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We propose a method based on deep reinforcement learning that efficiently prepares a quantum
many-body pure state in thermal or prethermal equilibrium. The main physical intuition underlying
the method is that the information on the equilibrium states can be efficiently encoded/extracted
by focusing only on a few local observables, relying on the typicality of equilibrium states. Instead
of resorting to the expensive preparation protocol that adopts global features such as the quan-
tum state fidelity, we show that the equilibrium states can be efficiently prepared only by learning
the expectation values of local observables. We demonstrate our method by preparing two illus-
trative examples: Gibbs ensembles in non-integrable systems and generalized Gibbs ensembles in
integrable systems. Pure states prepared solely from local observables are numerically shown to
successfully encode the macroscopic properties of the equilibrium states. Furthermore, we find that
the preparation errors, with respect to the system size, decay exponentially for Gibbs ensembles and
polynomially for generalized Gibbs ensembles, which are in agreement with the finite-size fluctua-
tion within thermodynamic ensembles. Our method paves a path to studying thermodynamic and
statistical properties of quantum many-body systems in quantum hardware.

I. INTRODUCTION

Preparation of a desired quantum many-body state is
an essential task that plays a significant role in quantum
computing [1, 2], quantum metrology [3], and quantum
communication [4]. Specifically, the thermal state is one
of the most important targets in quantum state prepara-
tion tasks [5–11] from both theoretical and experimental
viewpoints. A common strategy is to employ numeri-
cal methods such as CRAB [12, 13], GRAPE [14], and
Krotov [15]. However, it must be noted that all these
methods suffer from the exponential growth of computa-
tional cost, and furthermore require detailed knowledge
about nonequilibrium properties of the system. There-
fore, it is desirable to construct a preparation protocol
that employs only a little knowledge during the learning
task.

A surging technology to extract the essential feature
in quantum systems with prohibitively large exploration
space is machine learning, which has exemplified its ca-
pacity in a wide range of physics [16–37]. Successful
applications include representations of quantum many-
body states with neural networks (NNs) [18–30, 38, 39],
quantum state tomography [31–33], and phase classifica-
tion [34, 35, 40], to name a few. In particular, a branch of
machine learning called reinforcement learning (RL) [41]
has been recognized as a powerful tool to perform quan-
tum state preparation [42–50]. The RL is designed to
discover an efficient policy that maximizes a given re-
ward through trial-and-error learning on the behavior of
the environment. Several previous studies utilize the al-
gorithm that adopts the deep RL framework; the quan-
titative evaluation of the action, or the reward, deter-
mined by the algorithm makes full use of the capabil-

ity of NNs to approximate the high-dimensional nonlin-
ear functions [45–52]. While a bulk of previous works
choose fidelity as the reward, its computation for quan-
tum many-body systems requires exponentially large re-
sources in either numerics or experiment, and thus fi-
delity is not practical to scale up.

In this work, we propose a deep-RL-based method that
only relies on local measurements to prepare thermal and
prethermal pure states described by Gibbs and general-
ized Gibbs ensembles (GGEs) [53–56]. The underlying
physical intuition is that, we may take advantage of the
typicality of equilibrium states [7, 57–59] to prepare them
using solely local observables, and not rely on global fea-
tures such as fidelity. We numerically find that, although
the deep RL agent is only informed of the local informa-
tion on the thermodynamic ensembles, the accuracy of
the prepared state improves exponentially with the sys-
tem size for Gibbs ensembles, whereas the improvement
is polynomial for GGEs.

The remainder of the paper is organized as follows.
In Sec. II, we present an overview of the framework of
the deep reinforcement learning. The application of re-
inforcement learning to quantum state preparation is de-
scribed in Sec. III, which includes the core proposal of our
work, i.e., the local preparation of thermal and prether-
mal pure quantum states leveraging the typicality of equi-
librium states. After the framework is presented, we give
the numerical demonstration for preparation of equilib-
rium states described by Gibbs ensembles and GGEs in
Sec. IV and V, respectively. Finally, we give the conclu-
sion and discussion in Sec. VI.
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II. REINFORCEMENT LEARNING

The general framework of the reinforcement learning
(RL) can be concisely expressed as a procedure to train
an agent how to interact with the environment through
optimization of cumulative reward [see Fig. 1]. The
strengths of deep reinforcement learning, which are why
we chose to employ it, are the high degree of freedom in
reward design that makes the algorithm independent of
the actual model and its ability to handle a huge search
space of total actions, which amounts to 15200 ≈ 10235 in
our demonstration in integrable systems in Sec. V. The
corresponding quantities (game tree complexity) of chess,
shogi (Japanese chess), and Go, which are canonical en-
vironments for high-performance planning, are ≈ 10123,
10226 and 10360, respectively [60–62]. The search space
size of our problem is larger than that of shogi, and deep
reinforcement learning is reasonable choice to achieve
higher performance [63].

The goal of the RL is to discover the best policy π
that outputs the sequence of actions A = {at}t based
on observations of the environment O = {ot}t, such that
the feedback realizes the most desired behavior quantified
by the rewards R = {rt}t. Typically, all the events are
discretized so that each value can be well-defined at each
time step t.

A practical strategy widely used in the community of
machine learning is Q-learning. Here, one aims to find
the best approximation of the optimal action-value func-
tion as [41]

Q∗(o, a) = max
π

Eπ

[
rt +

∞∑
n=1

γnrt+n

∣∣∣∣∣ot = o, at = a, π

]
,

(1)

which is the maximum sum of rewards rt discounted by
γ (0 < γ < 1) in a stochastic policy that chooses action
according to some probability distribution as π (a|o) =
Pr (a|o). A powerful flavor of Q-learning uses the deep
NNs to represent the action-value function, and hence re-
ferred to as the deep RL algorithms [64, 65]. The extraor-
dinary representative power of NNs have been found to
achieve successful applications of the deep RL algorithms
in numerous fields that are not necessarily limited to com-
puter science but also natural science, materials sciences,
and so on.

In this paper, we focus on a non-distributed imple-
mentation [66] of a deep RL algorithm called R2D2 [67].
R2D2 is a type of deep Q-learning algorithm [68], and
assumes the agent can obtain partial information about
the state of the environment. As we show the architec-
ture in Appendix A, the NN used in R2D2 includes a
Long Short-Term Memory (LSTM) layer, and therefore
the action-value function Q computed by the NN at step
t depends not only on the instant observation ot, but also
on the previous observations {ot′}t′≤t [69]. This feature
enables the NN to handle time-series inputs and develop
the capability in a partially observed environment.

III. REINFORCEMENT LEARNING FOR
QUANTUM STATE PREPARATION

A. Global state preparation

Next, we review the general protocol to prepare a de-
sired isolated quantum many-body state using the deep
RL framework. Concretely, we aim to prepare a target
quantum state |ψtarget〉 from an easily prepared quantum
state |ψ0〉, assuming that a set of unitary {Ui}i is avail-
able at any time step. By finding the best sequence of
unitaries, we try to approximate the target state as

|ψtarget〉 ≈
∏
t

Uit |ψ0〉 . (2)

It is straightforward to see that such a problem setup is in
a great connection with the RL; we identify the quantum
many-body system with the environment and the avail-
able set of unitaries {Ui}i with the action candidates {at}
at each time step.

Regarding the observation ot, many works have pro-
posed to use the results for the measurements on the tar-
get system [45–47]. Meanwhile, when the both initial and
target states are fixed during the whole training, we can
expect that the action history {at′}t′≤t contains enough
information to find out the desired protocol [43, 44].

As for the reward rt, numerous existing works
have considered global features such as the fidelity

F (ρt, ρtarget) =
(
Tr
√√

ρtρtarget
√
ρt
)2

[42, 43, 48, 50],
where ρt is the density operator of the controlled system
at time step t. We hereafter refer to such protocols as
global state preparation protocols. These methods have
successfully prepared ground states of quantum many-
body spin systems [42], metastable states of the quan-
tum Kapitza oscillator [43], and highest excited states of
multi-level quantum systems [50].

Having bridged between the notions in quantum con-
trol and the RL, we can train the NN-based agent to
find the best control on the quantum system via search-
ing for approximation of the optimal action-value func-
tion Q∗(o, a) (1). Note that the evolution of the quan-
tum state may either be experimentally implemented or
numerically simulated, as long as the reward function
for the deep RL agent can be readily obtained. Once
the training is completed, we determine the prepara-
tion protocol as {a∗t }t by choosing the actions so that
a∗t = arg maxaQ(ot, a) at each time step t, which shall
maximize the reward.

B. Local state preparation

Now we are ready to describe the preparation proto-
col for thermal and prethermal pure quantum states that
solely relies on local observables, instead of querying for
costly global features such as the fidelity. In the follow-
ing, as opposed to the global state preparation, we refer
to the following scheme as local state preparation.
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FIG. 1. A graphical illustration of the deep RL frame-
work to prepare thermal and prethermal pure quantum states
for thermodynamic ensembles. The agent represented by the
deep NN is trained to discover a policy that maximizes the
cumulative reward, which is computed based on the local ob-
servables of the quantum many-body system (environment).
At each time step, the NN takes the result of observation
as input and outputs the action-value function, from which
the action (or the control operation) on the environment is
determined. In this work, the action is chosen from a set
of unitaries that are presumably available in the preparation
protocol.

The central idea of the local state preparation is to
leverage the typicality of pure quantum states [7, 57–59].
The typicality refers to the fact that the overwhelming
majority of pure quantum states with the same local con-
served quantities are indistinguishable by local observ-
ables. Such states are also deemed to be macroscopically
indistinguishable. It is natural to expect that, by utiliz-
ing the typicality, we can prepare a state that encodes the
macroscopic property of the equilibrium states by solely
controlling local observables. Specifically, we perform lo-
cal preparation by making the expectation values of local
observables close to the equilibrium state, and then let-
ting the system relax to equilibrium through a unitary
evolution without any control.

We may take various forms of reward to learn the lo-
cal observables of the target ensemble. In this work, we
formulate the reward function as the inverse of the devi-
ations of the expectation values of local observables from
that of the target states:

rt :=
1

|Mt −Mtarget|+ ε
, (3)

where Mt = (〈O1〉t , 〈O2〉t , . . .) and Mtarget =
(〈O1〉target , 〈O2〉target , . . .) are vectors consisting of ex-

pectation values 〈O〉t(target) := Tr[ρt(target)O]. The small

constant ε is also introduced to prevent divergence of the
reward function.

As a concrete target for the demonstration of our lo-
cal preparation protocol, we choose Gibbs ensembles and
GGEs as illustrative examples. The evolution of the
quantum many-body state is numerically simulated in
an exact manner, while in principle we may also employ
approximate methods that rely on, e.g., a variational rep-
resentation such as tensor networks or neural networks.

One may alternatively implement the proposed protocol
directly on experimental device as well. In the follow-
ing, we proceed to describe the detailed properties of the
thermodynamic ensembles and the expected preparation
efficiency under the presence of typicality.

1. Gibbs ensemble for non-integrable systems

Let us consider a non-integrable system with the en-
ergy being the only local conserved quantity such that
its equilibrium is described by a Gibbs ensemble. Re-
latedly, pure states belonging to a given microcanonical
shell of the system share their macroscopic properties.
This class of typicality is referred to as canonical typi-
cality. One of the most prominent example of canonical
typicality can be illustrated under the Haar measure on
the space of pure states under some constraint R (e.g.,
energy) as [58]

〈‖ρA − ΩA‖1〉 ≤

√
d2
A

dR
, (4)

where ρA = TrĀ [|ψ〉 〈ψ|] is the reduced density operator
obtained by tracing out the the complement of subsys-
tem A for |ψ〉 〈ψ| with Hilbert space dimension dA. On
the other hand, ΩA = TrĀ [1R/dR] is the reduced density
operator for the projection operator 1R, i.e., the maxi-
mally mixed state in the Hilbert subspace under the con-
straint R whose dimension is dR. Note that the bracket
〈·〉 concerns the average regarding the Haar measure on

the constrained Hilbert space, and ‖A‖1 = Tr
√
A†A.

Equation (4) means that the average distance between
a randomly chosen pure state and the maximally mixed
state in the constrained Hilbert space decays polynomi-
ally with the Hilbert space size as d−0.5

R , that is, exponen-
tially with the system size in general quantum systems.
The indistinguishability of the pure quantum state from
the microcanonical ensemble leads us to expect that, once
a state is prepared to be within the target energy shell,
the prepared state captures the macroscopic properties
with an accuracy that improves exponentially with the
system size [70].

We emphasize that the key of local preparation proto-
col is to encode the prepared state into the target energy
shell, which requires more than merely learning the ex-
pectation value of the energy. In other words, even if
the expectation value is correctly learned, the prepared
state may correspond to a superposition of pure states
that belong to other energy shells. Such a situation may
cause deviation in other physical observables. In this
work, we attempt to address this problem by letting the
RL agent learn other macroscopic observables in addition
to energy. It is in fact highly nontrivial to determine
how many observables we need to embed the prepared
state into the energy shell. We find that, for the non-
integrable transverse-field Ising chain, it suffices to take
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only the total magnetization
∑
l σ

z
l /L [see Sec. IV B for

the numerical demonstration].
As another possibly effective method to assure the pre-

pared state to be encoded in the desired energy shell,
we propose to incorporate the variance of observables
〈O2〉target − 〈O〉

2
target into the reward. For instance, it

is obvious that the energy variance is suppressed when
the prepared state is in the target energy shell. This is
actually not limited to the energy; thanks to the typical-
ity, we may employ any macroscopic observable for this
purpose.

2. Generalized Gibbs ensemble for integrable systems

As opposed to the non-integrable systems, integrable
systems have an extensive number of conserved quanti-
ties, which are also called integrals of motion (IOM) in
the literature. The equilibrium states in integrable sys-
tems are known to be described rather by GGEs [54]:

ρGGE =
exp

[
−
∑
m λmÎm

]
Tr
[
exp

[
−
∑
m λmÎm

]] , (5)

where {Îm} is the full set of the IOMs, and {λm} is
the corresponding set of the Lagrange multipliers which
dictates the distribution over expectation values of the
IOMs.

To discuss the typicality in the set of pure states with
close expectation values of IOM, the authors of Ref. [71]
introduced a notion of a statistical ensemble named the
generalized microcanonical ensemble (GME). In parallel
to the ordinary microcanonical ensemble, the GME is
constructed by assigning equal weight to all eigenstates
whose IOMs are close to some certain values that identify
the ensemble. It has been pointed out Ref. [71] that the
standard deviations of local observables within such “a
window of IOM” decay polynomially as

σloc ∝ L−0.5, (6)

where L is the system size. Therefore, by following a
parallel discussion as in the case for Gibbs ensembles in
non-integrable systems, we may also expect that the local
preparation protocol works for GGEs in integrable sys-
tems as well, with its accuracy improving polynomially
with the system size.

Let us remark on another supporting argument based
on the truncation of GGEs itself. While Eq. (5) takes all
possible IOMs into account, we expect that the macro-
scopic behavior in terms of local observables can be ex-
tracted by considering local conserved quantities. As
such, here, we aim to capture the truncated alternative
of the statistical ensemble by focusing on the local inte-
grals of motion (LIOM). Concretely, we denote the LI-

OMs that acts at most n + 1 neighboring sites as Îσn
with σ denoting some additional label, and introduce a

locality-constrained variant of GGE which is known as
the truncated GGE (tGGE) [72]:

ρtGGE,nlocal
=

exp
[
−
∑nlocal

n=0

∑
σ λ

σ
nÎ

σ
n

]
Tr
[
exp

[
−
∑nlocal

n=0

∑
σ λ

σ
nÎ

σ
n

]] , (7)

which only includes the LIOMs with n ≤ nlocal. It is nat-
ural to expect that a tGGE gives a good approximation
of ρGGE in terms of local quantities, and furthermore
TrĀ [ρtGGE,nlocal

] ≈ TrĀ [ρGGE]. For instance, Ref. [72]
has investigated the transverse field Ising chain in the
integrable regime, and found that tGGEs approximates
the corresponding GGEs when nlocal is larger than the
size of subsystem A.

We remark that the local preparation protocol for the
integrable systems aims to construct a tGGE rather than
the original GGE. In this sense, we expect that the va-
lidity is not assured for observables with higher nlocal,
for which the discrepancy between the GGE and tGGE
is non-negligible. We discuss this point more in detail in
Sec. V B.

IV. APPLICATION TO GIBBS ENSEMBLES

A. Model and setup

As a demonstration for local preparation of thermal
pure states described by Gibbs ensembles, we consider
the transverse field Ising model on a chain with the pe-
riodic boundary condition:

ĤIsing =

L∑
l=1

[
Jσ̂zl σ̂

z
l+1 + hσ̂zl + gσ̂xl

]
, (8)

where σ̂xl , σ̂
y
l , σ̂

z
l are the Pauli operators at site l, L is the

system size, J is the amplitude of the Ising interaction,
and h (g) is the strength of the longitudinal (transverse)
magnetic field. In the following, the parameters are fixed
as J = 1, h = 0.8090, g = 0.9045 so that the system is
non-integrable [73]. As a target state, we aim to prepare a
thermal pure quantum state corresponding to the Gibbs
ensemble with inverse temperature β = 0.2, where the
initial state before any quantum control is taken to be
a product state |↓↓ · · · ↓〉. The total preparation time is
fixed as T = 24 with the time step set as δt = 0.1, which
also determines the total time step to be 240.

The set of action candidates {at} available for the RL
agent is given as {e−iGkδt}6k=1, where the time evolution
generator Gk is chosen from the following six operators:

ĤIsing,

L∑
l=1

Jσ̂zl σ̂
z
l+1 + hσ̂zl , g

L∑
l=1

σ̂xl ,

L∑
l=1

σ̂yl ,

L∑
l=1

σ̂xl σ̂
y
l+1 + σ̂yl σ̂

x
l+1,

L∑
l=1

σ̂yl σ̂
z
l+1 + σ̂zl σ̂

y
l+1.

(9)
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(a)

(b)

FIG. 2. (a) The learning curves for local preparation of
the Gibbs ensemble of transverse field Ising model in the
non-integrable regime. The blue and red curves denote the
total reward and the deviation of the energy density com-
puted for the prepared states, respectively. The horizontal
axis shows the number of parameter updates. (b) The op-
timal action sequence {a∗t } for local preparation of Gibbs
ensemble discovered by the RL agent whose training profile
is provided in Fig. 2 (a). The six-fold action indices corre-

spond to 0: ĤIsing, 1:
∑
l Jσ̂

z
l σ̂

z
l+1 +hσ̂zl , 2: g

∑
l σ̂

x
l , 3:

∑
l σ̂

y
l ,

4:
∑
l σ̂

x
l σ̂

y
l+1 + σ̂yl σ̂

x
l+1, 5:

∑
l σ̂

y
l σ̂

z
l+1 + σ̂zl σ̂

y
l+1, respectively.

After quickly manipulating the macroscopic observables to en-
code the property of the thermal ensemble, the agent mainly
chooses to evolve the system under the target Hamiltonian
ĤIsing. For all plots, the system size is L = 16 with the in-
verse temperature set as β = 0.2.

These terms are also used in Ref. [44], which discusses
how to accelerate the preparation of the ground state
using counter-diabatic driving. Regarding the local re-
ward rt, we include the energy density L−1ĤIsing and
the magnetization density L−1

∑
l σ̂

z
l . Note that these

are the sum of local operators acting on neighboring two
sites at most.

B. Numerical results

Now we proceed to present numerical results that suc-
cessfully prepare thermal pure quantum states, which en-
code both local observables used during the training and
also more non-local ones that are excluded from the re-
ward function. Figure 2 (a) shows an example of the
learning curve of the RL agent for L = 16. We can see
that, as the number of training episodes increases, the
RL agent learns the better protocols that achieve higher
total reward and smaller energy deviation.

Here, we briefly discuss the control protocol found by
the RL agent. Figure 2 (b) shows the control protocol
whose learning curve is shown in Fig. 2 (a) to realize
a thermal pure state described by the Gibbs ensemble.
It can be seen that the optimal protocol consists of two
stages: first is the sequence of nontrivial actions that
change macroscopic observables, and the second is the re-
laxation of the system under free evolution using ĤIsing,

which leads the system to the typical state of ĤIsing.
While there is a small number of actions other than the
free relaxation at the late stage of the control protocol,
we argue that they do not contribute significantly to the
result even if we substitute them with ĤIsing because they
consist almost entirely of alternating use of action 1 and
action 2. This can be considered effectively equivalent to
ĤIsing in the sense of the Trotter decomposition.

Figures 3 (a)–(d) display the dynamics of local observ-
ables obtained by the preparation protocol learned by
the RL agent. Figures 3 (a) and (b) show the observ-

ables ĤIsing and
∑
l σ̂

z
l , respectively, which are used for

the reward function. Both of them converge to the cor-
responding values of the Gibbs ensemble represented by
the red horizontal lines. It is more intriguing to see the
convergent behaviors in Figs. 3 (c) and (d), which show
the dynamics of local observables that are not included
in the reward function, namely the two-point correlator∑
l σ̂

z
l σ̂

z
l+1 and three-point correlator

∑
l σ̂

z
l σ̂

z
l+1σ̂

z
l+2, re-

spectively.
It is natural to wonder how accurately the general ob-

servables, or the reduced density operator of local sys-
tems, are captured by the local preparation protocol. For
this purpose, we evaluate the distance between reduced
density operators of the prepared pure state and the tar-
get Gibbs ensemble as

D(ρ, ρ′) :=
‖ρ− ρ′‖F√
‖ρ‖2F − ‖ρ′‖

2
F

, (10)

where ‖A‖F :=
√

Tr [A†A] is the Frobenius norm [74].
We can see from Fig. 4 (a) that the time average of

the distance function (10), which we denote as D̄, is sup-
pressed for the smaller subsystem size LA. What is more
interesting is the scaling with respect to the total system
size; we observe nontrivial suppression of error along with
the increase of the system size L.

We further zoom into the scaling of the error suppres-
sion, by performing finite-size scaling on the averaged
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(a) (b)

(c) (d)

FIG. 3. (a)–(d) The dynamics of local observables generated
by the state preparation protocol learned by the deep RL
agent, with the insets showing the absolute error from the
corresponding expectation values of the target Gibbs state
(red line). Each panel displays (a) energy density ĤIsing/L,

(b) Z(1)/L = L−1 ∑
l σ̂

z
l , (c) Z(2)/L = L−1 ∑

l σ̂
z
l σ̂

z
l+1, and

(d) Z(3)/L = L−1 ∑
l σ̂

z
l σ̂

z
l+1σ̂

z
l+2. Note that local observables

in (a) and (b) are both included in the reward for the deep RL
agent. We observe convergence not only for physical quanti-
ties that are included in the RL reward as in (a) and (b), but
also local observables that are absent in the reward as in (c)
and (d). For all plots, the system size is L = 16 with the
inverse temperature set as β = 0.2.

distance function as shown in Fig. 4 (b). Here, we ob-
serve that the scaling of the suppression is given as

D̄ = O(d−b), (11)

where d is the dimension of the corresponding energy
shell. To be concrete, d is obtained by counting the
number of eigenstates included within the energy win-
dow [〈ĤIsing〉β − εeL, 〈ĤIsing〉β ], where 〈ĤIsing〉β is the

energy expectation value of the target Gibbs ensemble
at inverse temperature β, and the shell width is fixed as
εe = 0.5 [see Appendix C for further discussion on the
choice of εe].

The scaling of the distance (11) implies that D̄ de-
cays exponentially with the system size L. We argue
that this is compatible with the scaling of canonical typ-
icality (4). This feature supports an expectation that
our local preparation protocol for the Gibbs ensembles
becomes exponentially more precise as the system size
increases.

As a technical remark, we mention that the dimen-
sion shown in the figure corresponds to the size of the
symmetry-resolved Hilbert space, namely the parity and
the momentum.

(a)

(b)

L

LA

FIG. 4. Distance of reduced density operator between the
target Gibbs state and the prepared state, which are averaged
over time and random training instances. (a) Error of distance
function D̄ at various subsystem sizes LA. The blue circles,
orange downward triangles, green crosses, and red upward
triangles denote the data for L = 10, 12, 14, 16, respectively.
(b) Decay of error in the reduced density operator along with
the corresponding energy shell dimension d, i.e., the number
of the eigenstates in the energy shell. The dotted lines are
guides to the eye showing the fits with D = ad−b, where
powers b are summarized in Table III of Appendix. B. The
error bars correspond to the standard deviations of different
protocols learned independently with random seeds. In both
plots, the system is controlled by the deep RL agent at 0 ≤
t ≤ 24, and then undergoes free evolution exp[−iĤIsingt] in
24 < t ≤ 48. Note that the distance D̄ concerns average
over the free evolution period and also the random training
instance.

V. APPLICATION TO GENERALIZED GIBBS
ENSEMBLE

A. Model and setup

We next describe an even more intriguing system that
is integrable so that the thermodynamic ensembles is de-
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scribed by GGEs. Concretely, we consider the XX model
on a periodic chain with a longitudinal field:

ĤXX = −
L∑
l=1

[
J

2

(
σ̂xl σ̂

x
l+1 + σ̂yl σ̂

y
l+1

)
+ hσ̂zl

]
, (12)

where J is the amplitude of interaction, h is the strength
of the magnetic field along the z-axis, and L is the system
size. In the following, the parameters are fixed as J = 1
and h = 2.

The integrability of the XX model can be verified
straightforwardly by mapping into a non-interacting
fermionic system via the Jordan-Wigner transformation:

Ĥtb = −
L∑
l=1

[J(â†l âl+1 + â†l+1âl) + 2h(â†l âl −
1

2
)],(13)

= −
∑
k

[2 (J cos k + h) n̂k − h] , (14)

where â†l and âl are fermionic creation and annihila-
tion operators that are related to the Pauli operators

as â
(†)
l =

∏
l′<l σ̂

z
l′ σ̂

+(−)
l where σ̂±l = (σ̂xl ± iσ̂

y
l )/2. In

the second row (14), we moved into the Fourier space

by introducing the mode occupation operator n̂k = â†kâk
for âk = L−1/2

∑
l âle

−ikl. We can construct LIOMs as
many as the system size L by taking the linear combina-
tion as

Î+
n = −2J

∑
k

cos (nk)â†kâk = −J
∑
l

(
â†l âl+n + â†l+nâl

)
,

Î−n = −2J
∑
k

sin (nk)â†kâk = iJ
∑
l

(
â†l âl+n − â

†
l+nâl

)
.

For the convenience in the later discussion, we mention
the rightmost sides to remark that Î±n can be explicitly
expressed as sums over hopping terms between the n-th
nearest neighboring sites in the fermionic picture.

As the target thermodynamic ensemble, we aim for the
GGE constructed from the LIOMs as

ρGGE =
exp

[
−
∑
n

∑
σ=± λ

σ
nÎ

σ
n

]
Tr
[
exp

[
−
∑
n

∑
σ=± λ

σ
nÎ

σ
n

]] , (15)

where {λσn} are the Lagrange multipliers. More precisely,
we set the initial state of the control system to be the
ground state of Ĥtb in the space of the total particle num-
ber Nf , and aim to prepare a prethermal pure state corre-
sponding to a given set of Lagrange multipliers {λσn} [see
Appendix D for details regarding the parameter choice
of {λσn}]. The total preparation time is fixed as T = 40
and the time step as δt = 0.2, thus the total number of
time steps is 200.

In parallel with the case for Gibbs ensembles, we allow
the deep RL agent to choose at as an appropriate unitary

from a set {e−iGkδt}15
k=1, where the time evolution gen-

erator Gk is chosen from the following fifteen operators:

ĤXX,

L∑
l=1

â†l âl cos
mπ

L
l,

L∑
l=1

â†l âl sin
mπ

L
l,

L∑
l=1

(
â†l âl+j + â†l+j âl

)
cos

nπ

L
l,

L∑
l=1

(
â†l âl+j + â†l+j âl

)
sin

nπ

L
l,

(16)

where m ∈ {2, 4, L}, and (j, n) ∈
{(1, 2) , (2, 2) , (1, L) , (2, L)}. Note that these oper-
ators are chosen so that they are not diagonal in the
position or momentum basis.

Regarding the local reward rt, we employ normalized
LIOMs {Î+

n /L}1≤n≤nlocal
, where we fix nlocal = 4 in the

following. All Î−n terms are excluded since they are con-
stantly zero not only for the initial and target states, but
also for any intermediate states ρt evolved with the above
unitaries.

B. Numerical results

We now present the numerical results obtained by run-
ning the deep RL algorithm to prepare prethermal pure
quantum states that capture the characteristics of the
GGE. As we show the learning curve in Fig. 5(a), the
deep RL agent successfully learns to improve the local
preparation protocol. This can be more quantitatively
understood from Fig. 5(b), which evaluates the absolute
difference in the expectation values of LIOMs between
the target GGE and the prepared state.

Let us further investigate the dynamics of the LIOMs
generated by the preparation protocol discovered by the
RL agent. As shown in Fig. 6, the behavior of LIOMs
seem to be qualitatively different depending on n in the
sense that, the only LIOMs with separation n ≤ nlocal =
4, which we added to the reward, seem to converge to the
expectation values of the GGE.

Similar behavior can also be observed for non-
conserved quantities such as the correlation function

Γn :=
1

L

∑
l

(
σ̂+
l σ̂
−
l+n + σ̂+

l+nσ̂
−
l

)
, (17)

which can be seen as a representative of local operators
acting on neighboring n+1 sites. As we can see in Fig. 7,
we see a notable convergence into the GGE values for
n ≤ nlocal, while the errors seem to remain for n > nlocal.

Furthermore, we focus on the scaling of the error sup-
pression. As we can see from the finite-size scaling of
the averaged distance function D̄(ρt, ρGGE) in Fig. 8, we
observe that the distance of the reduced density opera-
tors is suppressed as D̄ = O(L−b). These behaviors are
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(a)

(b)

FIG. 5. The learning curves for local preparation of the
GGE. These figures show the total rewards and the devi-
ations of the LIOM densities at the end of the episodes in
evaluating the training progress. The horizontal axis shows
the number of parameter updates. (a) The total rewards. (b)
The deviations of the LIOM densities. The corresponding
model is the transverse field Ising model where the parameter
is set so that the model is integrable. We added the LIOMs
Î+n with separation n = 1, 2, 3, 4 to the reward of the RL. The
system size L = 120. The lines show the median of the cor-
responding values in evaluation with random seeds.

compatible with the scaling of the fluctuation of local
observables in the GME (6).

Here we conjecture that, while the errors for LA .
nlocal +1 shall be suppressed polynomially even for larger
system size, the errors for LA & nlocal + 1 may saturate
at finite values. This is because the current local prepa-
ration scheme learns the LIOMs Îσn with n ≤ nlocal to
encode the prepared state into the “LIOM shell” only
for such conserved quantities. This means that, the pre-
pared state fully encodes the macroscopic properties of
the tGGE, but not those of the GGE. We numerically
find that, the distance of the tGGE and GGE remains
to be finite even if the total system is in the thermo-
dynamic limit [See Appendix E], which is in agreement
with Ref. [72] which investigated integrable region of the
transverse-field Ising chain. This supports our conjec-
ture that the distance between the GGE and the local-
prepared state shall not be suppressed in the thermody-
namic limit. Meanwhile, it is possible that the error from
the tGGE itself is suppressed polynomially.

(a) (b) (c)

(d) (e) (f)

FIG. 6. The expectation values of the LIOMs in the protocol
found by RL for the GGE (blue). Each figure shows the LIOM
with different separations. The red horizontal lines show the
corresponding expectation values of the target GGE. The dot-
ted black lines represent the relevant Gibbs ensemble, which
shares the same expectation values of total particle number
and energy. The insets show the absolute deviations in the
expectation values 〈Î+n 〉/L between the states in the protocol

and the target GGE. We added the LIOMs Î+n with separa-
tion n = 1, 2, 3, 4 to the reward of the RL. Only LIOMs with
separation n ≤ 4 converge to the expectation values of the
GGE.

VI. CONCLUSION

In this work, we have proposed a deep-RL-based quan-
tum state preparation framework for thermodynamic en-
sembles that solely relies on a few local observables but
not on global features such as the fidelity. The core idea
is to leverage the typicality of pure states in quantum
many-body systems; the macroscopic properties can be
encoded simply via learning a few local observables and
undergoing free evolution. We have provided numerical
demonstrations that have successfully trained the deep
RL agent to learn the macroscopic properties of the Gibbs
ensembles (Fig. 2) and the GGEs (Fig. 5). We find that
the accuracy of the prepared state has improved expo-
nentially with the system size for the former (Fig. 4) and
polynomially for the latter (Fig. 8), which is consistent
with the argument of the typicality within a given shell
of local conserved quantities.

We envision four future directions of our work. First,
the application to interacting integrable models is an
important issue for local preparation. This issue is re-
lated to the previous work on which conserved quantities
should be considered to predict local properties of the
steady state in interacting integrable systems that can
be solved with the Bethe ansatz [e.g., Ref. [75]]. Based
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(a) (b) (c)

(d) (e) (f)

FIG. 7. The relaxation processes of the expectation values
of correlation functions (17), which are non-conserved quan-

tities of ĤXX (12) (blue). Each figure shows the correlation
function with different separation n, which means the correla-
tion function corresponds to the two spins separated by n− 1
sites. The red horizontal lines show the corresponding expec-
tation values of the target GGE, whereas the dotted black
lines represent the relevant Gibbs ensemble which shares the
same expectation values of total particle number and energy.
Note that the system is controlled with the learned protocol
in 0 ≤ t ≤ 40, and subsequently undergoes free evolution with
ĤXX. The only correlation functions with separation n ≤ 4
fluctuate around the expectation values of the GGE. Note
that the correlation function with n = 1, where the Jordan-
Wigner string does not appear, is proportional to the LIOM
with n = 1, i.e., it is the conserved quantity of ĤXX.

on the prior work, we can expect to be able to perform
local preparation if we also include quasi-local conserved
quantities to the reward. Note that, in such systems the
finite size effect on the fluctuation of local observables is
severe in system size tractable by exact diagonalization.
It is an open problem how to simulate interacting inte-
grable systems efficiently in a scalable way so that local
preparation strategy can be pursued.

The second important question is the generalization of
the local preparation protocol to include, e.g., dissipative
terms, measurement and feedback, or postselection. We
naturally expect that the powerful explorability of the
deep RL framework is not limited to coherent control
but could be applied to broader operation sets.

Third, we may consider the application of the local
preparation protocol for the task of Hamiltonian learn-
ing [76–78] by attempting to encode the macroscopic
properties using unitaries that do not explicitly contain
the information of Hamiltonian itself.

Finally, it is intriguing to seek how the local prepara-
tion protocol is affected by various noises, such as the

FIG. 8. Finite-size scaling of the distance function of the
reduced density operators between the prepared states and
the target GGE. The dotted lines are guides to eye that show
power-law fitting D̄ = O(L−b), where powers b are summa-
rized in Table IV of Appendix. B. The error bars correspond
to the standard deviations of different protocols learned in-
dependently with random seeds. The system is controlled by
the deep RL agent at 0 ≤ t ≤ 40, and then undergoes free
evolution by ĤXX. Note that the distance D̄ concerns average
over temporal, i.e., the free evolution period, and the random
training instance. The number of random seeds is 5 at most.

statistical noise accompanied by sampling over observ-
ables. Efficient estimation methods such as the random-
ized measurement schemes [79] shall be essential to boost
the training accuracy of the RL agent.
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Observation Previous
reward

Previous
action

Q function

Linear + ReLU 1

Linear + ReLU 2

LSTM

Dueling network

Previous 
memory Memory

FIG. A1. The abstract deep NN architecture used for the
RL in the present work. At each time step t, the deep NN
takes as input the observation ot, the previous action at−1,
and previous reward rt−1. After intermediate computations
by fully-connected layers, LSTM, and the dueling network,
the deep NN outputs the estimate of the Q function.

Sec. IV Sec. V

Linear + ReLU 1 240→ 512 200→ 1024
Linear + ReLU 2 512→ 512 1024→ 1024
LSTM (512, 6, 1)→ 512 (1024, 15, 1)→ 1024
Dueling network 512→ 6 1024→ 15

TABLE I. The Input and Output sizes of each layer are
shown in the former and latter of the arrow, respectively.
The input of the NN consists of the action history, the one-
hot representation of the previous action, and the previous
reward. The input of Linear + ReLU 1 layer is only the
action history. The one-hot representation of the previous
action and previous reward is concatenated with the output
of Linear + ReLU 2 before the LSTM layer.

Appendix A: Layout of the neural network and
hyperparameters

Here, we describe the architecture of the deep NN
which is used to estimate the action-value function (Q
function). Figure A1 shows the overall picture; the in-
put for the LSTM at time step t is the observation ot,
the previous action at−1, and the previous reward rt−1,
whereas the output is Q function whose optimal expres-
sion is given in Eq. (1) in the main text. Refer to Table I
for the size of the input and output of each layer and
Table II for the hyperparameter used in the NN. In the
following, we further describe the details of the structure.

The observation ot is chosen to be the action history
ot = (a0, a1, . . . , at−1,−1, . . . ,−1), which is fed to the
fully-connected layers. Fully-connected layers first per-

Reward discount γ 0.997
Minibatch size 324(Sec. IV)

380(Sec. V)
Sequence length 40
Optimizer Adam [83]
Optimizer setting learning rate 10−4

ε 10−3

β (0.9, 0.999)
Replay ratio 1
Gradient norms clip 80

TABLE II. The hyperparameters used in the NNs. The
agent performs updates on batches of (minibatch size ×
sequence length) observations. Replay ratio means the ef-
fective number of times each experienced observation is being
replayed for the training. See Ref. [67] and its previous non-
LSTM version, Ref. [84], for the details of the hyperparame-
ters. The other parameters follow the ones in Ref. [66].

form linear transformation, and then apply a non-linear
activation function which is chosen to be the rectified lin-
ear unit (ReLU) in the present work. The intermediate
output from the second fully-connected layer is concate-
nated with the previous choice of action at−1 and the
reward in the previous time step rt−1, and then fed to
the Long Short-Term Memory (LSTM) layer.

The LSTM layer is introduced so that the network can
refer to the history of computational results at t′ < t to
estimate the Q function at time step t. Namely, the input
of the LSTM layer is not only the ones mentioned above,
but also its ”memory” including a hidden state (short-
term memory) and a cell state (long-term memory) [69].
Refer to literature such as Ref. [85] for detailed infor-
mation. This output memory is fed to the LSTM layer
in the next time step t, which enables the deep NN to
successfully deal with time-series inputs.

In the subsequent dueling network [86], the input is
separated into two branches. One branch evaluates the
value of the observation V (o), and the other branch eval-
uates the advantage of actions regarding the observation
A(o, a) = Q(o, a) − V (o). The output Q function of the
dueling network is obtained by summing the output of
the two branches: Q(o, a) = V (o) + A(o, a). This sepa-
ration may contribute to better training stability, faster
convergence, and better performance.

As a computational resource, we have used a single
CPU and four GPUs (Intel Xeon E5-2698 v4, 4×NVIDIA
Tesla V100) in Sec. IV and two CPUs and four GPUs
(2×Intel Xeon Gold 6148, 4×NVIDIA Tesla V100) in
Sec. V, respectively.

Appendix B: Fitting parameters for the finite-size
scaling of the preparation accuracy

In Tables III and IV, we summarize the powers b ob-
tained by the fit for the finite-size scaling of the local
preparation accuracy in Sec. IV B and Sec. V B, respec-
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Subsystem size LA Power b

1 0.53(4)
2 0.54(4)
3 0.51(4)
4 0.48(4)
5 0.43(4)

TABLE III. The powers obtained by the fit for the result
of the finite-size scaling of the distance function D̄, given by
Eq. (10), between the prepared states and the target Gibbs
ensembles for the system size L = 10, 12, 14, 16 in Sec. IV B.

subsystem size LA power b

1 0.50(3)
2 0.50(5)
3 0.46(4)
4 0.43(4)
5 0.41(4)
6 0.41(3)
7 0.41(3)
8 0.41(3)
9 0.41(3)
10 0.41(3)

TABLE IV. The powers obtained by the fit for the re-
sult of the finite-size scaling with the system size L =
60, 72, 84, 96, 108, 120 for the distance function D̄, given by
Eq. (10), between the prepared states and the target GGE in
Sec. V B.

tively.

Appendix C: Relationship between energy shell
width εe and scaling of preparation accuracy

Here we discuss the relationship between the energy
shell width εe and the scaling behavior of the accuracy
of prepared state. Recall that the distance function in
the Eq. (10) of the main text is given as

D(ρ, ρ′) =
‖ρ− ρ′‖F√
‖ρ‖2F − ‖ρ′‖2F

, (C1)

where ‖A‖F =
√

Tr[A†A] denoting the Frobenius norm.
In Fig. C2, we show how the scaling exponent b defined
from D̄(ρGibbs, ρt) = O(d−b) varies according to εe. At
εe = 0.1 for L = 10, the corresponding energy shell
only includes a single eigenstate. Meanwhile, εe = 0.75
corresponds to the extreme case where almost all eigen-
states below 〈ĤIsing〉β are included in the energy shell

[〈ĤIsing〉β − εeL, 〈ĤIsing〉β ]. In Sec. IV B, we have chosen

intermediate εe so that the power b is stable against the
choice of εe.
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FIG. C2. Relationship between the energy shell width εe
and the scaling exponent b of the distance D̄, concerning the
local preparation of the Gibbs ensemble. The parameters of
the system are identical to those used in Sec. IV B.

Appendix D: Choosing Lagrange multipliers for the
target GGE

The Lagrange multipliers for the GGE in Sec. V is
chosen so that the expectation values of local conserved
quantities partly reproduce those of the Gibbs ensemble,
while some deviate from it. Concretely, we impose the
following equality:

Tr
[
Î+
n ρGGE,target

]
= 〈Î+

n 〉β for n = 0, 1, (D1)

Tr
[
Î+
n ρGGE,target

]
= 〈Î+

n 〉β + εIL for 2 ≤ n < L

2
, (D2)

Tr
[
Î−n ρGGE,target

]
= 〈Î−n 〉β , (D3)

where 〈Îσn 〉β is the expectation values of LIOMs of the
Gibbs ensemble at the inverse temperature β = 0.4.
Note that εI determines the deviation between the tar-
get GGE and the Gibbs ensemble. For simplicity, we
constantly take εI = 0.05 for every L. In addition,

we set Tr
[
Î+
L/2ρGGE,target

]
= 0 because the fermionic

tight-binding Hamiltonian obtained from the Jordan-
Wigner transformation (Eq. (13) in the main text) is
anti-periodic when the fermionic particle number Nf is
even.

We remark that the LIOMs with n = 0, 1 correspond to
the total particle number and energy, respectively. Thus,
this target GGE shares only the expectation values of the
total particle number and energy with the Gibbs ensem-
ble. Therefore, in order to prepare the subsystem whose
size is larger than two, we need to control additional LI-
OMs other than the particle number and energy.



12

FIG. E3. The distance, given by Eq. (10), between the
target GGE in Sec. V B and the corresponding tGGE with
nlocal = 4.

Appendix E: The distance between the GGE and
the tGGE

To quantify the difference between the tGGE and the
target GGE considered in Sec. V B, we show the dis-
tance D(ρGGE, ρtGGE) in Fig. E3 (see Eq. (10) for the
definition). We observe that the tGGE and the GGE
agree well when LA ≤ nlocal + 1, whereas they deviate
when LA > nlocal + 1. This result is compatible with
Ref. [72], which consider the integrable parameter region
of transverse-field Ising chain.

Appendix F: System-size dependence of learning
progress

In this section, we analyze the system-size dependence
of the reinforcement learning progresses. Figures F4 show
the learning curves of physical observables for different
system sizes. They tell us that the number of updates
required to learn the optimal protocols is almost inde-
pendent of the system size. We suppose that this feature
is related to the fact that our method considers only local
properties, which are independent of the system size.

Appendix G: Learning for other initial states and
unitaries

In this section, we provide the results of the deep RL
considering different unitary generators and initial states.
The choices of unitary generators and initial state are
shown in Table V. The target state is the same as the
one in Sec. IV B, and the system size L = 14.

Figure G5 (a) shows the learning curves of the RL
agent corresponding to choices (i)–(v), respectively. We
can see that, as the number of training episodes increases,
all RL agents corresponding to the different choices learn
the better protocols that achieve smaller energy devia-
tion.

(a)

(b)

FIG. F4. The system-size dependence of the learning
progresses for local preparation of (a) Gibbs ensembles in
Sec. IV B and (b) GGE in Sec. V B. These figures show the
deviation of (a) the energy density and (b) the LIOM densi-
ties, respectively. Each figure represents the average regard-
ing different protocols learned independently to perform the
finite-size scaling in Fig. 4 or Fig. 8. The insets show the
number of updates required to bring the deviations below a
certain threshold of (a) 0.02 and (b) 0.01, respectively.

Initial states Generators

(i) Ground Same as Sec. IV B

(ii) Ground ĤIsing,
∑L
l=1 Jσ̂

z
l σ̂

z
l+1 + hσ̂zl , g

∑L
l=1 σ̂

x
l

(iii) Product ĤIsing,
∑L
l=1 Jσ̂

z
l σ̂

z
l+1 + hσ̂zl , g

∑L
l=1 σ̂

x
l

(iv) Product
∑L
l=1 Jσ̂

z
l σ̂

z
l+1 + hσ̂zl , g

∑L
l=1 σ̂

x
l

(v) Product
∑L
l=1 σ̂

z
l σ̂

z
l+1,

∑L
l=1 σ̂

z
l ,

∑L
l=1 σ̂

x
l

TABLE V. The choices of initial state and unitary generators
in Appendix G. Ground means the corresponding initial state
of the preparation is the ground state. Product means the
corresponding initial state of the preparation is the product
state which is the same as the one used in Sec. IV B.

Figures G5 (b)–(e) display the dynamics of local ob-
servables obtained by the preparation protocol learned by
the RL agent. All of them converge to the correspond-
ing values of the Gibbs ensemble represented by the red
horizontal lines.

In Fig. G6, we show the time average of the distance
function (10) of the subsystems between the target Gibbs



13

(b)

(a)

(c)

(d) (e)

FIG. G5. The result of the deep RL considering different
unitary generators and initial states. The choices of unitary
generators and initial state are shown in Table V. (a) The
learning curves for local preparation of the Gibbs ensem-
ble of transverse field Ising model which is the same as the
one used in Sec. IV B. Each curve shows the energy devi-
ation calculated for the prepared states by learning corre-
sponding to each choice (i)–(v). The horizontal axis shows
the number of parameter updates. (b)–(e) The dynamics of
local observables generated by the state preparation proto-
col learned by the deep RL. The red horizontal lines show
the corresponding expectation values of the target Gibbs en-
semble. Each panel displays (b) energy density ĤIsing/L,

(c) Z(1)/L = L−1 ∑
l σ̂

z
l , (d) Z(2)/L = L−1 ∑

l σ̂
z
l σ̂

z
l+1, and

(e) Z(3)/L = L−1 ∑
l σ̂

z
l σ̂

z
l+1σ̂

z
l+2. The system size is L = 14,

with the inverse temperature set as β = 0.2.

state and the prepared state. The values in these results
are comparable to those in Sec. IV B, and we can conclude
that the prepared states under choices (i)–(v) are typical.

Surprisingly, even for choices (iv) and (v), which can-

not use ĤIsing, the observables (d)–(e), which are not
used for the reward, converge to the target values and
the distances between the subsystems get small. We sup-
pose that the unitary time evolutions, which maintain a
steady state with respect to the observables added to the
reward (the energy and total magnetization), are equiv-

alent to the time evolutions by ĤIsing effectively, which
makes the prepared state typical. We point out the con-
nection to the studies [77] where the steady state has
embedded Hamiltonian information that can be used to
infer the parameters of the Hamiltonian. Of course, this
phenomenon may be model-dependent and needs to be

FIG. G6. The distance of the reduced density operators
whose size is two from the target Gibbs state used in Sec. IV B.
The red circles represent the prepared state considering dif-
ferent unitary generators and initial states. The choices of
unitary generators and initial state are shown in Table V. The
horizontal black dashed line shows the result for the product
state which is the same as the one used in Sec. IV B. The
horizontal black dotted line represents the ground state. The
system size L = 14.
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FIG. H7. The eigenenergy density dependence of the eigen-
state expectation values of L−1 ∑L−1

l=0 σxl , that is, we plot

{〈Eα|
∑L−1
l=0 σxl |Eα〉 /L}α, where {|Eα〉}α are the eigenstates.

The Hamiltonian is ĤIsing, whose parameters are the same as
the ones used in Sec. IV B. We can observe that eigenstates in
an energy shell share a typical value, which is a microcanoni-
cal ensemble average. Furthermore, these typical values show
the nonlinear dependence on the eigenenergy density. The
system size L = 16.

verified more precisely.

Appendix H: Eigenstate thermalization hypothesis

In this section, we briefly describe the eigenstate ther-
malization hypothesis (ETH), a hypothesis about the
typical behavior of eigenstates in an energy shell. Fur-
thermore, by looking at the dependence of eigenstate ex-
pectation values of the total magnetization

∑
l σ

z
l /L on

eigenstate energy density, we can infer the cause of the
successful local preparation by using the total magneti-
zation as an additional local observable of the reward for
RL in Sec. IV B.

The idea that the energy eigenstates satisfy the canoni-
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cal typicality is called the ETH [87–89]. The ETH claims
that every energy eigenstate in the energy shell represents
thermal equilibrium. More concretely, the energy eigen-
states give the same expectation values of macroscopic
observables as the relevant microcanonical ensemble for
a large system:

〈Eα|Ô|Eα〉 ≈ 〈Ô〉MC (H1)

for every energy eigenstate |Eα〉 in an energy shell, where
〈·〉MC is the corresponding microcanonical ensemble av-
erage. Based on the ETH, we can explain the thermal-
ization mechanism of isolated quantum many-body sys-
tems [53, 56, 90]. The ETH has been verified numerically
for few-body observables in a variety of non-integrable
quantum many-body lattice models [73, 91–96].

In addition, a power-law decay with the dimension of
the corresponding energy shell is observed for the vari-
ance of the energy eigenstate expectation values in the
energy shell:

σ2
ETH :=

1

d

∑
α

[
〈Eα|Ô|Eα〉 − 〈Ô〉MC

]2
, (H2)

where d is the dimension of the energy shell, that is, the
variance decays exponentially with the system size [91].

In Fig. H7, we show the eigenenergy density depen-
dence of the eigenstate expectation values of total mag-

netization L−1
∑L−1
l=0 σxl , which is the additional local ob-

servable of the reward for RL in Sec. IV B. The Hamil-
tonian is ĤIsing, whose parameters are the same as the
ones used in Sec. IV B. Figure H7 shows that eigenstates
in an energy shell have a typical value. This behavior is
consistent with the ETH.

As we noted in Sec. III B 1, it is nontrivial to deter-
mine how many observables we need to embed the pre-
pared state into a single energy shell. In Fig. H7, we
also observe the nonlinear dependence of the typical val-
ues on energy densities. In particular, the dependence
looks like strictly convex. We conjecture that this strict
convexity helps the prepared state consist of eigenstates
within a single energy shell for our demonstration in the
non-integrable transverse-field Ising model.

Appendix I: Numerical methods

1. Non-integrable systems

For the numerical calculations regarding non-
integrable systems, we adopt rigorous standard methods
considering the Hilbert space whose dimension d scales
exponentially with the system size. To calculate effi-
ciently, the Hilbert space is resolved by the parity and
momentum symmetry. Specifically, the calculation is
limited to the zero-momentum sector and the parity-
symmetric sector. The time evolution is performed by
simply calculating U |ψ〉, which is multiplication of a
d×d matrix by a d-dimensional vector. The construction

of the symmetry-resolved basis and the time-evolution
are implemented with QuSpin [80, 81].

2. Non-interacting integrable systems

In contrast to the numerical calculation regarding non-
integrable systems, the calculations regarding integrable
systems are done by exploiting the fact that the XX
model can be mapped to a free fermionic system. In this
section, we provide the details on the numerical methods
used in Sec. V B, which corresponds to the preparations
in the XX model.

Specifically, we will first discuss the Slater determi-
nant, which efficiently describes free fermionic states, and
then the time evolution of the Slater determinant. Next,
we will explain how to calculate the expectation values
of the fermionic observables, and finally how to calculate
the expectation values of the observables consisting of
hard-core bosons (HCBs), which is used to calculate the
observables consisting of Pauli operators.

a. Slater determinant

The wave function |ψF〉 of free-fermionic systems can
be represented by a Slater determinant, namely a product
of single-particle states:

|ψF〉 =

Nf∏
m=1

(
L∑
l=1

Pl,mâ
†
l

)
|0〉 , (I1)

where P is the L×Nf matrix of components of |ψF〉 and
|0〉 represents a vacuum.

b. Time evolution

The time-evolution of |ψF〉 under the unitary oper-

ator Û generated by a quadratic Hamiltonian Ĥq :=∑L
m,n=1Hm,nâ

†
mân with time length δt can be calculated

as:

Û |ψF〉 =

Nf∏
m=1

(
L∑
l=1

(UP )l,m â
†
l

)
|0〉 . (I2)

This calculation is performed by multiplication of an L×
L unitary matrix U = exp [−iHδt] by an L×Nf matrix
P .

c. Fermionic observables

Consider observables which are quadratic in fermions:

Â :=
∑L
m,n=1Amnâ

†
mân. The expectation values of such
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observables are calculated as:

〈ψF|Â|ψF〉 =
∑
m,n

Amn 〈ψF|â†mân|ψF〉 (I3)

=
∑
m

Amm −
∑
m,n

Amn 〈ψF|ânâ†m|ψF〉 (I4)

=
∑
m

Amm −
∑
m,n

AmnG
F
nm, (I5)

where GF
nm := 〈ψF|ânâ†m|ψF〉 is the equal-time Green’s

function for fermions.

The creation of a particle at site m by acting â†m on
|ψF〉 is represented by the addition of one column to P
with the m-th element Pm(Nf+1) = 1 and the rest are 0.
In what follows, we denote the new component matrix of
Slater determinant by PF(m), which is L×(Nf +1) matrix
and generated by creating a fermion at site m on the
Slater determinant represented by P . Because the inner
product of two Slater determinants is calculated by the
determinant of the product of the component matrices,
the equal-time Green’s function for fermions is calculated
as:

GF
nm = det

[(
PF(n)

)†
PF(m)

]
. (I6)

When the columns of P are orthonormal vectors, we

can derive det
[(
PF(n)

)†
PF(m)

]
= δnm −

∑Nf

k=1 PnkP
∗
mk,

which results in

〈ψF|Â|ψF〉 = Tr
[
P †AP

]
. (I7)

d. Hard-core bosonic observables

Next, we consider how to compute the expectation val-
ues of observables consisting of Pauli operators. In this
section, we consider HCBs in order to introduce the cre-
ation and annihilation picture of particles. Here, we de-
note the creation and annihilation operators for a HCB

acting on site m by b̂†m and b̂m, respectively. HCB op-

erators are introduced as b̂†m = (σ̂xm + iσ̂ym) /2, b̂m =
(σ̂xm − iσ̂ym) /2. The calculating method described here
follows the technique used in Refs. [54, 97–99].

Consider observables which is quadratic in HCBs:

B̂ :=
∑L
m,n=1Bmnb̂

†
mb̂n. The expectation values of such

observables are calculated as:

〈ψF|B̂|ψF〉 =
∑
m

Bmm
(
1−GB

mm

)
+
∑
m6=n

BmnG
B
nm,

(I8)

where GB
nm := 〈ψF|b̂nb̂†m|ψF〉 is the equal-time Green’s

function for HCBs.
The action of b̂†m = â†m

∏m−1
l=1 e−iπâ

†
l âl on |ψF〉 is rep-

resented by a change of sign on the element Pkl for
k ≤ m − 1, and then the addition of one column to P
with the m-th element Pm(Nf+1) = 1 and the rest are 0.
As a result, the Green’s function for HCBs is calculated
as:

GB
nm = det

[(
PB(n)

)†
PB(m)

]
, (I9)

where PB(m) is the new component matrix of Slater de-
terminant, which is generated by creating a HCB at site
m on the Slater determinant represented by P .
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