift-
ing error, resulting in more reliable and robust naviga-
tion [38, 42–44]. Magnetic aided navigation can serve
as a reliable backup plan in situations where GPS is de-
nied [45]. The present positioning errors of magnetic nav-
igation achieved based on actual flight test data are about
10 meters, which are larger than the GPS errors. The ac-
curacy demonstrated in [45] was achieved by leveraging
only passive sensors, providing support for the idea that
the earth’s magnetic field may be a viable approach for
future GPS backup and alternative positioning systems
for aircraft in flight. A significant challenge is that the
magnetic anomaly field is weak [46]. As a result, navi-
gation based on the anomaly signal is extremely vulner-
able to external magnetic fields, e.g., those from the de-
vices operating inside the aircraft. A well-defined signal-
processing algorithm that detects the magnetic anomaly
signals by removing the disturbance signals is needed for
realizing magnetic navigation.

Our development of a machine-learning based method
to detect a weak physical signal from overwhelming noises
is based on the following considerations. The process of
employing a stochastic process, e.g., the measurement
process, to estimate another stochastic process, e.g., the
signal process, has been a fundamental problem in signal
processing. Typically, a filter is a device that removes un-
wanted components from a signal. A neural filter is a neu-
ral network trained with simulated data or experimental
data to perform recursive processing. Since neural filter-
ing is a data driven approach, no assumptions such as
those about the specific dynamics, distribution or noise
type are required. A properly trained neural network
carries the most “informative” statistics in its dynami-
cal state and approximates the optimal filtering perfor-
mance to any accuracy [47]. Recursive neural-network
based filtering is a measurement process to estimate a
signal process and used in applications where the range
of the measurement expands in time or is too large for
recurrent neural networks to handle for the required fil-
tering resolution [48]. While recursive neural networks
are effectively hierarchical networks, recurrent neural fil-
ters or recurrent auto-encoder architectures that learn
distinct representations for each Bayesian filtering step,
captured by a series of encoders and decoders [49], are
mainly used for sequential inputs where time is the main
factor differentiating the components. In general, neural
filters, which can be viewed as the extension of classical
linear adaptive filters to deal with nonlinear modeling
tasks [50], perform better than linear methods in dealing
with stationary or non-stationary noise. In addition, neu-

ral filters are more computationally efficient and perform
better [48, 51] compared to extended Kalman filters [52–
56]. In fact, reservoir computing can also be used as a
filter [57, 58].

III. DATA AND METHODS

A. Tolles-Lawson (TL) model for magnetic
calibration

A challenge with magnetic navigation is that one can
only measure the total magnetic field, which has several
different components with magnitude much larger than
the anomaly field needed for positioning. In particular,

the total measured field ~Bm can be written as [58]

~Bm = ~Be + ~Baircraft

= ~Bcore + ~Banomaly + ~Btv + ~Baircraft, (1)

where ~Be is the earth magnetic field that consists of

three components: the core field ~Bcore, the anomaly

field ~Banomaly, and temporally varying fields ~Btv, while
~Baircraft represents the total field generated from the air-
craft itself. The goal is to filter out all the other com-
ponents and keep only the anomaly field. In this regard,
it is relatively straightforward to remove the earth field

components ~Bcore and ~Btv. In particular, the core field
~Bcore can be calculated with the International Geomag-
netic Reference Field (IGRF) coefficients, and the tem-

poral variation field ~Btv, which is mostly from the diurnal
variations and space weather, can largely be removed us-
ing ground-based reference measurements [59]. It is thus

the platform field ~Baircraft from the aircraft that becomes
the focus of the problem. The goal of our work is to elim-

inate ~Baircraft from measured data using a combination
of signal processing and machine learning.

The data sets used in our study (from the signal
enhancement for magnetic navigation challenge prob-
lem [60]) consist of the time series of the measured mag-
netic field from five flights, each containing several seg-
ments (or lines) with 65 features measured in real time
during each flight. There are in total five magnetometers
placed on the aircraft, with one of them placed at the at-
tached tail stinger, as shown in Fig. 2(a). After calibrated
by the Tolles-Lawson model (described below), the read-
ing of the magnetometer at the tail stinger is considered

to be the real value of the earth field ~Be, which serves
as the training target in our supervised learning prob-
lem. The target signal is denoted as BSGL. There are
four other magnetometers placed at different positions in
the cabin, as shown in Fig. 2(a), and 61 other various
features recorded at the same time by some current and
voltage sensors and readings from the INS system. (More
details of these data can be found in Ref. [60].) Two ex-
amples of the magnectic-field map in the flight region are
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FIG. 2. Data collection scheme and representative time series
of the measured magnetic field. (a) Positions of the magne-
tometers on the aircraft. One magnetometer (Mag 1) is placed
at the tail stinger to reduce noises from the plane. After cali-
bration using the TL model, the signal from Mag 1 is regarded
as the real earth field ~Be and is used as the training target.
Measurements from the other four magnetometers, together
with various other signals, are used as inputs of the filter-
ing problem. (b,c) Examples of the maps of the magnetic
fields around the data-gathering flights. The units are nT.
Subtracting this field by the core field calculated from IGRF
yields the anomaly field. (d) Magnetic signals measured by
different magnetometers in the plane.

shown in Figs. 2(b) and 2(c), and examples of the mag-
netic signals measured by different magnetometers in the
plane are shown in Fig. 2(d). For the three additional

field components in Eq. (1) other than ~Banomaly, the two

earth field components ~Bcore and ~Btv are already given in
the data sets. The goal is thus to use the readings of these
four magnetometers, together with other data features,

to estimate the real earth field ~Be through minimizing
some proper root mean square errors (ERMS).

The TL model [58, 61, 62] is a classic method for mag-
netic calibration. It models the magnetic field generated
by the body of the aircraft as three magnetic moments:
the permanent, the induced, and the eddy current mo-

ments. The permanent magnetic moment represents the
nearly constant magnetic moment of the entire aircraft.
The induced magnetic moment is the magnetic response
of the magnetically susceptible materials in the aircraft
to the earth magnetic field. The eddy current moment is
caused by the temporal variations of the earth magnetic
field due to the motion of the aircraft. The TL correction
terms can be expressed as

BTL = Bperm +Bind +Beddy

= ~BT
m

 x1
x2
x3

 + | ~Bm| ~BT
m

 x4 x5 x6
x5 x7 x8
x6 x8 x9

 ~Bm

+ | ~Bm| ~BT
m

 x10 x11 x12
x13 x14 x15
x16 x17 x18

 ~̇Bm, (2)

where x1 to x18 are 18 constant coefficients that can be
calculated [60] after a calibration flight [58, 61, 62]. The

earth field ~Be calculated by the TL model can then be
corrected by subtracting these terms from the total mea-

sured field ~Bm:

| ~Be, TL| = | ~Bm| −BTL. (3)

The TL model works well only when the flying aircraft is
in a “magnetically quiet” mode and all the magnetome-
ter measurements are performed on a tail stinger outside
the cabin. During a normal flight mode without an ad-
ditional tail stinger hanging outside of the plane, the TL
model is not effective for magnetic calibration. In our
work, we use the TL model only as a first-step processing
to obtain the ground truth and exploit machine learning
methods to perform further corrections.

B. Machine learning methods

1. Reservoir computing

The basic structure of a reservoir computer is shown in
Fig. 3. The matrix Win maps the input signal u(t) into a
high-dimensional state vector r(t) of the neural network
in the hidden layer. The state r(t) is updated according
to the input u(t) and the state r(t−∆t) at the previous
time step, leading to the recurrent structure. The output
matrix Wout maps r(t) into the output layer to generate
the output signal v(t). In our problem of detecting the
magnetic anomaly signal, v(t) gives the (normalized) es-

timation of the anomaly field ~Banomaly.
For reservoir computing, the intrinsic recurrent struc-

ture provides a basis to deal with the temporal depen-
dency in the input time series. When the size of the
hidden-layer network is adequately large and with opti-
mal hyperparameter values determined by the input data
through, e.g., Bayesian optimization, it has the ability to
remove the noise from the multiple input features and
yield a clean target anomaly field. The intrinsic memory
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FIG. 3. Reservoir computing structure. A reservoir computer
is composed of three layers: the input, the hidden layer, and
the output. The input, state vector of the hidden-layer neural
network, and the output are u(t), r(t) and v(t), respectively.
The matrices Win, A and Wout represent the input weights,
the network structure, and the output weights. The weights
in Win and A are fixed prior to training. The output matrix
Wout is determined by training through a linear regression.
The filtered signal is v(t).

capacity embedded in the recurrent dynamics of the hid-
den layer guarantees that the machine output is a signal
with the correct time history. Because a trained reservoir
computer is a self-evolving nonlinear dynamical system,
transient behaviors can arise, during which the predic-
tion of the actual field can be quite inaccurate. It is thus
necessary to remove the transients. More details about
reservoir computing can be found in Appendix A 1, and
the issue of transients is addressed in Appendix B.

2. Feed-forward neural networks with time-delayed inputs

We use artificial neural networks to process the selected
features associated with the magnetic measurements to
estimate the anomaly field. As described in Sec. I, we
exploit a class of feed-forward neural networks with time-
delayed inputs [29, 30] as the machine-learning architec-
ture for detecting the magnetic anomaly field, as shown
in Fig. 4. Different from recurrent neural networks, the
nodes in an FNN do not form cycles so it can not form
memory using its own internal states. To embed the
memory information, we use the present and historical
data u(t−τ), . . . , u(t−mτ) as the inputs to the network,
where u(t) includes the magnetic field signals, fluxgate,
and noises recorded by different sensors.

The reasons that we choose FNNs with time-delayed
inputs are as follows. Because the noises contain both
high-frequency and low-frequency components, it is diffi-
cult to use conventional filtering methods to remove these
noises. Time-delayed inputs are introduced to address
this critical issue, where the estimation of the anomaly
field for a time step t is determined not only by the mea-
sured signals at that time step but also by the data from
the recent past. We choose FNNs with time-delayed in-

�(�)

�(� − �)

�(� − ��)

Input layer Hidden layer Output layer

�(�)

FIG. 4. The architecture of the proposed feed-forward neural
network with time delayed inputs for detecting the anomaly
earth magnetic field for navigation. The architecture includes
three main components: the input layer, two hidden layers,
and the output layer, where u(t), u(t− τ), . . . , u(t−mτ) are
the real-time and historical signal with τ being the time delay
and m being the embedding dimension. The filtered signal is
v(t).

puts, where the the intrinsic temporal dependencies in
the input magnetic-field data are accounted for by im-
posing time delays.

An FNN usually includes several hidden layers, each
with dozens of nodes. An activation function is used to
map the state from one hidden layer to the next in a
nonlinear fashion.

We use the following hyperbolic tangent sigmoid
(tansig(xtan)) as the activation function that compresses
the output into the range [−1, 1]:

tansig(xtan) =
2

1 + e−2xtan
− 1, (4)

for all layers. The learning technique we choose for
the FNN is scaled conjugate gradient backpropagation
(SCG) [63]. (Details of FNN and this algorithm and FNN
can be found in Appendix A 2.)

C. Data description

For all trials and features of the entire dataset, we use
z-score normalization [64] to preprocess the time series so
that they have zero mean and unit standard deviation.
In particular, if the data xz in each line has mean x̄z
and standard deviation Sz, the z−score normalization is
given by z = (xz − x̄z)/Sz. When training the machine
learning models, we randomize the training length to ac-
commodate realistic situations where the collected data
sets can have varying lengths. Specifically, the training,
validation and testing length are chosen to be 60%, 20%
and 20% of the total length of the data line. For vali-
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dation and testing, we use ERMS to measure the perfor-
mance:

ERMS(y, ŷ) =

√√√√ 1

T

T∑
t=1

[y(t)− ŷ(t)]
2
, (5)

where y(t) and ŷ(t) are the real and predicted signals,
respectively. The ERMSs are also averaged over different
training length.

The sampling rate of the data, the average number
of samples obtained in one second, is fs = 10Hz, so
the time interval between two adjacent data points is
dt = 0.1s. The flight data lines do not have the same
length, where the average length is 921s with the stan-
dard deviation 1, 395s. The average training, validation
and testing lengths are 553s, 184s and 184s, respectively.
More details about the data can be found in Appendix C.

IV. RESULTS

We train the machine-learning models on a computer
with one RTX 4000 NVIDIA GPU, using MATLAB. For
one flight line, the average training, validation and test-
ing lengths are 5530, 1840, and 1840 data points, re-
spectively. Since we have 45 lines of flight data, the to-
tal training, validation, and testing lengths are 248850,
82800, and 82800, respectively.

For this challenging task of nonlinear filtering of weak
signals to be successful, it is essential that some historical
information from the measurements is incorporated into
the neural network architecture. For reservoir comput-
ing, once the optimal hyperparameter values have been
determined through Bayesian optimization, it is compu-
tationally efficient provided that the size of the recurrent
network in the hidden layer is reasonable (e.g., fewer than
1000 nodes). The time-delayed FNNs, by design, are
computationally efficient. As mentioned, both machine-
learning architectures intrinsically possess a memory ca-
pacity: through recurrent dynamics in reservoir comput-
ing and time-delayed inputs in FNN. Here we present
results from reservoir computing, followed by those from
time-delayed FNNs.

A. Filtering by reservoir computing

We reconstruct a reservoir computer by using a ran-
dom network of size n = 500 in the hidden layer (a
brief description of the reservoir computing architecture
can be found in Appendix A 1). The hyperparame-
ter values obtained through Bayesian optimization are:
ρ = 0.29, b = 0.75, α = 0.47, β = 10−2.2, p = 0.78, and
bias = 0.32. The dimension of the input signal u(t) is
3 + 15 = 18, where three components are the measure-
ments from Mag3, Mag4 and Mag5 [Fig. 2(a)], and the
other 15 components are time series of various features

with relative importance ranking calculated by a greedy
algorithm, as displayed in Table I. The output dimen-
sion is one, corresponding to the anomaly field signal to
be detected.

(b)(a)

(c) (d)

(e)

FIG. 5. Reservoir-computing based detection of anomaly
magnetic field. (a,b) The real and predicted signals for lines
1004.4015 and 1006.07. (c,d) The errors between the real and
predicted signals. Note that on this scale, the errors are not
noticeable visually. (e) The ERMS distribution.

We train and test 45 lines of flight data. Results

TABLE I. Importance ranking of the features selected by a
greedy algorithm

Features Units Description
flux c t nT Flux C: fluxgate total

cur ac lo A Current sensor: air conditioner fan low
ins alt m INS computed elevation
flux c z nT Flux C: fluxgate z axis
flux a t nT Flux A: fluxgate total

vol back p V Voltage sensor: resolver board(+)
vol back n V Voltage sensor: resolver board(-)

ins lat rad INS computed latitude
cur com 1 A Current sensor: aircraft radio 1
flux c y nT Flux C: fluxgate y axis

vol acpwr V Voltage sensor: aircraft power
ins wander rad INS computed wander angle

cur flap A Current sensor: flap motor
vol bat 2 A Current sensor: battery 2
ins roll deg INS computed aircraft roll
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(a) (b) (c)

(e) (f)(d)

FIG. 6. Reservoir computing detected anomaly field signal for three additional lines of flight data. (a-c) The predicted signals
together with the ground truth for the three lines (1003.02, 1003.08, and 1007.02). (d-f) The corresponding errors.

from two representative lines: line numbers 1004.4015
and 1006.07, are shown in Fig. 5. These two lines of
data were from the Perth survey flown at 800 m within
Eastern Ontario and the transit/descent from 3048 m to
400 m [7]. The reservoir computer predicted magnetic
anomaly signals are shown in Figs. 5(a) and 5(b), to-
gether with the ground truth. The differences between
the predicted and true signals are not apparent, and the
overall ERMS is about 6.0 nT. However, if we calculate
the ERMS without the transient, the overall ERMS will be
much lower and about 4.1 nT. An intrinsic difficulty with
reservoir computing is that the initial nodal states of the
trained machine are necessarily set to be zero and it takes
a transient time for the output to approach the true sig-
nal. Figure 5(e) shows the distribution of the ERMS from
all 45 lines of fly data. If we neglect the large transient er-
rors, the error values are small enough for the predicted
field anomaly signals to be useful for navigation. Re-
sults from three additional flight data lines are shown in
Fig. 6, where the line numbers are 1003.02, 1003.08, and
1007.02 that specify the magnetic-field measurements [7]
of free-fly at 400m in Eastern Ontario, free-fly at 400 m
on Renfrew, and free-fly at 800 m within the Perth mini-
survey area, respectively. The three panels in the top
row of Fig. 6 show the FNN predicted magnetic anomaly
signals together with the ground truth, while the three
panels in the bottom row show the corresponding errors.
The ensemble averaged ERMSs for the three data sets are
3.6 nT, 7.2 nT, and 4.4 nT, respectively.

The accuracy of the existing magnetic anomaly maps is
an important factor underlying the positioning accuracy.

In some traditional anomaly maps, the accuracy is about
10 nT. With the aid of GPS, modern magnetic anomaly
maps can have the accuracy of 1-3 nT [2]. The mean
magnetic signal error below 6.5 nT typically corresponds
to an error of less than 45 m in navigation positioning for
each line [58]. While the relationship between the signal
and the positioning error is generally nonlinear, we set
the ERMS threshold to 10 nT. ERMS values greater than
10 nT are regarded as large errors.

The overall detection errors from reservoir computing
are relatively small, even when transients are present at
the beginning of the prediction. The advantages of reser-
voir computing include fast training and testing, intrinsic
recurrence, and high prediction accuracy. The most time-
consuming part of reservoir computing is Bayesian opti-
mization, which is dependent upon the model complexity
and the hidden-layer network size. The hyperparameter
values from the Bayesian optimization ensures that the
reservoir computer can “learn” the dynamics of this sys-
tem and then output the target signal. The effects of
the network size on the prediction performance are dis-
cussed in Sec. IV C. At the start of the prediction, the
states of all nodes in the hidden-layer network are set to
zero, leading to transients that can result in large detec-
tion errors. A brief analysis of the errors obtained from
the two cases (with or without transient) is presented in
Appendix B.
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B. Results from time-delayed FNNs

Time delayed FNNs have the following advantages: the
required small size of the underlying neural networks,
incorporation of the historical information in the mea-
surements directly into the training process, absence of
transients, low computational cost, and high prediction
accuracy. Typically, the machine learning architecture
requires only a few hidden layers, each with a relatively
small number of nodes. For the three magnetic signals
and 15 feature signals (Table I, to be justified below) as
the input data, we find that using two or three hidden
layers suffices. To be concrete, we choose two settings:
(1) two hidden layers, one with 30 and another with 10
nodes; (2) three hidden layers, with 50, 30, and 10 nodes
in the first, second, and third layers, respectively. The
three basic input signals from Mag3, Mag4, Mag5 (Fig. 2)
are preprocessed by the Tolles-Lawson model.

(a)

(b)

FIG. 7. Selecting the number of features and embedding di-
mension. (a) Ensemble averaged ERMS (with 50 independent
realizations) versus the number of features. The ERMS de-
creases rapidly as the number increases from one but tends
to increase only slightly as the number of more than about
20. (b) Ensemble averaged ERMS versus the embedding time
m. The ERMS decreases with m but tends to a constant for
m > 5. The ERMSs are calculated for the training set and
validation set, separately.

(a) (b)

(c) (d)

(e)

FIG. 8. FNN filtered anomaly field signal. (a,b) Comparing
the real and predicted signals for lines 1004.4015, 1006.07.
(c,d) The difference (error) between the predicted and true
signals. (e) Distribution of the average ERMS from 45 lines
of flight data. On the whole, the prediction accuracies are
adequate for magnetic anomaly guided navigation

As described in Sec. III, the three magnetic signals
constitute the basic input signals. In addition, a large
number of feature measurements are available. Utilizing
all the additional features as inputs in general does not
lead to the desired performances due to high computa-
tional cost associated with training. How to choose the
proper features? We use the greedy algorithm for this
task, which can provide a local best choice of the fea-
tures [65] for complex optimization problems. (It should
be noted that the algorithm has been widely used in op-
timizing the neural-network performance to reduce the
ERMS [66–68].) Specifically, for each iteration of the al-
gorithm, we perform a testing loop by adding each feature
to the input layer to measure the corresponding decrease
in the resulting ERMS, then remove this feature and test
another candidate feature. After looping over all the
remaining candidate features, we select several features
that have the top performance on reducing the average
ERMS calculated from 50 independent runs. Once a fea-
ture has been selected, it will be an input signal in the
following iterations. Figure 7(a) shows the continuous
reduction in the ensemble averaged ERMS as more fea-
tures are included as the inputs. It can be seen that as
the number of features increases from one to 15, the av-
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(a) (b) (c)

(d) (e) (f)

FIG. 9. Time delayed FNN filtered anomaly field signal for three additional lines of flight data. (a-c) The FNN predicted
signals together with the ground truth the three lines (1003.02, 1003.08, and 1007.02). (d-f) The corresponding errors.

erage ERMS decreases rapidly but tends to increase only
slightly as more features are included. We thus choose
15 best features generated by a greedy algorithm as the
additional input signals, as listed in Table I, which in-
clude the measurements from fluxgate, INS and current
or voltage sensors. In all cases, there is no indication of
any overfitting.

It is worth mentioning that the greedy algorithm usu-
ally does not produce optimal solutions. In fact, it might
miss important features - each alone would not reduce
the ERMS but their combination would. We have used
the greedy algorithm because the feature selection in our
task is an NP-hard problem and the algorithm provides
a viable solution. Indeed, if the global optimum is not
reachable, a reasonable alternative is to use the greedy
algorithm to find a local optimum to best select the most
relevant features.

Two important parameters underlying our time-
delayed FNNs are the amount of time delay τ associated
with the input signals and the embedding dimension m.
In traditional nonlinear or chaotic time series analysis
based on the classic Takens’ delay-coordinate embedding
theory for reconstructing the phase space of the underly-
ing nonlinear system [69–74], the delay time can be cho-
sen empirically as the average oscillation period of the
underlying time series (corresponding to unit value in a
discrete-time map) [73, 75–77]. We apply the same crite-
rion here to choose the proper value of τ . To determine
the embedding dimension m is more complicated, where
the standard Grassberger-Procaccia correlation integral
algorithm [75] is often used for the task of reconstructing
a chaotic attractor. Our task here to determine a proper
configuration of the input signals is different from at-

tractor reconstruction, so the Grassberger-Procaccia al-
gorithm is not directly applicable. We resort to empirical
testing. In particular, we select an adequate number of
feature signals and calculate the ensemble averaged ERMS

versus the embedding dimension m. As m increases, we
expect the average ERMS to decrease and possibly ap-
proach a constant (relatively small) value when m ex-
ceeds a critical value. Figure 7(b) shows such a behavior
when ten additional features are used (the total number
of input signals being 13). It can be seen that for m > 5,
the average training ERMS levels off. We thus set m = 5.
It is worth noting that the choice of the m value depends
on the sampling rate of the data set. If the sampling rate
is high in comparison with the intrinsic frequency of the
data, choosing a small m value for reducing the computa-
tions may be beneficial. In our study, the sampling rate
taken is not much higher than the intrinsic frequency of
the magnetic-field data, so reducing the sampling rate
may lead to large errors. For example, if we reduce the
sampling rate two times, the testing error will increase
approximately by over 20%. If the sampling rate is de-
creased three times, at some time steps the testing error
would diverge.

We train and test 45 lines of available flight data follow-
ing the same division scheme as reservoir computing. Be-
cause of the choice of 15 features and m = 5, the dimen-
sion of the input to the FNN is d = (15+3)×6 = 108. For
consistency, we show the filtered results on the same lines
as Sec. IV A shows. Figures 8(a) and 8(b) show, for the
two hidden-layer ([30,10]) configuration, the FNN pre-
dicted signals for the data lines 1004.4015 and 1006.07.
The corresponding errors are shown Figs. 8(c) and 8(d),
which are comparable with those from reservoir comput-
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ing [Fig. 5]. We have also tested an FNN configuration
with three hidden layers ([50,30,10]) and obtained sim-
ilar results. Figure 8(e) shows the distributions of the
ERMS from all 45 lines of the flight data, obtained with
the two and three hidden-layer FNN configurations. The
ERMSs are in general quite small. Particularly, for the
two hidden-layer neural network configuration, the en-
semble averaged ERMS and the standard deviation are
4.5 nT and 2.7 nT, respectively. For the three hidden-
layer configuration, the corresponding values are 4.5 nT
and 2.4 nT. Results from three additional flight data lines
are shown in Fig. 9, where the line numbers are 1003.02,
1003.08, and 1007.02 that specify the magnetic-field mea-
surements [7] of free-fly at 400m in Eastern Ontario, free-
fly at 400 m on Renfrew, and free-fly at 800 m within the
Perth mini-survey area, respectively. The three panels
in the top row of Fig. 9 show the FNN predicted mag-
netic anomaly signals together with the ground truth,
while the three panels in the bottom row show the corre-
sponding errors. The ensemble averaged ERMSs for the
three data sets are 4.8 nT, 5.7 nT, and 4.3 nT, respec-
tively. The small error values from time-delayed FNNs
for all cases suggest the feasibility of achieving magnetic
anomaly navigation aided by INS.

C. Performance comparison between reservoir
computing and time-delayed FNN

The structures of the two machine-learning methods
are characteristically different, in the following aspects.
First, reservoir computing has a recurrent structure that
is intrinsically capable of preserving the memory in the
data. The conventional FNN architecture does not have
this “memory-preserving” property, but our time-delayed
FNNs have. Second, a reservoir computer has a single
hidden layer, rendering necessary using a relatively large
network size (500 nodes in our work). An FNN typi-
cally contains multiple hidden layers, each with a rel-
atively small size. Figure 10 shows the effects of the
network structure for the two machine-learning architec-
tures. In particular, Fig. 10(a) shows, for reservoir com-
puting, both the training and validation errors decrease
continuously as the hidden-layer network becomes larger.
Figure 10(b) demonstrates that four configurations of the
time-delayed FNN have comparable errors with the two-
layer structure (30, 10) performing slightly better than
the others. Since the training time tends to increase sig-
nificantly with the number of hidden layers, we choose the
two-layer structure (30, 10). In all cases studied, there is
no apparent sign of overfitting [78].

The parameter optimization algorithms for the two
machine-learning methods are also different. As ex-
plained in Appendix A 1, after updating the network
state, linear regression is performed. As a result, the
training time depends only on the training data length.
For FNNs, as described in Appendix A 2, the parame-
ters are optimized through a gradient-descent based al-

(a)

(b)

FIG. 10. Effects of altering the neural-network structure on
the detection performance. (a) ERMS for filtering anomaly
field signal versus the network size n for reservoir comput-
ing. (b) ERMS for four different configurations of time-delayed
FNN. Each data point is the result of ensemble averaging 50
independent realizations.

gorithm, so the training time depends on the training
data length and epoch. We set a small epoch number
for feature and embedding time selection (See Fig. 7)
for reducing computation time, and a longer epoch num-
ber for testing results. Furthermore, a unique feature
of reservoir computing, because of its being a closed-
loop, self-evolving dynamical system in the test phase,
is the occurrence of transients that can lead to inaccura-
cies, especially at the beginning of the filtering process.
Our results indicate that, despite the different properties
and structures of the two machine-learning schemes, both
have the ability to output the correct anomaly filed sig-
nal from several measurement signals immersed in over-
whelming noises.

Finally, we discuss the issue of computational cost for
the two machine-learning architectures. For the time-
delayed FNN, the average computer time required for
training with the optimal hyperparameters is 650s, and
the one-step inference computation time is 0.003s. For
reservoir computing, a substantial amount of the com-
putation time is required for finding the optimal hyper-
parameter values: about four hours. However, one can
use pre-recorded data for this task. Once the optimal
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hyperparameter values have been found, they are fixed.
The mean training time is 23s and the one-step inference
computation time is 4×10−5s. For navigation to be prac-
tically feasible, the time interval of prediction should be,
e.g., less than 1s for an airplane and 5ms for a hyper-
sonic vehicle. Our estimates of the computational time
indicate that both neural-network architectures can meet
this requirement.

V. DISCUSSION

The focus of our study is the detection of physical
signals, e.g., those generated in natural systems, whose
measurements come with strong noises. The signals of
interest are thus weak in comparison with the various
noises that occur inevitably during the measurements.
The physical signals themselves are generated by some
nonlinear dynamical systems whose effective intrinsic di-
mension can be extremely high. Detecting such weak
signals from an overwhelmingly strong noise background
constitutes one of the most challenging problems in non-
linear signal processing. The achievement of the present
work is the articulation and demonstration of a machine-
learning framework to address this challenging problem.

The application investigated in this paper is precise po-
sitioning and navigation of flying objects guided by the
earth’s magnetic-anomaly field. The hypothetical sce-
nario is that GPS is not available so navigation must
rely on some alternative signals, and the anomaly field
provides the most natural physical signal. Measurements
of the anomaly field typically occur in the cockpit of an
aircraft. There are two types of noise sources. The first
is associated with the physical environment of the earth:
the measured earth magnetic field contains other com-
ponents such as the fields generated by the core of the
earth, its atmospheric environment, and possibly mag-
netic sources in the solar system. The second is the
magnetic interference from the sophisticated electronic
equipment within the airplane cockpit, which can be or-
ders of magnitude stronger than the earth anomaly field.
To obtain the anomaly field for navigation, these noises
must be filtered out from the measurements.

Because of the physical and dynamical nature of the
weak signals to be detected, a machine-learning frame-
work must necessarily possess a memory capacity. Re-
current neural networks such as reservoir computing have
intrinsic memories (Appendix A 1) with the advantage of
fast training and prediction. With Bayesian optimization
for hyperparameters, a reservoir computer can generate
accurate predictions, especially when transients are re-
moved. Time-delayed FNNs can also be effective for weak
signal detection, with the advantage that neural networks
of small sizes can be used.

The real-world application studied in this paper is
based on noisy flight data collected within the aircraft
cockpit and the ground truth, i.e., the actual magnetic
anomaly field was recorded by the tail stinger located

outside the aircraft. The data sets thus provide an ideal
platform to test our machine learning framework. From
the noisy cockpit data, we first use the Tolles-Lawson
model to obtain a number of preprocessed magnetic sig-
nals: these from Mag3, Mag4 and Mag5, as shown in
Fig. 2(a). We then use our reservoir computing and
time-delayed FNNs to calibrate the signals and predict
the magnetic anomaly field. More specifically, to achieve
accuracies as high as possible, we input the three pre-
processed signals together with 15 additional feature sig-
nals selected by a greedy algorithm, which include the
magnetic field signals, fluxgate, and noise recorded by
different sensors inside the aircraft. We justify the ra-
tionals behind the selection of the additional feature sig-
nals through assessing the change in the ensemble aver-
aged ERMS as the available feature signals are included in
the input signal to the neural network one after another.
Our results indicate that the machine learning methods
with the combination of the input signals so selected can
lead to accurate and stable predictions of the magnetic
anomaly field. With the aid of INS, the anomaly field can
be used for precise positioning so as to navigate the air-
craft. For example, extended Kalman filters [79] can be
exploited to develop the navigation algorithm, where the
aircraft can estimate its location according to the data
recorded by the sensors inside the aircraft, the prede-
termined magnetic maps, and INS. The mean magnetic
signal errors in our work are around 4 nT, where an er-
ror below 6.5 nT corresponds to the positioning error of
less than 45 m. Empirically, the position error is ap-
proximately about 10 − 40 m when the magnetic signal
error is around 4 nT. The anomaly field detected by our
methods can thus be used for actual aircraft navigation
positioning.

We remark on the necessity of combining the Tolles-
Lawson model with machine learning. While the Tolles-
Lawson model still represents a state-of-the-art approach
to calibrating the earth anomaly magnetic field, its sole
use will result in a large distance root-mean-square error.
A basic reason is that the Tolles-Lawson model is a linear
model, while the underlying dynamical process generat-
ing the time-varying data of the anomaly field is nonlin-
ear. To reduce the error, it is then necessary to combine
the Tolles-Lawson model with some additional nonlinear
signal processing method. Exploiting machine learning
represents a viable approach. Nonetheless, the currently
available machine-learning architectures for complex sig-
nal filtering is not powerful enough in the sense that, if it
is used alone without the Tolles-Lawson correction, the
resulting errors will be large. In our work, the Tolles-
Lawson model is used for data preprocessing, aiding the
machine learning methods to better filter the magnetic
signal. This strategy aligns well with the recent trend
of developing “physics-informed neural networks,” where
specific physical principles are incorporated into machine
learning to improve performance, robustness and effi-
ciency. (For example, in mechanics, the Hamiltonian
structure can be built into the neural-network architec-
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ture for it to better learn the dynamics [80–84]. Physics-
based neural networks have also been developed in ar-
eas such as fluid dynamics [85], optical meta surface de-
sign [86] and quantum tomography [87].)

A number of issues remain. First, while the achieved
average ERMSs are small and may be deemed as quali-
fied for actual navigation, there are random fluctuations
associated with the predicted magnetic anomaly field.
It is desired that these fluctuations be significantly re-
duced to achieve higher prediction accuracy, which re-
quires their physical and dynamical origin to be known.
Second, both machine-learning schemes have shortages.
Reservoir computing has transient and, for time-delayed
FNNs, it is necessary to determine the key hyperparam-
eter - the embedding dimension of the time-delayed sig-
nals. We have used some empirical observation to de-
termine the embedding dimension, but a more justified
criterion based on mathematical and physical considera-
tions is desired. Third, the sizes of the FNN neural net-
works in the hidden layers used in our study are relatively
small, which are determined also empirically through nu-
merical tests. A mathematical understanding of how the
network sizes affect the prediction performance is essen-
tial to extending the machine learning methods to detect-
ing weak signals arising from other domains of research.
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Appendix A: Machine learning methods

1. Reservoir computing

A reservoir computer consists of three layers: an in-
put layer, a hidden recurrent layer, and an output layer.
The major advantage of reservoir computing is that the
input weights and hidden layer weights are preselected
and only the weights of the output layer Wout need to be
determined by training through a linear regression asso-
ciated with the updating of the dynamical state of the
hidden-layer neural network.

The iterative equation of the dynamical process in the
hidden layer is described by

r(t) = (1− α)r(t−∆t)

+ α tanh(Ar(t−∆t) +Winu(t)), (A1)

v(t) = Woutr(t), (A2)

where α is the leakage parameter. During the training,
the input data are injected as u(t) to activate the dy-
namical state r(t) of the hidden layer neural network.
All states r(t) stimulated this way are concatenated in
terms of the temporal dimension to form a matrix R of
dimension n× Ttrain, where Ttrain is the training length.

Similarly, the time series of the training target BSLG is
also concatenated to form a matrix V . A ridge regres-
sion is finally performed between R′ = f(R) and the V
to yield the output matrix:

Wout = V ·R′T (R′ ·R′T + βI)−1, (A3)

where β is the coefficient of the l-2 regularization.
For reservoir computing, hyperparameter optimization

is essential to achieving the desired performance. We use
a Bayesian Optimization algorithm from Matlab (surro-
gateopt) to find the optimal values of the following hyper-
parameters: the leakage α, the regularization coefficient
β, the scaling factor b of the input matrix Win, the spec-
tral radius ρ of the recurrent network A, and the nodal
connection probability p of the network A.

2. Feed-forward neural networks (FNNs)

FNNs are artificial neural networks that do not possess
any loops in the directed connections among the neu-
rons [88]. Different from the recurrent neural networks
(RNNs) that have a feedback structure, in an FNN there
is only one direction of information flow, i.e., the neurons
can only process the signal forward through the connec-
tions from the inputs to the outputs. We use FNNs with
a classic layered architecture that has an input layer,
a number of hidden layers, and an output layer. Each
layer contains a number of neurons, and there are only
inter-layer connections from the neurons in a former layer
closer to the inputs to a latter layer closer to the out-
puts, which are directed and weighted. A sufficiently
large FNN is able to perform as a universal approximator,
which can capture the hidden complex relationship be-
tween the input and output data, accomplished through
a training process that adjusts the weights to map the
inputs to the outputs.

We use an improved version of FNNs: time-delayed
FNNs, as in Fig. 4, which is essentially the architecture of
“next-generation reservoir computing” [29, 30, 34], where
the present and historical information of the time series
data is inputted into the neural network through time-
delayed embedding. In particular, we define the following
weight vector of all the connections and neurons:

w = (· · · , wl
i,j , w

l
i+1,j , · · · , wl

Nl,j
, θl+1

j , wl
i,j+1, · · · )T ,

(A4)

where wl
ij is the weight between neuron i in layer l to

neuron j in the next layer l + 1, Nl is the number of
neurons in layer l, and θl+1

j is the bias of neuron j in
layer l. In the training phase, a global error function
E(w) is minimized, which depends on the weight vector
in Eq. (A4), where E(w) can be a least-squares func-
tion or other reasonable error functions. While a variety
of error function optimization strategies with different
features are available, they share the same optimization
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principle: searching for the neighbors around the cur-
rent point in the weight space and minimizing the error
function to gradually reach the global minimum. More
specifically, to minimize the error function E(wk) at the
kth step, we seek the search direction pk and step size σk
such that E(wk + σkpk) < E(wk) and then update wk+1

to wk + σkpk. In general, the search direction and step
size are important because they represent the direction
of search in weight space from the present point and the
distance to proceed in that direction, respectively. The
iterating process stops when the gradient of the error
function E′(wk) becomes approximately zero.

When the search direction pk and the step size σk
are set as the negative gradient and as a constant, re-
spectively, the algorithm is essentially a classical back-
propagation (BP), gradient-descent based algorithm.
However, a constant step size tends to make the algo-
rithm non-adaptive and inefficient and the most negative
of the gradient can lead to poor convergence. Let y be
the change added to the weight vector, then the linear ap-
proximation E(w + y) ≈ E(w) + E′(w)y constitutes the
base of minimization in BP. In fact, the BP algorithm re-
lies heavily on parameters such as the learning rate and
the momentum constant [63, 89], which can lead to diffi-
culties large-scale problems. In this work, we choose the
search direction and the step size by using the informa-
tion from the second-order approximation

E(w + y) ≈ E(w) + E′(w)T y + yTE′′(w)y/2.

Further, a conjugate gradient (CG) algorithm [63] can
yield faster convergence while keeping the error mini-
mized so it can handle complex problems in a more ef-
fective way. In CG, the search direction goes along the
conjugate direction and the step size is adjusted at each
iteration, which is a variant of the gradient descent with
an additional term from the last search step, defined as

pk+1 = −gk+1 + βkpk, (A5)

where gk+1 is again the gradient vector gk+1 =
−E′(wk+1), pk is the conjugate direction from the last
search step, and

βk = (|gk+1|2 − gTk+1gk)/pTk gk

is the weight of the previous direction pk. The step size
is scaled by a second-order term: sk = E′′(wk)pk. More
details of the algorithm can be found in [63].

In our work, we use scaled conjugate gradient (SCG)
as the optimization algorithm. Similar to CG, SCG
also uses the conjugate direction calculated by Eq. (A5).
Compared with CG, the main advantage of SCG is that
it uses another more efficient method to estimate the step
size at each step. In particular, the second-order infor-
mation term sk = E′′(wk)pk can be replaced by:

sk ≈
E′(wk + σkpk)− E′(wk)

σk
+ λkpk (A6)

where λk is a scalar to regulate the indefiniteness of
E′′(wk) [90]. Overall, through adjusting the search di-
rection and step size in a reasonable and efficient way,
SCG is efficient and adaptive, and it does not depend on
any individual dependent parameters.
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FIG. 11. An extended Kalman filter. It contains two steps:
prediction and correction. See text for legends.

3. Extended Kalman filters

The two machine-learning architectures studied in this
paper, i.e., reservoir computing and time-delayed FNNs,
are generally suited for time series prediction and clas-
sification applications. In contrast, Kalman filtering is
for state estimation of the system from noisy and uncer-
tain measurements. In particular, the classical Kalman
filtering algorithm is suitable for time invariant linear dy-
namical systems while extended Kalman filtering is ap-
plicable to nonlinear dynamical systems. In both cases,
the Kalman filter predicts the state of the system at the
next time step from a mathematical model of the system
that is known a priori, and then refines the forecast us-
ing the current measurement of the state variables. If the
known system model is accurate, a high accuracy in the
estimated state by the Kalman filter can be achieved.

What does it entail if one intends to apply extended
Kalman filtering to our problem of anomaly magnetic
field detection? In classical Kalman filtering, the ini-
tial state estimation and the initial covariance matrix
are required as initial conditions. Also needed are the
predicted noise covariance and the measurement noise
covariance matrix representing the inaccuracies during
the state-estimation process. The dynamical system un-
derlying the anomaly magnetic field is nonlinear, requir-
ing extended Kalman filtering whose general structure is
shown in Fig. 11, where f is the nonlinear state transition
model, h represents the nonlinear measurement function,
and their respective Jacobian matrices are Φ and H. Be-
cause the magnetic field is passive, there is no system
input u. The Tolles-Lawson model provides the mea-
surement yk at each time step. For the extended Kalman
filtering to be applicable to our problem, the nonlinear
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models f and h to map the state forward in time are
needed, but these are unknown. For Kalman filtering,
precise knowledge of the mathematical model governing
the dynamical evolution of the system of interest is an
essential requirement.

The reliance of Kalman filtering on the accurate math-
ematical model of the underlying dynamical system
presents a fundamental difficulty in applications where
such a model is not available. Our problem of estimat-
ing the earth anomaly magnetic field from noisy mea-
surements belongs to this category because the underly-
ing dynamical model governing the magnetic field is not
available. Another difficulty with applying Kalman fil-
tering to our problem lies in the nature of the noises.
In Kalman filtering, classic or extended, the noises in
the system are assumed to be Gaussian, whose distribu-
tions are symmetric with a constant variance. However,
in our anomaly magnetic field detection problem, there
are a variety of noise sources whose distributions devi-
ate from Gaussian, which include the other components
of the earth magnetic field and the field generated by
the extensive electronics in the cockpit of the airplane.
The deficiencies of Kalman filtering for nonlinear state
estimation have long been recognized [91].

(a)

(b)

FIG. 12. Effects of transients on reservoir-computing perfor-
mance. (a) Small ERMS with the transients removed. (b)
Relatively large ERMS without removing the transient.

Appendix B: Effects of transients and low-pass
filtering

In Sec. IV, the issue of transients in reservoir comput-
ing is mentioned. How do transients affect the detection

(a)

(b)

FIG. 13. Effect of low-pass filtering for data preprocessing
on detection performance. Shown is ERMS versus the Gaus-
sian filter window size. (a) Training and validation ERMS for
reservoir computing, which tends to increase with the win-
dow size. (b) Training and validation ERMS for time-delayed
FNNs. Varying the window size has little effect on the errors.
In both panels, each point is the result of ensemble average
of 50 independent realizations.

performance? Figures 12(a) and 12(b) show the global
ERMS distributions for the two cases where the transient
is removed and retained, respectively. The results sug-
gest the benefits of removing the transients in reducing
the error.

In addition, we study if low-pass filtering the raw data
can help improve the machine-learning performance in
detecting the anomaly magnetic field. In particular, we
employ a half Gaussian-window filter of window size Lw

to filter out the high-frequency fluctuations in the origi-
nal data, which operates on the historical half of the data
within the window. The results are shown in Fig. 13. For
both reservoir computing and time-delayed FNN, apply-
ing the low-pass filtering does not lead to any perfor-
mance improvement. In fact, as the window width Lw

increases, the errors tend to increase. A plausible expla-
nation is that the machine-learning architecture intrin-
sically has some filtering capability. More importantly,
the high-frequency fluctuations in the data that low-pass
filtering aims to remove may constitute historical infor-
mation (memory) and are often beneficial to training a
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TABLE II. Line number summary for flight 1003

Line number Description Training length (s) Validation/Test length (s)
1003.02 Eastern Ontario Free-Fly 400m 2246.5 748.8
1003.03 Climb to 800m 61.3 20.4
1003.04 Eastern Ontario Free-Fly 800m 2877.7 959.2
1003.05 Transit at 800m 246.7 82.2
1003.06 Descend to 400m 83.5 27.8
1003.07 Transit to Renfrew Free-Fly 58.9 19.6
1003.08 Renfrew Free-Fly 400m 2581.9 860.6
1003.09 Climb to 800m 82.3 27.4

TABLE III. Line number summary for flight 1004

Line number Description Training length (s) Validation/Test length (s)
4019.00 Perth Survey Line 318.7 106.2
4018.00 Perth Survey Line 328.7 109.6
4017.00 Perth Survey Line 327.1 109.0
4016.00 Perth Survey Line 331.5 110.5
421.00 Perth Survey Line 77.6 25.9
419.00 Perth Survey Line 90.2 30.1
417.00 Perth Survey Line 82.7 27.6
415.00 Perth Survey Line 97.4 32.5
413.00 Perth Survey Line 77.2 25.7
411.00 Perth Survey Line 89.4 29.8
409.00 Perth Survey Line 74.2 24.7
408.00 Perth Survey Line 91.0 30.3
407.00 Perth Survey Line 74.4 24.8
405.00 Perth Survey Line 102.7 34.2
403.00 Perth Survey Line 76.9 25.6
401.00 Perth Survey Line 92.6 30.9
4015.00 Perth Survey Line 339.7 113.2
4012.00 Perth Survey Line 334.3 111.4
4001.00 Perth Survey Line 339.3 113.1

neural network, so removing them from the original data
may deteriorate the machine-learning performance.

Appendix C: Data description

We describe in more detail the 45 lines of flight data
used in this study. Five flights were flown to collect
data, named 1003, 1004, 1005, 1006, 1007. Each individ-
ual flight contains several flight segments, e.g., 1003.02,
1003.03, etc. The details of the flights and their related
description are presented in Tabs. II, III, IV, V, and VI.
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