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We have theoretically clarified the mechanism of strain tuning effect on the control of mechanical 12 

nonlinearity in doubly clamped MESM beam resonators, and experimentally demonstrated that the 13 

nonlinearity can be effectively suppressed with a preloaded lattice-mismatch strain in the MEMS 14 

beam. The mechanical nonlinearity arises from the hardening and softening nonlinearity terms in the 15 

Duffing motion equation of the MEMS beam. By approaching the buckling condition of the MEMS 16 

beam, the substantially increased softening nonlinearity greatly compensates for the hardening 17 

nonlinearity, resulting in the suppression of the total nonlinearity. Utilizing this knowledge, we 18 

fabricated InxGa1-xAs MEMS beams with a preloaded lattice-mismatch strain, which was achieved 19 

by adding a small amount (x =~0.4%) of indium to the GaAs MEMS beam in the wafer growth. The 20 

buckling condition in the experiment was achieved by carefully modulating the length of InxGa1-xAs 21 

MEMS beams. As a result, the mechanical nonlinearity is largely modulated from hardening to 22 

softening and reaches a quasi-zero value near the buckling condition, demonstrating the effectiveness 23 

of using lattice mismatch for controlling the mechanical nonlinearity of MEMS resonators.  24 
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Introduction 29 

Microelectromechanical system (MEMS) resonators [1-3] are promising candidates for high-30 

sensitivity sensing applications. MEMS resonators can detect small shifts in the resonance frequency 31 

owing to the high quality (Q)-factors. This property has been utilized for the detection of mass [4-6], 32 

spin orientation [7], charge [8-10] , temperature [11,12] , and infrared radiation [13,14]. Previously, 33 

we reported using a doubly clamped MEMS beam resonator as a fast and sensitive bolometer for 34 

terahertz (THz) detection [15,16]. The MEMS beam is heated up owing to the absorption of THz 35 

electromagnetic waves, and the induced thermal strain shifts the resonance frequency of the MEMS 36 

resonator. In sensing applications with MEMS resonators, a large linear oscillation amplitude is 37 

generally preferable to reduce the frequency noise and improve the signal-to-noise ratio [17], which 38 

can be achieved by increasing the driving force. However, with increasing oscillation amplitude, the 39 

MEMS resonators commonly enter the nonlinear oscillation region because of the mechanical 40 

nonlinearity, where hysteretic oscillations and increased frequency noise have been observed [18,19]. 41 

The control of mechanical nonlinearity is therefore desirable for achieving the low-noise operation 42 

of MEMS resonators. 43 

 44 

Recently, we reported on controlling the mechanical nonlinearity of MEMS beam resonators 45 

through a thermal strain tuning effect [20]. We observed a significant reduction in the mechanical 46 

nonlinearity near the buckling point of the MEMS beam. However, the origin of such thermal strain 47 

tuning on the mechanical nonlinearity has not yet been theoretically clarified. Moreover, controlling 48 

the nonlinearity by the thermal effect requires additional heating to the MEMS beam, which increases 49 

the noise and frequency drift coming from the thermal effect. The thermal strain is not the only 50 

method to buckle the MEMS beam. It has been reported that the buckling condition of the MEMS 51 

beam can be precisely controlled by preloading a lattice-mismatch strain [21], which can be achieved 52 

in the wafer growth stage without the requirement of additional heating. Therefore, the use of a lattice 53 

mismatch would be a promising approach to control the mechanical nonlinearity of the MEMS beam 54 
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resonators. 55 

 56 

In this work, we clarify the mechanism of strain tuning effect on the control of mechanical 57 

nonlinearity in doubly clamped MESM beam resonators, and then demonstrate that the nonlinearity 58 

can be effectively suppressed with a preloaded lattice-mismatch strain in the MEMS beam. The 59 

nonlinearity of the MEMS beam arises from the cubic (hardening) and quadratic (softening) 60 

nonlinearity terms in the Duffing motion equation. With strain tuning, the nonlinearity can be well 61 

suppressed when approaching the buckling condition of the MEMS beam. This is because the steep 62 

increase in the softening nonlinearity near the buckling condition greatly compensates for the 63 

hardening nonlinearity, resulting in the suppression of the total nonlinearity. Utilizing this knowledge, 64 

we fabricated InxGa1-xAs MEMS beams with a preloaded lattice-mismatch strain, which was achieved 65 

by adding a small amount (x =~0.4%) of indium to the GaAs MEMS beam in the wafer growth. The 66 

buckling condition in the experiment was achieved by carefully modulating the length of InxGa1-xAs 67 

MEMS beams. We estimated the total nonlinearity in the MEMS beam by measuring its resonance 68 

frequency shift as a function of oscillation amplitude. As a result, the nonlinearity is largely modulated 69 

from hardening to softening as L increases and reaches a quasi-zero value near the buckling condition, 70 

demonstrating the effectiveness of using lattice mismatch for controlling the mechanical nonlinearity 71 

of MEMS resonators. Furthermore, we have introduced the effective nonlinearity, Y(α,β), to reproduce 72 

the total nonlinearity in the MEMS beam, which intuitively show the effect of hardening and 73 

softening nonlinearities on the total nonlinearity, allowing one can understand the origin of the 74 

nonlinearity change. 75 

 76 

Equation of Motion 77 

The Duffing equation with quadratic and cubic nonlinearities is commonly utilized for studying 78 

the nonlinear resonance behavior of MEMS resonators [22-26]. For an initially straight doubly 79 

clamped MEMS beam resonator with length L, the motion equation of its transverse vibrations is 80 
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approximately described by the Euler–Bernoulli equation as [23] 81 

 82 

 𝜌𝑆
𝜕2𝑋

𝜕𝑡2 = −𝐸𝐼
𝜕4𝑋

𝜕𝑢4 + 𝑇
𝜕2𝑋

𝜕𝑢2 (1) 83 

 84 

with the following boundary conditions: 85 

 86 

 𝑋|𝑢=0,𝐿 = 0 and 
𝜕𝑋

𝜕𝑢
|

𝑢=0,𝐿
= 0, (2) 87 

where X(u,t) is the transverse displacement from the equilibrium; u is the coordinate along the length 88 

of the beam; t is the time scale; ρ is the density; E is the Young’s modulus; L is the beam length; S 89 

and I denote the cross-section area and the moment of inertia (S=bh and I=bh3/12 for beams of 90 

rectangular cross-sections, with b and h being the width and thickness of the MEMS beam, 91 

respectively); T is the tension in the MEMS beam, which is composed of its inherent tension T0 92 

(positive for a tensile force and negative for a compressive force) and the additional tension ΔT 93 

coming from the extension of the beam length (ΔL) in the vibration. 94 

 95 

Here, we only consider the first bending mode of the MEMS beam, where the mechanical 96 

nonlinearity is affected by the internal strain the most. We assume that the transverse displacement of 97 

the MEMS beam can be expressed as the product of the mode profile function 𝜙(𝑢) and the central 98 

displacement of the beam x(t) as 99 

 𝑋(𝑢, 𝑡) = 𝜙(𝑢)𝑥(𝑡) (3) 100 

 101 

Then, we can obtain a duffing equation of motion for the MEMS beam as [23] 102 

 𝑥̈ + [
𝐸𝐼

𝜌𝑆

∫(𝜙𝑢𝑢)2𝑑𝑢

∫ 𝜙2𝑑𝑢
+

𝑇0

𝜌𝑆

∫(𝜙𝑢)2𝑑𝑢

𝜙2 ∫ 𝑑𝑢
] 𝑥 + [

𝐸

2𝜌𝐿

(∫(𝜙𝑢)2𝑑𝑢)
2

∫ 𝜙2𝑑𝑢
] 𝑥3 = 0,  (4) 103 

 104 

where 𝜙𝑢 =
𝜕𝜙

𝜕𝑢
 , and 𝜙𝑢𝑢 =

𝜕2𝜙

𝜕𝑢2 . As seen in Eq. (4), the cubic nonlinearity coefficient  𝛼 =105 

𝐸

2𝜌𝐿

(∫(𝜙𝑢)2𝑑𝑢)
2

∫ 𝜙2𝑑𝑢
> 0, which gives a hardening nonlinearity [22,27]. 106 
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 107 

Next, we consider a MEMS beam with an initial center deflection x0. When a compressive strain 108 

ε is introduced in the beam, the center deflection increases to xT, as schematically shown in Fig. 1 (a). 109 

The steady-state equation under this condition is expressed as 110 

 111 

 𝐸𝐼(𝑥T − 𝑥0) ∫(𝜙𝑢𝑢)2𝑑𝑢 + 𝑇0𝑥T ∫(𝜙𝑢)2𝑑𝑢 = 0,  (5) 112 

 113 

from which we can derive xT as a function of the initial center deflection x0 and the inherent tension 114 

T0: 115 

 116 

 𝑥T =
𝐸𝐼 ∫(𝜙𝑢𝑢)2𝑑𝑢

𝐸𝐼 ∫(𝜙𝑢𝑢)2𝑑𝑢+𝑇0 ∫(𝜙𝑢)2𝑑𝑢
𝑥0.  (6) 117 

 118 

Here, the inherent tension T0=ESεr is different from the induced compressive load T=ESε, since part 119 

of the compressive strain, ε, is released by the center deflection increase. The residual strain εr is 120 

expressed as 121 

 122 

 𝜀r = 𝜀 −
(𝑥T

2−𝑥0
2)

2𝐿
∫(𝜙𝑢)2𝑑𝑢.  (7) 123 

 124 

The beam length extends when it differs from its equilibrium position in the oscillation with an 125 

additional displacement x as 126 

 127 

 𝛥𝐿 =
(𝑥+𝑥T)2−𝑥T

2

2
∫ 𝑑𝑢 (

𝜕𝜙

𝜕𝑢
)

2𝐿

0
=

𝑥2+2𝑥T𝑥

2
∫ 𝑑𝑢 (

𝜕𝜙

𝜕𝑢
)

2𝐿

0
,  (8) 128 

ΔL gives an additional tension ΔT=ESΔL/L to the MEMS beam. With the total tension T=T0+ΔT, 129 

the motion equation of the MEMS beam becomes 130 

 131 

𝑥̈ + [
𝐸𝐼

𝜌𝑆

∫(𝜙𝑢𝑢)2𝑑𝑢

∫ 𝜙2𝑑𝑢
+

𝑇0

𝜌𝑆

∫(𝜙𝑢)2𝑑𝑢

∫ 𝜙2𝑑𝑢
+ 𝑥T

2 𝐸

𝜌𝐿

(∫(𝜙𝑢)2𝑑𝑢)
2

∫ 𝜙2𝑑𝑢
] 𝑥 + [

𝐸

2𝜌𝐿

(∫(𝜙𝑢)2𝑑𝑢)
2

∫ 𝜙2𝑑𝑢
] 𝑥3 +132 
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[
3𝑥T𝐸

2𝜌𝐿

(∫(𝜙𝑢)2𝑑𝑢)
2

∫ 𝜙2𝑑𝑢
] 𝑥2 = 0.   (9) 133 

 134 

Compared with Eq. (4), by considering an initial center deflection, an additional quadratic 135 

nonlinear term 𝛽 =
3𝑥T𝐸

2𝜌𝐿

(∫(𝜙𝑢)2𝑑𝑢)
2

∫ 𝜙2𝑑𝑢
= 3𝑥T𝛼 arises. As we have discussed in a previous publication 136 

[20], the quadratic nonlinear term always gives a softening nonlinearity to the MEMS resonator, 137 

which compensates for the cubic hardening nonlinearity and leads to the suppression of the total 138 

nonlinearity. Furthermore, the quadratic term is proportional to the center deflection xT, indicating 139 

that the nonlinearity can be suppressed by precisely controlling xT. 140 

 141 

From Eq. (9), we can see that both the resonance frequency and nonlinearity terms are affected 142 

by the mode shape 𝜙(𝑢). For the first bending mode of a curved MEMS beam, 𝜙(𝑢) is usually 143 

approximated by [28] 144 

 145 

 𝜙(𝑢) =
1

2
(1 − cos

2𝜋

𝐿
𝑢).  (10) 146 

 147 

By substituting Eq. (10) to Eq. (9), we can express the resonance frequency 𝜔0
2 and nonlinearity 148 

terms as 149 

𝜔0
2 =

𝐸𝐼

𝜌𝑆

16𝜋4

3𝐿4 +
𝑇0

𝜌𝑆

4𝜋2

3𝐿2 + 𝑥T
2 𝐸

𝜌

2𝜋4

3𝐿4 , 150 

 151 

 𝛼 =
𝐸𝜋4

3𝜌𝐿4
, (11) 152 

 153 

𝛽 =
𝐸𝜋4

𝜌𝐿4 𝑥T = 3𝑥T𝛼. 154 

 155 

By using Eq. (10), Eqs. (6),  (7) can also be simplified as 156 

 𝑥T =
1

1−
𝜀𝑟

𝜀𝑐𝑟

𝑥0 (12) 157 
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and 158 

 𝜀𝑟 = 𝜀 − (𝑥T
2 − 𝑥0

2)
𝜋2

4𝐿2 (13) 159 

 160 

 161 

Numerical analysis results 162 

Numerical analysis is performed for the MEMS beam resonators with dimensions of 100 163 

μm(L)×30 μm(b)×1 μm(h) and with E=85.9 GPa, ρ=5307 kg/m3 applied for the Young’s modulus 164 

and density of GaAs material. The left y-axis of Fig. 1(b) plots the normalized center deflection, xT/h, 165 

as a function of the compressive strain, ε/εcr, calculated for various initial center deflections, x0/h. 166 

Here, 𝜀cr =
𝜋2

3

ℎ2

𝐿2 is Euler’s buckling critical strain of the MEMS beam. As seen, in the case of x0=0, 167 

the center deflection, xT, remains zero before buckling (ε/εcr<1), and starts to increase with the 168 

compressive strain following 𝑥T =
2𝐿(ε−εcr)

𝜋
 after buckling (ε/εcr ≥1). However, in the case of x0>0, 169 

xT is given by the initial deflection, x0, as well as the compressive strain, ε, as derived from Eqs. (6) 170 

and (7). Under this condition, xT increases with ε even when ε<εcr. This can be understood by the 171 

fact that the beam with an initial center deflection tends to bend more when a compressive strain is 172 

applied. The residual strain εr in the MEMS beam is plotted as a function of ε/εcr in Fig. 1(c) with 173 

various xT/h. When x0=0, εr increases with ε in a one-to-one ratio until ε=εcr, and then εr remains at 174 

εcr instead of continuing to increase with ε. On the other hand, when x0>0, εr increases with ε but 175 

never reaches εcr. This is because the increased center deflection from x0 to xT releases part of the 176 

compressive strain, thus, εr is always smaller than ε and εcr when x0>0. 177 

 178 

Furthermore, the increased center deflection changes the resonance frequency of the MEMS 179 

resonator. Fig. 1(d) shows the normalized resonance frequency, ƒ/ƒ0, as a function of ε/εcr calculated 180 

for various x0/h. When x0/h =0, the frequency drops to zero at ε/εcr=1 and then increases from zero 181 

to higher values because the MEMS beam enters the buckling regime [29]. When x0/h>0, the 182 

frequency levels off instead of dropping to zero, and the steep frequency change also gradually 183 
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disappears as x0 increases, which is not conducive to achieving high sensitivity [15]. Please note that 184 

as x0 increases, the lowest resonance frequency that can be achieved by strain tuning increases, and 185 

the buckling point shifts to a lower strain (ε/εcr <1) as indicated by the marks in Fig. 1 (d). Here, we 186 

define the point where the frequency polarity changes in each curve as the buckling point (buckling 187 

condition), and its corresponding strain is called buckling strain. As shown in Fig. 1(d), the buckling 188 

strains for x0/h =0-0.20 are ε/εcr =1, 0.85, 0.72, 0.65, 0.59 respectively.  189 

From Eq. (11), we know that the cubic nonlinearity coefficient α is not affected by the 190 

compressive strain, but the quadratic nonlinearity coefficient β is proportional to xT. We therefor 191 

plotted the calculated β as a function of ε/εc on the right y-axis of Fig. 1(b). As seen, for the cases 192 

x0>0, β generally increases with increased compressive strain, and the increase in β becomes steeper 193 

when the value of ε/εcr approaches the buckling strain. Since β gives a softening nonlinearity, such a 194 

steep increase in the quadratic (softening) nonlinearity is expected to dramatically compensate for the 195 

cubic (hardening) nonlinearity, resulting in modulating the total nonlinearity significantly. 196 

 197 

To show the strain tuning effect on the suppression of frequency shift, here, we take the case of 198 

the initial center deflection x0/h =0.1 as an example. Regarding other cases of the initial center 199 

deflection, please see the supplementary material. Figure 2 plots the normalized resonance frequency, 200 

ƒ/ƒ0, as a function of the oscillation amplitude, calculated for various ε/εcr in the case of x0/h =0.1. 201 

As seen, when the compressive strain is small, the resonance frequency shifts to a higher frequency 202 

side with increasing oscillation amplitude and the nonlinearity does not change significantly, 203 

indicating that the hardening cubic nonlinearity dominates the total nonlinearity. However, as the 204 

compressive strain approaches the buckling strain (ε/εcr =0.72), the positive frequency shift reduces 205 

significantly owing to the enhanced quadratic softening nonlinearity and the frequency shift reaches 206 

a minimum at ε/εcr =0.66. When the compressive strain exceeds the ε/εcr =0.66, the resonance 207 

frequency shifts to the lower frequency side, indicating that the total nonlinearity has been tuned to 208 

softening under this condition. We therefore conclude that the nonlinearity of the MEMS beam can 209 

be well suppressed by approaching the buckling condition of the MEMS beam.  210 

 211 



 

 

 
9 

In addition, we also found that, although the nonlinearity can be controlled by increasing x0 212 

without applying the compressive strain, a large x0 will reduce the responsivity of the MEMS 213 

resonator (See the supplementary material for more details [30]), which is not preferable for high-214 

sensitivity sensing applications [15]. Thus, in this work, we have tried to suppress x0 to be a very 215 

small value (x0/h = ~0.01), for achieving both a large responsivity and a small nonlinearity by 216 

approaching the buckling condition. 217 

Experimental setup and results 218 

Electrothermal effect [20] and lattice mismatch [21] have been proposed to induce strain in 219 

MEMS beam resonators. Since the electrothermal effect may induce some additional noise during the 220 

heating, we demonstrate the nonlinearity control of MEMS beam resonators using the compressive 221 

strain induced by lattice mismatch in this work. We grew an InxGa1-xAs/AlGaAs heterostructure on a 222 

GaAs substrate, whose structure is schematically shown in Fig. 3(a). Owing to the lattice mismatch 223 

between InAs and GaAs, there is a compressive strain preloaded in the InxGa1-xAs layer, given by [21] 224 

 𝜀𝑙 = (
𝑎InAs

𝑎GaAs
− 1) 𝑥 (14), 225 

where αInAs and αGaAs are the lattice constants of InAs and GaAs, respectively, and x represents the 226 

content of indium in InxGa1-xAs. After growing a 100-nm-thick GaAs buffer layer and a 2-μm-thick 227 

Al0.7Ga0.3As sacrificial layer on a GaAs substrate, the beam layer was formed by depositing a 228 

GaAs/Al0.3Ga0.7As superlattice buffer layer and a 1-μm-thick In0.004Ga0.996As layer. Here, the 229 

superlattice buffer layer is used to ensure a homogenous growth of the beam layer in the wafer growth 230 

by MBE [31]. Then, we formed a 2-dimensional electron gas (2DEG) layer by growing an 80-nm-231 

thick nAl0.3Ga0.7As layer and a 10-nm-thick undoped GaAs capping layer. Fig. 3 (b) shows the 232 

schematic structure of the fabricated doubly clamped MEMS beam. The suspended beam is formed 233 

by selectively etching the sacrificial layer with diluted hydrofluoric acid (HF). The mesa layer and 2 234 

top NiCr gates (12 nm) on both ends of the beam form two piezoelectric capacitors C1 and C2 together 235 

with the 2DEG layer. A microscope image of the MEMS resonators is shown in Fig. 3(c). We drove 236 

the beam into oscillation by applying an ac voltage (VD) to one of the piezoelectric capacitors and 237 
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then measured the beam oscillation by a laser Doppler vibrometer and a lock-in amplifier with a built-238 

in phase locked loop (PLL). In addition, we deposited a 12-nm-thick NiCr layer on the middle part 239 

of the beam as a heater for calibrating the thermal response. All the measurements were performed in 240 

a vacuum (~10−4 Torr) at room temperature. 241 

 242 

Since the nonlinearity is expected to be significantly modulated near the buckling point of the 243 

MEMS beam and the buckling point is close to ε/εcr=1 for a small x0 [see Fig. 1(d)], the lattice-244 

mismatch strain εl must be close to the εcr. However, it is difficult to grow many InxGa1-xAs wafers 245 

with various indium concentrations. Since the εcr is a function of beam length, L, (𝜀cr =
𝜋2

3

ℎ2

𝐿2), in this 246 

work, we realized the buckling condition by varying the length of the MEMS beams to make εcr 247 

approach the fixed εl and thus modulated the nonlinearity. We fabricated In0.004Ga0.996As MEMS beam 248 

resonators with various beam lengths, L=51~111 μm, and measured the resonance frequency with a 249 

driving voltage VD = 20 mV. Fig. 4(a) shows the resonance frequency (lines: theoretical calculation, 250 

dots: experimental results) of the In0.004Ga0.996As beams as a function of L. As seen, the measured 251 

resonance frequency reasonably agrees with that of theoretical calculation at x0/h =0.01, indicating 252 

that the initial center deflection is ~10 nm for the present MEMS beam resonators, which may come 253 

from the plastic deformation during the fabrication process. Furthermore, the frequency polarity 254 

changes at L=103 μm, which is regarded as the buckling point, and a small nonlinearity (i.e., small 255 

resonance frequency shift) is expected to be observed near this point. 256 

 257 

To estimate the mechanical nonlinearity of the MEMS beams and compare it with the theoretical 258 

calculation result, we have driven the MEMS resonator at different amplitudes and measured the 259 

resonance frequencies (f). The MEMS resonator has been driven at a self-sustained oscillation mode 260 

at various driving voltages (VD =10-400 mV) by using a PLL. Fig. 4(b) plots the calculated resonance 261 

frequency shift (Δƒ=f-f0) as a function of oscillation amplitude at various L (97-105 μm). As seen in 262 

Fig. 4(b), for a small oscillation amplitude (~100 nm), with the beam length varying from 97 to 105 263 

μm, Δƒ first reduces and reaches a minimum at L=101 μm, and then shifts to the negative side, 264 

indicating that the nonlinearity has been tuned from hardening to softening. However, at the large 265 
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oscillation amplitude range (>~200nm), the resonance frequencies of L>101μm shift to the higher 266 

frequency again. This result indicates that the nonlinearity at small amplitudes is softening but 267 

hardening at large amplitudes, which can be understood by the fact that the hardening nonlinearity is 268 

cubic, but the softening nonlinearity is quadratic. Since the orders of the two nonlinearities are 269 

different, the total nonlinearity depends on the oscillation amplitude. 270 

 271 

Fig. 4(c) shows the measured resonance frequency shift (Δƒ) of In0.004Ga0.996As samples as a 272 

function of the oscillation amplitude with various L. As seen, the Δƒ changes from positive to negative 273 

as the beam length increases, indicating the nonlinearity is tuned from hardening to softening. For a 274 

small oscillation amplitude range (0-100nm), Δƒ reaches a minimum at L=101 μm, which is 275 

consistent with the theoretical calculation in Fig. 4(b). Moreover, the Δƒ does not change significantly 276 

from L=51 μm to L=97 μm but is rapidly tuned near the buckling point. This is because the increase 277 

in the quadratic nonlinearity coefficient β becomes steeper near the buckling condition. The above 278 

results demonstrate that the MEMS resonator exhibits a small nonlinearity by approaching the 279 

buckling condition of the MEMS beam. 280 

 281 

It has been found that the calculated Δƒ agrees with the experimental data nicely for small and 282 

moderate amplitude ranges (0-200 nm). However, at larger amplitudes (>200nm), there is a notable 283 

discrepancy between calculated Δƒ (Fig. 4(b)) and measurement data (Fig. 4(c)). Such a discrepancy 284 

may be owing to the fluctuation of the beam lengths (L). In the Fig. 4 (c), the beam length L is a 285 

designed value. The actual beam length, however, may be slightly shorter or longer owing to the 286 

random fabrication errors, which gives the different experimental Δƒ with the calculation results. 287 

Furthermore, the theoretical model shown in this research is based on an approximation of the cubic 288 

nonlinearity of the MEMS beam (see Eq. (4) in Ref. [23]). However, the higher-order nonlinearities 289 

(e.g., 5th, 7th…) also exist and may contribute to the discrepancies between experiment and 290 

calculation at very large oscillation amplitudes. Nevertheless, the trend of the nonlinearity change 291 

with beam lengths has been well shown in both numerical and experimental results. 292 

 293 
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At a large oscillation amplitude, the polarity change of Δƒ predicated by the numerical result has 294 

been observed. Fig. 4(d) plots a blow-up of the measured Δƒ-amplitude curve for the MEMS beam 295 

with L=103 μm, together with the numerical Δf- amplitude curve for L=104 μm, where the resonance 296 

frequency first decreases at small amplitudes but levels off and then increases at large amplitudes, as 297 

indicated by the red arrows. As seen, the experimental result for L=103 μm shows a good agreement 298 

with the numerical result for L=104 μm, indicating that the actual beam length of this sample is 299 

probably closer to 104 μm rather than the designed 103 μm. It should be noted that the boundary 300 

condition where the nonlinearity changes the polarity (shown by the red dot in Fig. 4(d)) is given a 301 

zero-dispersion point [32,33], where the resonance frequency is locally independent of the amplitude 302 

(d/dE=0). Thus, at this point, the amplitude fluctuation does not induce additional frequency noise, 303 

which is similar to the linear oscillation regime, but its oscillation amplitude is much larger than the 304 

linear oscillation amplitude without the preloaded lattice-mismatch strain. Therefore, the zero-305 

dispersion point is very promising for low-noise sensing applications. 306 

 307 

To intuitively show the effect of α and β on the total nonlinearity (YT) of MEMS beam, we 308 

estimated the YT by fitting the equation described in Ref. [34], 309 

 𝑓 = 𝑓0(1 + 𝑌𝑇𝐴2) (15) 310 

Where f and f0 are the measured resonance frequency and the natural resonance frequency without 311 

oscillation, respectively, and A is the oscillation amplitude. The fitting was performed at a small 312 

oscillation amplitude range of approximately 0-50 nm, with the data shown in Fig. 4(c). The result is 313 

shown by the dots in Fig. 5(a). As seen, YT keeps a stable value when the beam length is 314 

small(L<~100μm), and quickly drops to a negative value when approaching the buckling condition 315 

(L=103μm). When L exceeds ~108μm, YT rises from the negative value (|YT | decreases).  316 

 317 

To understand the origin of the nonlinearity change, we have calculated the effective nonlinearity, 318 

Y(α,β), by using the cubic (α) and quadratic (β) nonlinearity coefficients and, following the equation 319 

described in Ref. [35],  320 
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 𝑌(𝛼,𝛽) =
3

8

𝛼

𝜔0
2 −

5

12

𝛽2

𝜔0
4 (16) 321 

Where ω0=2πƒ0. In addition, to quantitatively understand how α and β affect the effective nonlinearity, 322 

we also calculated 𝑌(𝛼) =
3

8

𝛼

𝜔0
2 and 𝑌(𝛽) = −

5

12

𝛽2

𝜔0
4. The calculated Y(α,β) , Y(α) and Y(α,β) are shown by 323 

the black, blue and red curves in Fig. 5(a). The α and β used for this calculation are shown as the solid 324 

and dashed curves in Fig. 5(b). As seen in Fig. 5(a), the calculated Y(α,β) reasonably agrees with the 325 

experimental YT. When L is small (L < 100 um), Y(α,β) and Y(α) have the same trace, indicating the 326 

nonlinearity is dominated by the α term under this condition. The MEMS beam thus exhibits 327 

hardening nonlinearity. Furthermore, we can see that Y(α) does not change much with the increasing 328 

L before reaching the buckling condition. This is because, although α decreases with L as shown in 329 

Fig.5 (b), ω0 also decreases with L (see Fig. 4(a)), giving a stable Y(α) and furthermore a stable Y(α,β) 330 

(β is very small in this case). However, Y(α,β) changes its trend to be the same as Y(β) when approaching 331 

the buckling condition, indicating the nonlinearity is dominated by the β term from then. As a result, 332 

Y(α,β) quickly drops to a negative value owing to the large increase in β (see Fig.5 (b)), a quasi-zero 333 

nonlinearity is thereby achieved near the buckling condition. Moreover, there is a reversal of polarity 334 

in Y(α,β) when L exceeds ~105μm, which is because the ω0 starts to increase with the further increase 335 

in L [(see Fig. 4(a)].  336 

Note that there is a small difference in the lengths where YT and Y(α,β) achieve the minimum value. 337 

This is probably because the experimental beam lengths may be slightly different from the designed 338 

values, or the control of indium composition was not perfect (x in InxGa1-xAs) in the wafer growth, 339 

and the buckling condition is very sensitive to the beam length and actual x. However, the main 340 

feature of the experimental nonlinearity (YT) has been well reproduced by the numerical calculated 341 

nonlinearity (Y(α,β)). 342 

 343 

 344 
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Conclusion 345 

In summary, we have clarified the mechanism of strain tuning effect on the mechanical 346 

nonlinearity in doubly clamped GaAs MEMS beam resonators and demonstrated that the mechanical 347 

nonlinearity can be greatly suppressed by preloading a lattice-mismatch strain in the MEMS beam. 348 

The nonlinearity of the MEMS beam arises from the hardening and softening nonlinearity terms in 349 

the Duffing equation. By approaching the buckling condition of the MEMS beam, the softening 350 

nonlinearity greatly compensates for the hardening nonlinearity, and the total nonlinearity is thus 351 

suppressed. Utilizing this knowledge, we fabricated InxGa1-xAs MEMS beams working near the 352 

buckling condition and measured the frequency shift as a function of oscillation amplitude. As a result, 353 

the frequency shift of the MEMS resonator is well suppressed near the buckling condition, and a zero-354 

dispersion operation point has been achieved, which is very promising for low-noise sensing 355 

applications with MEMS resonators. The demonstrated approach provides a promising path to 356 

suppress the nonlinearity of the MEMS beam and enables the low-noise operation of MEMS 357 

resonators. Furthermore, the use of effective nonlinearity to reproduce the total nonlinearity 358 

intuitively shows the effect of hardening and softening nonlinearities on the total nonlinearity, 359 

allowing one can understand the origin of the nonlinearity change. 360 
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 452 

Figure Captions 453 

Figure 1 (a) Schematic diagram of a MEMS beam with an initial center deflection in the steady-state 454 

and oscillatory state. When the center deflection increases from x0 to xT, the MEMS beam has a new 455 

equilibrium position for the oscillation. (b) The calculated center deflection xT/h, (left y-axis) and 456 

quadratic nonlinearity coefficient β (right y-axis) as a function of the compressive strain (ε/εcr) at 457 

various initial center deflections (x0/h=0, 0.05, 0.1, 0.15, 0.2). x0 and xT are normalized by the 458 

thickness (h) of the MEMS beam, and ε is normalized by the buckling critical strain εcr of the MEMS 459 

beam. This figure is adapted from Fig. 2(b) of Ref. [20]. (c) The calculated residual strain (εr/εcr) as 460 

a function of the compressive strain (ε/εcr) at various initial center deflections. (d) The calculated 461 

resonance frequency (ƒ/ƒ0) as a function of ε/εcr at various initial center deflections, the frequency 462 

is normalized by the natural frequency (ƒ0) without ε. The buckling points are marked by geometric 463 

shapes of different colors. This figure is adapted from Fig. 2(a) of Ref. [20]. 464 

 465 

Figure 2 The calculated resonance frequency (ƒ/ƒ0) as a function of oscillation amplitude at various 466 

ε/εcr values; the initial center deflection is x0/h = 0.1. The frequency is normalized by the natural 467 

frequency ƒ0 without oscillation.  468 

 469 

Figure 3 (a) The wafer structure used for fabricating the In0.004Ga0.996As MEMS beam resonators. 470 

(b) Schematic structure of the fabricated doubly clamped MEMS beam. The mesa layer and 2 top 471 

gates (NiCr = 12 nm) on both ends of the beam form two piezoelectric capacitors, C1 and C2 together 472 

with the 2DEG layer. A 12-nm-thick NiCr layer was deposited as a heater for calibrating the thermal 473 

response. (c) A microscope image of fabricated MEMS beam resonator. An ac voltage is applied to 474 
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one of the piezoelectric capacitors to drive the resonator and the induced mechanical oscillation is 475 

measured by a laser Doppler vibrometer and a lock-in amplifier with a built-in PLL. 476 

 477 

Figure 4 (a) The resonance frequency (line: theoretical calculation, dot: experimental results) of the 478 

In0.004Ga0.996As beams as a function of L. (b) The calculated resonance frequency shifts (Δƒ) as a 479 

function of oscillation amplitude at various L (97-105 μm). (c) The measured resonance frequency 480 

shifts (Δƒ) of In0.004Ga0.996As samples with various L. (d) A blow-up of the measured Δf-amplitude 481 

curve for the MEMS beam with L=103 μm (dots), together with the numerical Δf-a curves for L=104 482 

μm (line). The red arrows show the change in resonant frequency. At the zero-dispersion point (red 483 

dot), there is an extremum of the frequency with a zero slope, and hence, the frequency is locally 484 

independent of the amplitude. 485 

 486 

Figure 5 (a) The estimated total nonlinearity, YT, and the calculated effective nonlinearity coefficient, 487 

Y(α,β), as well as its two terms Y(α) and Y(β) as a function of L. YT is estimated by the linear fitting, using 488 

the data at an oscillation amplitude range of approximately 0-50 nm in Fig. 4 (c). (b) The calculated 489 

cubic nonlinearity coefficient α and quadratic nonlinearity coefficient β as a function of L. 490 

 491 
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Figures 496 
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