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Optomechanical Brillouin nonlinearities—arising from the coupling between traveling photons
and phonons—have become the basis for a range of powerful optical signal processing and sensing
technologies. The dynamics of such interactions are largely set and limited by the host material’s
elastic, optical, and photo-elastic properties, which are generally considered intrinsic and static.
Here we propose and theoretically show that it is feasible to dynamically reconfigure the Brillouin
nonlinear susceptibility in transparent semiconductors through acoustoelectric phonon-electron cou-
pling. Acoustoelectric interactions permit a wide range of tunability of the phonon dissipation rate
and velocity, perhaps the most influential parameters in the effective optomechanical cooperativ-
ity and Brillouin nonlinear susceptibility. We develop a Hamiltonian-based analysis that yields
self-consistent dynamical equations and noise coupling, allowing us to explore the physics of such
acoustoelectrically enhanced Brillouin (AEB) interactions and show that they give rise to a signifi-
cant enhancement of the performance of Brillouin-based photonic technologies. Moreover, we show
that these AEB effects can drive systems into regimes of fully-coherent scattering that resemble
the dynamics of optical parametric processes, significantly different than the incoherent traditional
Brillouin limit. We propose and computationally explore a particular semiconductor heterostructure
in which the acoustoelectric interaction arises from a piezoelectric phonon-electron coupling. We
find that this system provides the necessary piezoelectric and carrier response (k2 ≈ 6%), favorable
semiconductor materials properties, and large optomechanical confinement and coupling [|g0| ≈ 8000
(rad/s)

√
m] sufficient to demonstrate AEB enhanced optomechanical interactions.

I. INTRODUCTION

Optomechanical Brillouin interactions are unique
amongst nonlinear optical processes in that they are en-
abled by phonons and consequently depend sensitively
on the elastic properties of a material [1–3]. In opti-
cal waveguides, the supported phonon modes determine
the types of allowed stimulated Brillouin scattering (SBS)
processes, including the traditional intra-modal backward
(Fig. 1a), intra-modal forward, or inter-modal forward
SBS (Fig. 1b), as well as the characteristic SBS frequen-
cies, nonlinear coupling strengths, and bandwidths. Lever-
aging these distinctive properties, SBS has become the ba-
sis for a range of flexible and powerful optical signal pro-
cessing technologies such as amplifiers [4–6], lasers [7–12],
filters [13–17], nonreciprocal devices [18–21], and optical
delay lines [22–24]. Despite the wide application space for
SBS devices, however, the dynamics and resulting utility
of these interactions have historically been limited by the
host material’s intrinsic elastic and optical properties [25].
In particular, two fundamental material properties that
determine the effective optomechanical cooperativity and
Brillouin susceptibility are the phononic dissipation rate
and velocity. Although these properties and the resulting
Brillouin susceptibility can be significantly enhanced by
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patterning materials into waveguides [26], the underlying
material properties are generally considered intrinsic and
static, and in a given material they ultimately limit the
strength of these scattering processes and the performance
of devices utilizing them.

In this context, the ability to electrically control
phononic loss, or even induce phononic gain, could en-
able dynamic reconfigurability of the Brillouin suscepti-
bility, suppressing or enhancing the nonlinear response by
orders of magnitude on demand. Coulomb drag interac-
tions between electrons and phonons in semiconductors
provide a powerful mechanism to deterministically modify
the phonon velocity and dissipation [27]. This Coulomb
drag effect is achieved in practice by applying external,
quasi-static electric fields to the semiconductor charge car-
riers to produce a drift current; the drifting carriers then
interact with and become spatially polarized by the gen-
erated charge distribution of the phonons via the electric
fields they induce, as depicted in Fig. 1c-d. The resulting
coupling between the two moving charge distributions ul-
timately allows non-reciprocal amplification, attenuation,
and velocity modification of the phonons. Although the
acoustoelectric effect can be produced by different mecha-
nisms in many materials [28, 29], the strongest interactions
were predicted to exist [27] and then observed in piezoelec-
tric semiconductors [30]. Early work in these bulk systems
used electromechanical transducers for coherent measure-
ments of acoustoelectric gain [31, 32] and cleverly even
used spontaneous Brillouin scattering to spatially probe
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FIG. 1. Essential physical system for acoustoelectrically (AE) enhanced stimulated Brillouin scattering (SBS). B(z, t), As(z, t)
and Ap(z, t) represent the phonon, Stokes, and pump fields, respectively. (a) Backward intra-modal and (b) forward inter-modal
SBS. (c) Elastic wave creating an acoustoelectric current through the acoustoelectric effect. (d) AE gain applied with an external
DC field. (e) Composite system permitting AE-enhanced stimulated Brillouin scattering. (f) Bulk model prediction of the relative
change of (left) the SBS gain spectrum with AE amplification as compared to the peak ABS gain without AE amplification, and
(right) the SBS dispersion compared to peak SBS gain rate (vg,sGBPp) without AE effects. For clarity, the curves with drift fields
of (1.6,1.2,0.8,0.4,0.0) kV/cm are respectively displaced vertically by (20,15,10,5,0).

the temporal response of thermally excited acoustoelectric
domains [33–37].These spontaneous Brillouin demonstra-
tions beg the question of whether it is possible to reverse
the roles—i.e., use the acoustoelectric effect to probe and
even control the nonlinear susceptibility resulting from
backaction-induced stimulated Brillouin scattering. More-
over, given the recent advances in on-chip SBS devices and
the enhanced performance of heterostructure acoustoelec-
tric devices [38–53], the possibility of leveraging acousto-
electric coupling to control and enhance Brillouin inter-
actions within highly customizable integrated devices is
especially tantalizing.

Here, we describe how stimulated Brillouin interactions
can be modified by the acoustoelectric effect using exter-
nally applied electric fields, enabling control over the ef-
fective optomechanical cooperativity and nonlinear opti-
cal susceptibility. Through detailed optical and electro-
mechanical simulations, we show that straight-forward
modifications of our recently developed heterostructure
platform for acoustoelectric radio-frequency signal pro-
cessing devices [47, 48] provide a powerful platform for
demonstrating and using these effects, simultaneously al-
lowing large optomechanical confinement and coupling
[|g0| ≈ 8000 (rad/s)

√
m] and acoustoelectric coupling

(k2 ≈ 6%). We derive a general Hamiltonian frame-
work that describes the coupled acoustoelectric and op-
tomechanical interactions and show that acoustoelectric
modifications to both the real and imaginary parts of the
Brillouin susceptibility lead to effects and dynamics that
would not be expected with intrinsic material properties.
Using the proposed heterostructure as an example system
for concrete physical predictions, we analytically show how
modification of the phonon dissipation rates through ap-
plication of quasistatic electric fields in the semiconduc-

tor can drastically improve the performance of archety-
pal Brillouin photonic devices such as Brillouin amplifiers,
lasers, nonreciprocal devices, and delay lines. Moreover,
we show that these acoustoelectrically enhanced Brillouin
interactions allow Brillouin scattering processes to go from
a regime where the phonon coherence lengths (∼ 100 µm)
are significantly less than those of the photons (∼ cm)—
behaving effectively as incoherent scatterers—to one in
which the phonon coherence lengths can achieve parity
with and even exceed those of the photons, enabling fully
coherent scattering processes that resemble the dynam-
ics of optical parametric amplification [54]. We then dis-
cuss future prospects for achieving these effects in other
materials platforms as well as their application to cavity
optomechanical systems.

II. PROPOSED CANDIDATE PHYSICAL
SYSTEM

To enable reconfigurable Brillouin optomechanics
through acoustoelectric control of phonon dissipation, we
seek a traveling-wave optomechanical physical system that
(1) guides and tightly confines optical and elastic waves,
(2) supports non-zero Brillouin coupling, and (3) ex-
hibits an acoustoelectric coupling between phonons and
electrons—as depicted in Fig. 1e. This combination of
system properties allows us to modulate the Brillouin sus-
ceptibility using an applied electric field.

The basic elements of the experimental system under
consideration are shown heuristically in Fig. 2a. Opti-
cal pump and Stokes waves of spatiotemporal mode am-
plitudes Ap(z, t) and As(z, t), respectively, are injected
in a counter-propagating configuration on-chip through
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FIG. 2. (a) Heuristic illustration of the basic system and device operation mechanism. (b) Illustration of the InGaAsP on
Y-cut lithium niobate on silicon material system for acoustoelectrically enhanced Brillouin devices (not to scale). The key
geometric design parameters are shown as well as (c) the defined material orientation parameters (not to scale). (d) Phase-
matched phonon wavelength as a function of waveguide geometry parameters for backward intra-modal Brillouin scattering (blue
circle highlights the chosen waveguide dimensions). (e) Simulated elastic and optical mode shapes with profiles of each strain
component. For each normalized strain profile, the relative magnitude between the strain components is shown in parenthesis.
(f) The calculated optomechanical coupling coefficient (black) and piezoelectric coupling coefficient (red) for each phase-matched
elastic mode simulated with the chosen waveguide dimensions. The elastic mode with the highest optomechanical and piezoelectric
coupling is highlighted (black box).

grating couplers. The Stokes wave is red-shifted from
the pump wave by the Brillouin frequency, such that the
energy conservation and phase-matching conditions for
SBS are satisfied when considering the interaction medi-
ated by the elastic field B(z, t) within the optomechan-
ical waveguide. As the Stokes wave traverses the inter-
action region, energy is transferred from the pump wave
to the Stokes wave through dynamical Bragg scattering—
producing SBS gain on the Stokes wave—which subse-
quently exits through the grating coupler (see Fig. 2a). To
modify the nonlinear optical susceptibility and SBS gain
experienced by the Stokes wave, the device is configured
to support acoustoelectric phonon gain. By applying a po-
tential difference on the two electrical contacts, a drift field
can be generated within the interaction region such that
energy from moving charge carriers can be transferred to
the phonon field, reducing the effective phonon dissipation
rate, and thereby reconfiguring the SBS susceptibility.

Building on our recent work in acoustoelectric het-
erostructures [47, 48], we propose the following phys-
ically realizable system to explore and harness acous-
toelectrically modified Brillouin dynamics. The sys-
tem seen in Fig. 2b-c consists of a hybrid photonic-
phononic waveguide patterned out of epitaxially grown
In0.712Ga0.288As0.625P0.375, which is bonded to a Y-cut
lithium niobate thin film on a silicon substrate (InGaAsP-
LN-Si). Here, the InGaAsP thin film is used as the optical

guiding layer in addition to the semiconductor layer that
provides the necessary free carriers for the acoustoelectric
effect. Because a small carrier density (∼ 1016 cm−3) is
sufficient to produce a strong acoustoelectric gain, these
free carriers have negligible to minimal impact on the lin-
ear optical losses [48, 55]. For the elastic modes and qua-
ternary composition considered in this work, the longi-
tudinal and shear acoustic phase velocity in InGaAsP is
smaller than in lithium niobate, allowing for a high degree
of acoustic confinement. The higher thermal conductivity
of the silicon substrate improves the heat dissipation of
the system, which reduces the thermal effects of the Joule
heating in the InGaAsP and allows for continuous opera-
tion of the acoustoelectrically enhanced Brillouin devices
(see Appendix B). The optomechanical coupling, g0, is a
function of the overlap between the co-localized optical
and elastic modes (see Appendix A), while the acousto-
electric gain is governed by the interaction of the electric
potential of the elastic wave in the piezoelectric and the
free carriers in the semiconductor. Given these considera-
tions, the InGaAsP-LN-Si heterostructure provides the es-
sential acoustoelectric and optomechanical ingredients for
acoustoelectrically reconfigurable Brillouin optomechan-
ics.

To determine the accessible experimental performance
of such a waveguide structure, we carry out finite element
simulations of the optical modes, the electric and strain
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FIG. 3. Acoustoelectric phonon amplification as a function of
drift field, highlighting the accessible regimes of dynamics.

fields of the elastic modes, along with g0 and the relevant
piezoelectric coupling k2 (see Appendix A), for a variety of
Brillouin optomechanical interactions and device geome-
tries. Figure 2b-c highlights key geometric parameters to
consider when designing an acoustoelectrically enhanced
Brillouin device (see Appendix A for more details). The
width (w) and thickness (t) of the InGaAsP waveguide not
only determines the confinement and effective index of the
optical modes, but it also determines the lateral and verti-
cal confinement of the elastic mode in the InGaAsP-LN-Si
system. The phonon wavelength (λm) sets the operating
phonon frequency and elastic mode shape given a partic-
ular waveguide cross section. Finally, since this physical
system includes anisotropic materials, the propagation an-
gle (β) in the device plane and the acoustic polarization
play a critical role in determining the acoustoelectric and
optomechanical coupling.

With these considerations, we simulate the relevant op-
tical modes, determine the phonon wavelength through
the phase-matching condition, simulate the elastic mode
with the appropriate periodic boundary condition, and
then calculate the optomechanical overlap integrals and
piezoelectric coupling (k2) (see Fig. 2d-f and Appendix A
for more details). Figure 2e highlights a particular
mode triplet (required by the 3-wave Brillouin process)
that demonstrates excellent Brillouin optomechanical and
acoustoelectric properties, with a distributed optomechan-
ical coupling rate of |g0| = 7943 (rad/s)

√
m and electrome-

chanical coupling k2 = 5.87% (for details on these calcu-
lations, see Appendix A). The elastic mode that mediates
this backward Brillouin interaction at telecom wavelengths
is a Rayleigh-like waveguide mode with a center frequency
of 8.78 GHz and an acoustic velocity of 3072 m/s.

Equipped with the optomechanical and acoustoelectric
couplings, we now have the necessary parameters to exam-
ine the accessible dynamics for this particular mode triplet
(see Eq. 1). For acoustoelectric gain, a key parameter
is the electric field at which the free carrier drift veloc-
ity, vd, equals the phonon phase velocity, vm, which we
call the equal-velocity point (vd = vm). At electric fields
lower (higher) than this point, the acoustoelectric mate-

rial causes phononic loss (gain). Using the normal mode
theory developed by Kino and Reeder [56], the acousto-
electric phonon gain as a function of applied drift field
near this equal-velocity point is plotted in Fig. 3. Here
we assume an electron mobility of 2000 cm2/Vs and an
intrinsic phonon spatial decay rate of 3100 dB/cm, corre-
sponding to an acoustic quality factor of 250. This loss
rate defines the distinct, acoustoelectric-enabled regimes
of operation that will be explored in Section III. With
these conditions, the drift field needed to reach the equal
velocity point is 150 V/cm. Increasing the drift field fur-
ther, we enter the acoustoelectrically enhanced Brillouin
(AEB) regime in which the phonon loss is reduced by the
net acoustoelectric gain. As the strength of the drift field
increases, we approach the acoustoelectric coherent Bril-
louin limit, defined as the point at which the acousto-
electric gain matches the intrinsic phonon losses; as we
will see in Section III C, this yields parametric-like three-
wave dynamics. If, by contrast, we apply a field below the
equal-velocity point or with a negative polarity, additional
phonon loss is introduced (lossy Brillouin regime). In this
case, the Brillouin coupling can either be substantially en-
hanced or reduced, allowing for dynamical switching of the
optomechanical response.

III. ACOUSTOELECTRIC BRILLOUIN
DYNAMICS

We present a general analysis of the effects of acousto-
electric phonon gain on the nonlinear susceptibility and
spatio-temporal dynamics of optomechanical Brillouin in-
teractions using the InGaAsP-LN-Si physical system as a
concrete example for physical predictions (see Section II).
In this system, the Hamiltonian governing a stimulated
(Stokes) optomechanical Brillouin response can be ex-
pressed as [25],

H int
B = ~

∫
dz
[
g0A

†
p(z, t)As(z, t)B(z, t)

]
ei(qm−∆ks)z + h.c.

(1)
where Ap(z, t), As(z, t), and B(z, t) are the envelope oper-
ators for the pump, Stokes, and phonon fields, respectively,
g0 is the distributed optomechanical coupling of the waveg-
uide system, and qm−∆ks represents the phase-mismatch
between the wavevectors of the phonon (qm) and the op-
tical beat pattern (∆ks = kp − ks) [25].

When phase-matching is satisfied (i.e., qm −∆ks = 0),
the Heisenberg equations of motion yield

∂B̄

∂t
= −i(Ωm − Ω)B̄ − Γ

2
B̄ + vg,b

∂B̄

∂z
− ig∗0Ā†sĀp + η

∂Āp

∂t
= −γp

2
Āp + vg,p

∂Āp

∂z
− ig0ĀsB̄ + ξp

∂Ās

∂t
= −γs

2
Ās − vg,s

∂Ās

∂z
− ig∗0ĀpB̄

† + ξs

(2)
where B̄(z, t) = B(z, t) exp(iΩt), Āp(z, t) =
Ap(z, t) exp(iωpt), and Ās(z, t) = Ap(z, t) exp(iωst)
are the slowly varying phonon, pump, and Stokes
envelopes in the rotating frame, with the condition
Ω = ωp − ωs; Ωm is the natural mechanical frequency
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of the phonon mode, while vg,b, vg,p, and vg,s represent
the group velocities for the phonon, pump, and Stokes
fields. We also note that Eq. 1 includes the effects of
dissipation—denoted by Γ, γp, and γs for the phonon,
pump, and Stokes fields, respectively—and therefore
requires thermal and vacuum noise terms η, ξp, and ξs,
according to the fluctuation-dissipation theorem.

We next examine the impact of the acoustoelectric
phonon gain or loss on these dynamics. For this pur-
pose we develop a Hamiltonian formulation for the cou-
pled dynamics of the electric potential, drift current, and
elastic waves. This treatment provides (1) a general de-
scription for the acoustoelectric coupling for waveguides
of arbitrary cross-sectional geometry, (2) yields the acous-
toelectric gain, loss and dispersion in terms of coupling
parameters (see κω,` below) quantified by (overlap) inte-
grals of products of the piezoelectric coupling and elastic
and electric potential modes over the waveguide cross sec-
tion, and (3) naturally lends itself to noise analysis leverag-
ing the fluctuation-dissipation theorem [57]. These acous-
toelectric dynamics can be captured by the Hamiltonian
given by

HAE = ~
∑
`

∫
dω

∫
dz

[
Φ†ω`±(z)ω̂±Φω`±(z)

+ κω,`±Φωl±(z)

(
B†(z)
B(z)

)
+H.c.

]
,

(3)

where Φω`± and B are the envelope operators for the elec-
tric potential and phonon fields, respectively, l labels bulk
and surface modes of the potential and κω,`±, quantifies
the acoustoelectric coupling defined in Appendix C. The ±
suffix denotes potential envelopes with carrier wavevectors
co-propagating (+) and counter-propagating (−) with the
phonon: the co-propagating (counter-propagating) enve-
lope is selected when the phase velocity of sound is less
(greater) than the drift of velocity of the current. Within
this coupled-envelope framework, the oscillation frequency
of the mode ω̂± = ω ± vdqm − ivd · ∇ is operator valued,
capturing the effects of temporal oscillations, current drift
(given by vd = µEDC, where EDC is the applied drift field)
and slowly-varying spatial dynamics of the potential am-
plitude. Here, ω denotes the normal mode frequency of the
potential in the absence of a drift current of speed vd and
qm is the carrier wavevector of the phonon and potential
within the slowly-varying envelope approximation.

When an applied electric field causes free carriers to
drift at a velocity greater than the acoustic wave, the
acoustoelectric effect produces a spatial phonon gain
given by αAE = −

∑
` 2π|κω−vdqm,`|2/vg,b. Noting that

|κω−vdqm,`|2 ∝ (vm−vd) where vm is the phonon phase ve-
locity, we recover the essential features of acoustoelectric
gain. Namely, acoustoelectric amplification (excess atten-
uation) occurs when the drift velocity exceeds (falls below)
the phonon phase velocity. In the case of a Brillouin-active
optomechanical system, the effects of acoustoelectric gain
and the accompanying velocity shift as illustrated by Fig.
1f can be described by a modified complex dissipation
Γ → Γ̃ within the coupled envelope equations (Eq. 2),

where Γ̃ = 2i∆ΩAE + Γ − GAE. Here ∆ΩAE denotes
the acoustoelectric shift in the resonance frequency and
GAE quantifies the phonon gain as a time rate such that
GAE = vg,bαAE (see Appendix for more details).

To elucidate the impact of acoustoelectric gain on the
nonlinear Brillouin susceptibility, we will semi-classically
treat this phenomena in the undepleted pump limit, for
the moment ignore the noise terms (for noise analysis see
Appendix D), and move to the Fourier domain {f [ω] =∫∞
−∞ f(t) exp(iωt)dt}, which yields

(
−iω +

γs

2

)
Ās[z, ω] + vg,s

∂Ās[z, ω]

∂z
= −ig∗0ĀpB̄

†[z, ω]

i(Ω− Ωm −∆ΩAE − ω)B̄[z, ω] +
Γ−GAE

2
B̄[z, ω]+

vg,b
∂B̄[z, ω]

∂z
= −ig∗0ĀpĀ

†
s [z, ω].

(4)
These spatial equations in the frequency domain are the
basis for a range of acoustoelectric Brillouin device physics
that we explore below.

A. Acoustoelectrically enhanced Brillouin (AEB)
limit

We now focus on the particular case in which the spatial
coherence length of the phonon field, despite gain from the
acoustoelectric effect, is significantly shorter than that of
the optical fields [58]. We will explore the case of near
equal coherence lengths in Section III C. In this acous-
toelectrically enhanced Brillouin (AEB) limit, the spatial
dynamics of the phonon field can be adiabatically elimi-

nated (i.e., vg,b
∂B̄[z,ω]
∂z ≈ 0) [58], yielding

B̄[z, ω] = −ig∗0χAE
B [ω]ĀpĀ

†
s [z, ω]. (5)

Where the acoustoelectrically modified phonon suscepti-
bility is given by χAE

B [ω] = [i(Ω − Ωm − ∆ΩAE − ω) +
(Γ − GAE)/2]−1. Through the stimulated Brillouin pro-
cess, this modification translates into an acoustoelectric
Brillouin nonlinear optical susceptibility χAEB

s [ω] in the
dynamics of the Stokes wave such that

−iωĀs[ω, z] +
αvg,s

2
Ās[ω, z]

+ vg,s
∂Ās[z, ω]

∂z
= χAEB

s [ω]Ās[ω, z],

(6)

where α is the spatial optical decay rate and χAEB
s [ω] =

|g0|2|Āp|2χAE
B [ω].

Thus, through this acoustoelectrically enhanced stimu-
lated Brillouin process, a Stokes field with initial condi-
tions Ās[0, ω] is amplified as

Ās[z, ω] = Ās[0, ω] exp

[(
−iω
vg,s
− α

2
+
GBPΓχAE∗

B [ω]

4

)
z

]
,

(7)
where the Brillouin gain coefficient power product GBP
is given by GBP = 4|g0|2|Āp|2/(Γvs). Inspecting the res-
onance condition (i.e., ω = 0,Ω = Ωm + ∆ΩAE), reveals
a gain (loss) factor that is exponentially increased (de-
creased) by the acoustoelectric modified phonon dissipa-
tion, specifically
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|Ās[z, 0]|2

|Ās[0, 0]|2
= exp

[(
GBP

Γ

Γ−GAE
− α

)
z

]
, (8)

revealing that the ability to modify the nonlinear suscep-
tibility through acoustoelectric coupling enables in situ
reconfigurability of the optical SBS gain.

This enhancement can also be expressed in terms of
the effective optomechanical cooperativity for a contin-
uous system, which can be defined as [59]

Ceff = GB,effPLeff =
4|g0|2|Ap|2Leff

Γeffvg,s
=

4|g0|2|Ap|2

(Γ−GAE)γ
, (9)

where the effective optical dissipation rate is γ = vg,s/Leff .
From Eq. 9, it is clear that addition of the acoustoelectric
gain GAE can significant modulate the effective optome-
chanical cooperativity of the system.

In addition to the gain and cooperativity enhancements,
we explore thermal-mechanical Brillouin noise under the
influence of acoustoelectric gain and find that the SBS
noise factor from these thermal fluctuations scales as

F ≈ 1 + nth

(
Γ

Γ−GAE

)
, (10)

where nth is the thermal occupation of the phonon mode
given by the Bose-Einstein distribution (for a detailed
derivation, see Appendix D). When the intrinsic acousto-
electric noise is small relative to thermomechanical noise
(see Appendix D for more details), these results suggest
that near quantum limited amplification may be possible
in the limit of low temperatures (i.e., when kBT � ~Ωm).

B. Performance of acoustoelectric Brillouin-based
devices

Acoustoelectric phonon gain directly modifies the non-
linear optical susceptibility through an enhancement in the
effective Brillouin gain coefficient, which is inversely pro-
portional to the phonon dissipation rate. These enhanced
dynamics have important consequences for Brillouin-based
devices such as amplifiers, lasers, nonreciprocal devices,
optomechanical delay among others—especially in chip-
scale systems where the accessible levels of Brillouin gain
have been historically limited.

1. Brillouin amplifiers

The performance of Brillouin-based amplifiers—used in
a range of signal processing [60], filtering [5, 13], and op-
tical nonreciprocity applications [6, 19]—can be substan-
tially improved as acoustoelectric phonon gain reduces the
effective phonon lifetime. The effective exponential gain
enhancement is highlighted by the power dynamics of a
small-signal Stokes wave, given by

Ps[z] = Ps[0] exp

[(
GBP

Γ

Γ−GAE
− α

)
z

]
. (11)

Figure 4a plots AEB-enhanced SBS gain as a function
of applied drift field for the InGaAsP-LN-Si physical sys-
tem under consideration. Without acoustoelectric gain,
this Brillouin-optomechanical system might struggle to
yield even net amplification (Brillouin gain compensat-
ing for propagation loss), but with it, 50 dB or more of
dynamically reconfigurable amplification may be possible
on-chip. Moreover, this degree of AEB amplification is
accompanied by an increasingly narrow gain bandwidth
(from ∼ 35 MHz to ∼ 300 kHz), enabling selective nar-
rowband operations in RF-photonic filtering applications.

2. Brillouin-based laser oscillators

The ability to dynamically reconfigure phonon dissipa-
tion rates and Brillouin gain by orders of magnitude with
DC electric fields also can be leveraged in Brillouin laser
oscillator applications. For one, acoustoelectric phonon
gain directly reduces the pump power required to reach
self-oscillation. Specifically, the threshold in this case is
given by

PAEB
th =

Γ−GAE

Γ
Pth. (12)

Thus, provided the acoustoelectric interaction can pro-
duce net phonon amplification, acoustoelectric gain en-
ables near arbitrary control of the self-oscillation thresh-
old. For example, a drift field of 1.62 kV/cm applied to
the InGaAsP would reduce the threshold condition by ap-
proximately 30×.

Second, acoustoelectric gain allows one to precisely
shape the linewidth narrowing dynamics of Brillouin
lasers. The well-known ability of a Brillouin laser to pro-
duce ultra-low noise self-oscillation (even in cases where
the pump is spectrally much broader) is contingent on
a sufficient asymmetry between the optical and acoustic
temporal dissipation rates. Specifically, systems in which
the optical dissipation rate exceeds that of the acoustic
(and vice versa) can produce acoustic (optical) linewidth
narrowing. Using external DC fields to change the phonon
dissipation rate through the acoustoelectric effect permits
flexible in situ control of the linewidth narrowing dynam-
ics.

For oscillator applications, it may be desirable to achieve
high degrees of spectral compression of the microwave-
frequency phonon field. In the case of a linewidth limited
by pump noise, this ‘noise eating’ process can be quantified
by the ratio of phonon linewidth (∆νB) to the input pump
linewidth (∆νp), given by

∆νB

∆νp
=

1

(1 + γ
Γ−GAE

)2
, (13)

in analogy with the optical linewidth narrowing pre-
dicted by [61]. Figure 4b plots the pump-limited phonon
linewidth as a function of acoustoelectric gain, revealing
phonon linewidth narrowing beyond what is possible with-
out the acoustoelectric effect. Looking forward, this ma-
terial stack may be compatible with quantum well sys-
tems that yield optical gain in addition to acoustoelec-
tric phonon gain. In principle, this could allow complete
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FIG. 4. Performance enhancement from acoustoelectric coupling for archetypal Brillouin devices in the acoustoelectrically en-
hanced Brillouin (AEB) limit using the selected mode triplet of the InGaAsP-LN-Si heterostructure waveguide as an example
(see Fig. 2). In addition to the simulated optomechanical and electromechanical coupling and acoustic quality factor of 250
(see Appendix A for more details), for (a) and (c) we assume a pump power of 50 mW and a device length of 1 cm. (a) Gain
improvement in a backward SBS amplifier as a function of bias field strength. (b) Potential improvement in pump-limited phonon
linewidth for an acoustoelectrically enhanced Brillouin optomechanical oscillator operating in the phonon linewidth narrowing
regime. Here the phonon linewidth is not limited by Schawlow-Townes narrowing. The phonon linewidth is normalized by the
pump linewidth. (c) Nonreciprocal scattering efficiency for Brillouin-based AE-enhanced isolator as a function of bias field strength
(neglecting optical loss). The particular implementation of this enhanced nonreciprocal scattering process is shown in insets i-ii,
and requires optomechanical waveguides that are coupled phononically. Counter-propagating pump and Stokes waves in the drive
waveguide (light gray) set up an acousto-optic grating in the modulator waveguide (dark gray) that can be enhanced by the
acoustoelectric effect. (i) When light at the pump frequency is injected into the modulator waveguide in the forward direction,
it is not phase-matched to and passes unaffected by the acousto-optic grating. (ii) By contrast, in the backward direction, the
light can experience complete acousto-optic scattering providing effective optical isolation. (d) Phonon delay enhancement and
conversion length reduction due to the acoustoelectric effect. As diagrammed in the inset, pump (blue) and write (red) fields
set up an acoustoelectrically enhanced acoustic-grating, with a conversion efficiency of 1 (i.e., one phonon from one photon)
over the so-called conversion length (black). At the same time, the acoustoelectric effect increases the effective delay (green) for
the phononic memory. After the delay, the write information can be recovered by the pump pulse, which upon acousto-optic
scattering, creates a back-propagating read pulse (red).

control over the photonic and phononic dissipation rates,
enabling dynamics ranging from the significant optical
linewidth narrowing to the acoustic linewidth narrowing
regime described above.

3. Brillouin-based acousto-optic isolators

Acoustoelectrically enhanced Brillouin processes may
be the key to significant performance improvements in
chip-scale non-reciprocal technologies based on traveling-
wave optomechanics. Some of the most promising broad-
band technologies for on-chip isolators rely on inter-modal
waveguide acousto-optics, in which a moving acoustic
Bragg grating produces unidirectional optical mode con-

version due to a nonreciprocal phase-mismatch [18, 20].
However, it has been challenging to achieve the scattering
efficiencies necessary to produce large contrast optical non-
reciprocity with low insertion loss over broad bandwidths
[21, 62, 63].

With recourse to acoustoelectric phonon gain, the scat-
tering efficiency ηef (in the case of lossless optical fields)
can be improved as [21]

ηef = tanh2

[
GBPLΓ

4(Γ−GAE)

]
. (14)

As a result, acoustoelectrically enhanced transduction
may bring unity efficiencies within reach in the InGaAsP-
LN-Si system—even with intrinsic scattering efficiencies of
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FIG. 5. (a) Exponential growth rate enhancement [κ/(GBP )] as a function of unmodified coupling strength (GBPLc at the
coherent Brillouin limit, where Lc is the intrinsic phonon coherence length Lc = vg,b/Γ ). The potential improvement by operating
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∼ 10−3—as plotted in Fig. 4c. Moreover, the acoustoelec-
tric effect yields additional suppression of unwanted back-
ward propagating phonons on account of the attenuation
experienced by contradirectionally propagating phonons,
further enhancing the overall nonreciprocity [48]. As a
result, the AEB interactions in this exemplar system or
others may play a key role in enabling high-performance
acousto-optic on-chip isolators.

4. Optomechanical delay

Control of the phonon dissipation through acoustoelec-
tric phonon gain may also be used to enhance the per-
formance of Brillouin-based memory and optomechanical
delay [23]. The most apparent improvement is the ability
to extend the phonon lifetime (τ ∝ 1/Γ), and hence the
delay time by

τAEB = τ
( Γ

Γ−GAE

)
. (15)

A less obvious, but equally useful benefit of increasing
the phonon lifetime is that one can achieve unity photon-
phonon conversion lengths (in the case of optomechanical
memory for instance) over much shorter distances. The
conversion length scales as

LAEB = L
(Γ−GAE

Γ

)
, (16)

hence simultaneously permitting substantially longer de-
lays in a much smaller geometry, as shown in Fig. 4d. For
the system under consideration, tunable chip light storage
of more than 0.1 µs may be possible in the AEB limit
(corresponding to ∼ 20 m of fiber optic path length),
with potential for orders of magnitude larger improve-
ments with the acoustoelectrically induced coherent Bril-
louin limit outlined below.

C. Acoustoelectrically induced coherent Brillouin
(ACB) limit

We now explore what we term the acoustoelectrically in-
duced coherent Brillouin (ACB) limit, in which the mean-
free path of the phonons is on par with that of the pho-
tons. In this limit, we can no longer treat the phonon
field as local in space, in sharp contrast with the stan-
dard assumption for SBS processes [58]. Specifically, we
consider an interaction region in which both the optical
and acoustic waves can be considered lossless, with the
latter enabled by acoustoelectric gain that compensates
for any phonon propagation loss. Under these conditions,
the spatial equations of motion (i.e., steady state in time)
become

vg,s
∂Ās[z, ω]

∂z
= −ig∗0ĀpB̄

†[z, ω]

vg,b
∂B̄[z, ω]

∂z
= −ig∗0ĀpĀ

†
s [z, ω].

(17)

We note that, as a vector quantity, the phonon veloc-
ity vg,b plays a singularly important role in the resulting
coupled dynamics. Equation 17 can be decoupled through
differentiation, yielding

∂2Ās[z]

∂z2
=
|g0|2|Āp|2

vg,svg,b
Ās[z]

∂2B̄[z]

∂z2
=
|g0|2|Āp|2

vg,svg,b
B̄[z].

(18)

In the case of a phonon field that co-propagates with
the Stokes field (e.g., forward intra- or inter-modal SBS),
the solution for Ās[z] and B̄[z] take the form

Ās[z] = A sinh[κz] +B cosh[κz]

B̄[z] = C sinh[κz] +D cosh[κz]
(19)
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where κ2 = |g0|2|Āp|2/(vg,svg,b), and A, B, C, and D are
determined by the initial conditions.

For instance, an input Stokes wave of the form (Ās[0] =
B̄[0] = 0) yields the solutions

Ās[z] = Ās[0] cosh(κz)

B̄[z] = − ig∗0Āp

|g0||Āp|

√
vg,s

vg,b
Ā†s [0] sinh(κz).

(20)

We see that the dynamics in the ACB limit resemble
those of optical parametric (e.g. χ(2)) processes [58]—
distinct from those of traditional stimulated Brillouin scat-
tering. In particular, we note there is a qualitatively dif-
ferent gain-like behavior. The nontrivial acoustoelectric
gain enhancement can be characterized by the ratio of the
standard gain per unit length in the coherent (κ) to tra-
ditional (GBP ) limits, given by

κ

GBP
=

Γ

4|g0|

√
~ωpvg,pvg,s

Pvg,b
, (21)

where Γ is the phonon dissipation rate in the absence of
acoustoelectric gain. We note that the ACB regime is
particularly advantageous (from a perspective of accessible
optical gain) in the case of relatively low optical pump
powers and optomechanical coupling rates, as shown in
Fig. 5a.

The optomechanical dynamics of this acoustoelectric
induced coherent Brillouin limit diverge even more sig-
nificantly from those of traditional SBS if we consider a
counter-propagating phonon field—such as is required for
backward stimulated Brillouin scattering. Switching the
sign of the phonon group velocity yields an imaginary cou-
pling κ = i|κ|, and the solution becomes Rabi-like as

Ās[z] = Ās[0] cos(|κ|z)

B̄[z] = − g∗0Āp

|g0||Āp|

√
vg,s

vg,b
Ā†s [0] sin(|κ|z).

(22)

Thus, in this case, acoustoelectric gain can lead to
strong-coupling-like optomechanical dynamics—a marked
departure from the parametric gain behavior of the co-
propagating case (see Fig. 5b).

IV. DISCUSSION AND OUTLOOK

In this paper, we have proposed the concept for and ex-
plored the dynamics of acoustoelectrically enhanced Bril-
louin (AEB) interactions. Through a Hamiltonian-based
formalism, we have determined that the acoustoelectric
modification of the effective optomechanical cooperativity
and Brillouin susceptibility drastically enhances the per-
formance of useful Brillouin photonic devices and opens
the door to coherent traveling-wave optomechanical dy-
namics. Moreover, we have proposed an experimentally
realizable chip-based system that provides the necessary
optomechanical and acoustoelectric degrees of freedom to
demonstrate the full range of this device physics. This

work lays the foundation for powerful optomechanics-
based classical and quantum signal processing applica-
tions, synergistically combining the unique properties of
photons, phonons, and electrons.

Beyond the material system and device geometry pro-
posed in this work, acoustoelectrically enhanced Brillouin
physics may be accessible in a number of promising in-
tegrated phononic/photonic platforms. Such physics re-
quires high carrier mobility, appreciable acoustoelectric re-
sponse, and sufficient traveling-wave optomechanical guid-
ance and coupling. Example systems with these proper-
ties may include piezoelectric semiconductors such as GaN
[64], GaAs [65–67], and GaP [68, 69], or semiconductor-
piezoelectric hybrids (like the example presented in this
work), such as GaAs − LiNbO3 [70, 71] or co-integrated
AlN in SOI-based silicon photonics [72]. In addition, sys-
tems that utilize forms of non-piezoelectric-based acousto-
electric coupling, for instance deformation potential cou-
pling [28, 73], may enable AEB physics in an even broader
class of semiconductors. We anticipate the emergence of
a range of other material systems and device geometries
that will be able to leverage the concepts proposed in this
work.

By modifying the nonlinear Brillouin susceptibility
through acoustoelectric gain and nonreciprocity, we are
able to drastically transform the performance of impor-
tant Brillouin signal processing applications—long valued
for their ability to amplify, modulate, or filter light over
narrow bandwidths [60]. At the core of these modified
interactions is the ability to enhance the Brillouin ampli-
fication process by orders of magnitude, enabling excep-
tionally narrow bandwidths and state-of-the-art gain in
systems that would otherwise yield little or no net ampli-
fication. Moreover, our noise analysis suggests that when
thermomechanical noise is dominant (see Appendix D),
this approach may enable high levels of near quantum-
limited amplification at cryogenic temperatures. Building
on this work, inducing optical gain via manipulation of
electrical carriers may enable flexible and narrow linewidth
Brillouin laser systems with reconfigurable dynamics and
improved noise performance.

The impact of acoustoelectrics on optomechanics ex-
tends beyond traditional Brillouin photonic devices.
Whereas we have focused here on traveling-wave optome-
chanical interactions, these same concepts are applicable
to cavity optomechanical systems [74]. The ability to dy-
namically modify the phonon decay rate and cooperativity
in cavity-optomechanical systems should lead to enhanced
coherent photon-phonon interactions in devices such as
optomechanical amplifiers [75–78], oscillators [79–81], fil-
ters [82], and quantum memories [83]. Finally, applying
these concepts to acousto-optic devices may allow exter-
nally applied electric fields to modify local phonon dissi-
pation rates and populations, enabling faster amplitude
modulation in systems that would otherwise be limited by
intrinsic phonon lifetimes.
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Appendix A: Physical System Design

Phase-matched Brillouin scattering is a three-wave mixing process involving two optical modes (pump and Stokes)
and one elastic mode. This appendix covers the design procedure for computing the optical and elastic mode triplet for
acoustoelectric (AE) Brillouin interactions in a given physical system. The primary physical system focused on in this
appendix is an epitaxially grown In0.712Ga0.288As0.625P0.375 (referred to as InGaAsP in the manuscript for convenience)
bonded to a Y-cut lithium niobate thin film on a silicon substrate (InGaAsP-LN-Si). The simulated cross-sectional 2D
optical domain is shown in Fig. 6a where the optical guiding layer is the patterned InGaAsP waveguide, the lower cladding
is the lithium niobate, and the top and side cladding is air. Since the FEA software has a solver for time-harmonic
optical field distributions, a cross-sectional 2D Mode analysis is performed to compute the propagation constant and
propagating mode shapes for a given optical frequency. Due to the high index contrast of the InGaAsP waveguide, the
optical fields are confined such that no perfectly matched layers (PMLs) are needed at the boundaries of the simulation
domain. Additionally, the silicon is assumed to be far enough away from the optical fields as to not cause optical loss,
making absorption losses in that material unnecessary to include (an assumption that is easily verified for the specific
modes we find as solutions). The simulated 3D acoustic domain is shown in Fig. 6b and includes the addition of PMLs
to absorb any elastic energy at the edges of the simulation domain. For certain polarizations and phase-matched phonon
wavelengths of the elastic modes, there is low contrast between the phonon velocities in InGaAsP and lithium niobate,
which results in minimal guiding of the elastic mode in the waveguide. The amount of elastic energy absorbed by the
PMLs help us characterize whether the simulation boundary has been made large enough and whether a given elastic
mode is guided. For backward intra-modal and forward inter-modal SBS processes, the elastic modes in this physical
system have periodic variations in their strain along the direction of propagation, which invalidates the cross-sectional
2D plain strain approximation. Therefore, analysis of these elastic modes require a 3D simulation domain with floquet
periodic boundary conditions in the direction of the defined phonon wavelength. The elastic mode is guided within the
InGaAsP/lithium niobate heterostructure and the silicon substrate assists in heat dissipation for continuous wave (CW)
operation (see Appendix B).

The three key geometric parameters to consider when designing an AE Brillouin device are shown in Fig. 6b. The
width (w) and thickness (t) of the InGaAsP waveguide not only determines the confinement and effective index of the
optical modes, but it also determines the lateral and vertical confinement of the elastic mode in the InGaAsP/lithium
niobate heterostructure. The phonon wavelength (λm) sets the operating phonon frequency and elastic mode shape, as
determined by the width, thickness, and mode-dependent dispersion. Since this physical system includes anisotropic
materials, Fig. 6c describes all of the material orientations. The lithium niobate thin film has its +Y-axis normal to the
device plane and the +X-axis is parallel to the [110] direction in the cubic InGaAsP and silicon crystals. The lithium
niobate thin film has a thickness of 5 µm and the +Y-axis was chosen to be normal to the device plane because these
LN-Si wafers are commercially available and have high piezoelectric coupling to both the Rayleigh and Shear Horizontal
surface acoustic waves. In the plane of the device, the propagation angle (β) not only determines the optical axis of
lithium niobate, but also the piezoelectric coupling strength of the elastic mode. The optomechanical coupling strength
is a function of the overlap between the optical mode and elastic mode, while the acoustoelectric coupling strength is a
function of the overlap between the elastic mode, piezoelectric potential, and free carriers in the InGaAsP. Therefore,
careful consideration must be made when designing the optical and elastic modes to ensure good overlap between all
domains, resulting in strong optomechanical and acoustoelectric coupling.
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substrate (InGaAsP-LN-Si). The materials and key design parameters are shown in the (a) optical and (b) acoustic simulation
domains as well as the (c) defined material orientations.

The general outline for the design procedure is detailed below. First, the type of stimulated Brillouin scattering (SBS)
is specified and the appropriate acoustic and optical phase matching conditions are applied. The two types of SBS
considered here are intra-modal backward scattering (i.e. two contradirectionally propagating optical modes with the
same spatial mode profile) and inter-modal forward scattering (i.e. two co-directionally propagating optical modes with
different spatial mode profiles). For each case of SBS, the following design parameters must be considered to cover the
full design space: optical mode pair, propagation angle, InGaAsP waveguide width, and InGaAsP waveguide thickness.
The pair of optical modes used for the pump and Stokes photons will determine the phonon wavelength needed for
phase matching, which together with the mode-dependent acoustic dispersion determines the elastic mode frequency.
The propagation angle chosen is largely influenced by the optical and acoustic properties of the lithium niobate thin
film. Longitudinal strains have high piezoelectric coupling parallel to the Z-axis, whereas shearing strains have a high
piezoelectric coupling parallel to the X-axis. This corresponds to either a 0° or 90° propagation angle, respectively.
These two propagation angles also correspond to the extraordinary and ordinary optical axes in lithium niobate. Since
the optimal waveguide width strongly depends on the chosen elastic mode, the range of simulated waveguide widths
must be carefully considered. Finally, the simulated InGaAsP waveguide thickness ranges from 100 nm to 300 nm to
remain a single mode optical waveguide in the vertical direction and to reduce the electric field required to achieve a
given phonon gain (see Eq. A68).

After the range of design parameters is set, the simulations and calculations are carried out in the following order:
optical domain simulation, acoustic domain simulation, optomechanical coupling calculation, and acoustoelectric cou-
pling calculation. Using COMSOL Multiphysics, a commercial finite element method (FEM) software, the 2D optical
domain simulation is used to identify the effective indices of the pump and Stokes photons, which are used to compute
the phonon wavelength required for phase matching. Additionally, the normalized electric fields for the pump and
Stokes photons are extracted from the simulation to use in the optomechanical coupling rate calculations. Then, the 3D
acoustic domain is simulated for the free and grounded eigenfrequencies of the elastic modes. The normalized displace-
ment and strain profiles for the elastic modes are extracted from the simulation to use in the optomechanical coupling
rate calculations. Using all of the extracted values from simulation, the following optomechanical coupling rates are
calculated: photoelastic coupling in the InGaAsP waveguide, photoelastic coupling in the surrounding lithium niobate,
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radiation pressure coupling in the waveguide, and total optomechanical coupling rate. Finally, the sets of elastic modes
from the free and grounded eigenfrequency simulations are correlated to determine the piezoelectric coupling coefficient
of each elastic mode. Using the full treatment of the normal mode theory for an AE amplifier, the acoustoelectric gain
is calculated as a function of applied drift field for each elastic mode.

1. InGaAsP Material

Before any of the simulations are performed, we calculate the interpolated material parameters for the quaternary
InGaAsP compound. For the InGaAsP-LN-Si physical system, the operating optical wavelength is 1.55 µm. Some of
the figures and interpolation schemes consider this operating optical wavelength in terms of its photon energy E = ~ω.
The corresponding photon energy at a 1.55 µm wavelength is approximately 0.8 eV. The InGaAsP considered for this
physical system will be grown on a (100) InP wafer—a typical substrate orientation for ternary and quaternary epitaxial
growth—and bonded to a Y-cut lithium niobate on silicon wafer. Based on previous work in InGaAsP optical devices
grown on a (100) InP wafer [84–87], the [110] direction of the InGaAsP will be oriented parallel to the [110] direction
of the silicon substrate [88] and the +X-axis of the lithium niobate thin film. The following subsections will outline
the proposed fabrication procedure, quaternary composition, and interpolation schemes used to determine the InGaAsP
material parameters for use in this physical system.

a. Acoustoelectric Fabrication Modified for InGaAsP Waveguides

Based on our previous work in designing and fabricating high performance acoustoelectric devices [47, 48, 53, 71, 89],
we can leverage our experience in epitaxial growth and nanofabrication to make acoustoelectrically enhanced Brillouin
devices. Based on the fabrication process flow from our previous work, the modified process is shown in Fig. 7. The only
modification in the epitaxial growth stack of the InGaAsP/InP wafer (Fig. 7a) from our previous work is during the
growth of the waveguide layer with a free carrier concentration of 1 x 1016 cm-3. Here, the addition of phosphorus alters
the growth of a lattice-matched ternary In1-xGaxAs to a lattice-matched quaternary In1-xGaxAsyP1-y. All the other
InP and InGaAs layers in the growth process (etch stop layers, ohmic contact layers, capping layer) remain unchanged
from the fabrication process of previous work. The fabrication steps in Fig. 7b-e make use of two different wet etches,
one selective to InP and one selective to InGaAs [90], which will be the same wet etch chemistries that were used in the
fabrication process of our previous acoustoelectric work. If the InGaAsP waveguide layer (Fig. 7f) is patterned through
wet etching, there are several chemistries available that etch both InGaAs and InGaAsP alloys [91–93]. Due to the
isotropic nature of wet etching, the undercut makes resolving small features difficult. For the waveguide dimensions
needed for Brillouin devices, anisotropic dry etching is typically required. There are several chemistries available for
etching InGaAsP using reactive ion etching (RIE) including BCl3 [94], Cl2/H2 [95, 96], and CH4/H2 [97]. The remaining
fabrication steps (Fig. 7g-h) to pattern the metal transducers and DC electrical contacts remain unchanged from our
previous work. Overall, only slight modifications are needed in our established acoustoelectric device fabrication process
to incorporate phosphorus into the InGaAsP waveguide layer and pattern the Brillouin devices.

b. Quaternary Composition for InP Lattice Matching

The quaternary compound of indium, gallium, arsenic, and phosphorus can be expressed in terms of two composi-
tion parameters, x and y (In1-xGaxAsyP1-y). For lattice matching with InP, the following expression relates the two
composition parameters [98]

x ≈ 0.1894 y

0.4184− 0.013 y
(0 ≤ y ≤ 1) . (A1)

Using this relationship between the two composition parameters, the interpolation schemes for all of the material
parameter calculations can be expressed in terms of just one composition parameter (y). In order to operate at an
optical wavelength of 1.55 µm, the direct band gap energy needs to be large enough to be optically transparent and the
optical wavelength needs to be far enough away from the absorption edge in order to minimize loss from absorption.
The direct gap energy (in eV) at 300 K is given as

E0 = 1.35− 0.72 y + 0.12 y2. (A2)

For the case of the ternary compound InGaAs (y = 1), the band gap energy is 0.75 eV, which is too small to be
optically transparent at the desired optical wavelength. The band gap energy can be increased through the introduction
of phosphorus into the compound. For the physical system in this manuscript, the chosen composition parameter is
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FIG. 7. Fabrication process flow from our previous work in acoustoelectric devices modified to include the InGaAsP waveguide
layer for acoustoelectrically enhanced Brillouin devices (not to scale).

y = 0.625, giving the full description of the quaternary composition as In0.712Ga0.288As0.625P0.375. At this composition,
the band gap energy is 0.95 eV, which is now optically transparent at the operating optical wavelength and 0.15 eV
away from the absorption edge. Reference [99] examines the interpolated InGaAsP absorption coefficient as a function
of free carrier concentration. Given their operating optical wavelength, the absorption coefficient is proportional to the
free carrier concentration when operating 0.15 eV away from the absorption edge. At our free carrier concentration
of N = 1 x 1016 cm-3 (for optimal acoustoelectric interaction), they see an absorption coefficient of approximately
0.02 cm-1. From this, we can estimate a loss of 0.1 dB/cm in the InGaAsP from optical absorption.

c. Refractive Index

The treatment for calculating the index of refraction as a function of photon energy and composition parameter can
be found in the appendix of Ref. [100]. Assuming an operating temperature of 300 K, the index of refraction can be
expressed as

n2
r = A (y)

[
f (z) +

1

2

(
E0

E0 + ∆0

)3/2

f (z0)

]
+B (y) , (A3)

where the split-off valence band gap (in eV) at 300 K is

∆0 = 0.118 + 0.225 y. (A4)

The normalized energy terms (z and z0) are a function of the operating photon energy, E, and the related terms can be
expressed as
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f (z′) =
(

2−
√

1 + z′ −
√

1− z′
)
/z′ 2, (A5)

z = E/E0, (A6)

z0 = E/ (E0 + ∆0) . (A7)

Finally, the fitting parameters A and B are a function of the composition parameter

A (y) = 8.616− 3.886 y, (A8)

B (y) = 6.621 + 3.461 y. (A9)

For the composition parameter and photon energy used in this physical system, the calculated refractive index is
nr = 3.4013.

d. Dielectric Constant

The interpolation for both the static and high frequency dielectric constants as a function of composition parameter
are given in Ref. [98]. For the frequency range of elastic modes simulated, the static dielectric constant will be used,
which is given as

εs = 12.4 + 1.5 y. (A10)

For the composition parameter used in this physical system, the calculated dielectric constant is εs = 13.3375.

e. Density

The density varies almost linearly between InP and InGaAs depending on the composition parameter, which is given
in Ref. [98] (in units of kg/m3)

ρ = 4787 + 712 y. (A11)

For the composition parameter used in this physical system, the calculated density is ρ = 5232 kg/m3.

f. Elasticity and Compliance Matrix

InGaAsP has a zincblende crystal structure, which means the elasticity matrix has three independent coefficients
(C11, C12, C44) and the matrix takes the form

[C] =


C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 . (A12)

The interpolation of the elasticity coefficients as a function of the composition parameter is given in Chapter 3 of
Ref. [101]. These coefficients (in GPa) are given as

C11 = 101.1− 1.2 y, (A13)
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C12 = 56.1− 6.8 y, (A14)

C44 = 45.6 + 3.3 y. (A15)

For the composition parameter used in this physical system, the calculated elasticity coefficients are C11 = 100.35 GPa,
C12 = 51.85 GPa, and C44 = 47.6625 GPa. Similarly, the three independent compliance matrix coefficients can be
calculated using the interpolated elasticity matrix coefficients from Eq. A13-A15 with the following relations

S11 =
C11 + C12

(C11 − C12) (C11 + 2C12)
, (A16)

S12 =
−C12

(C11 − C12) (C11 + 2C12)
, (A17)

S44 =
1

C44
. (A18)

Using the interpolated elasticity matrix coefficients above, the calculated compliance matrix coefficients are
S11 = 1.538 x 10-11 Pa-1, S12 = -5.239 x 10-12 Pa-1, and S44 = 2.098 x 10-11 Pa-1.

g. Photoelastic Coupling Constants

Since there is no complete set of interpolated photoelastic constants for InGaAsP in the literature, the following
subsection will detail the methodology used for estimating the full photoelastic coupling matrix. Using the base set of
binaries {InAs, InP, GaAs, GaP}, Chapter 9 in Ref. [101] uses interpolation methods to calculate the linear piezobirefrin-
gence (PB) coefficient for the [100] and [111] stress directions. Using these PB coefficients, the method for estimating the
photoelastic coupling constants as a function of the composition parameter is outlined. Since InGaAsP has a zincblende
crystal structure, there are three independent photoelastic coupling constants (p11, p12, p44) and the matrix takes the
form

[p] =


p11 p12 p12 0 0 0
p12 p11 p12 0 0 0
p12 p12 p11 0 0 0
0 0 0 p44 0 0
0 0 0 0 p44 0
0 0 0 0 0 p44

 . (A19)

Chapter 9 in Ref. [101] also details the procedure to compute the relationship between photoelastic coupling constants
and the interpolated linear PB coefficients (αpe). The interpolated results are based on fitting the experimental data of
the four binary compounds {InAs, GaAs, InP, GaP}, which were taken using uniaxial stress measurements to extract
the linear PB coefficients

αpe =
∆εij
X

= −
∑
mn

εiiεjjpijklSklmn. (A20)

Here, εii,jj is the component of the dielectric constant tensor in the absence of the applied stress, pijkl is the photoelastic
tensor component, Sklmn is the component of elastic compliance tensor, X is the directional applied stress, and ∆εij is
the difference between the real part of the dielectric constant parallel and perpendicular to the applied stress direction.
Since all of the higher order band gaps for the four binary compounds are far away from the first direct gap, the linear
PB coefficient can be modeled with dispersive effects from only the first direct band gap and include the influence of
the higher order gaps as a constant background effect. This model for the linear PB coefficient is given as

αpe = C∗

{
−g (z) +

4E0

∆0

[
f (z)−

(
E0

E0 + ∆0

)3/2

f (z0)

]}
+D∗, (A21)
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where C∗ and D∗ are parameters used to fit to the experimental data and g (z) is the normalized function

g (z′) =

(
2− 1√

1 + z′
− 1√

1− z′

)
/z′ 2. (A22)

The fit parameters C∗ and D∗ for InGaAsP can be interpolated as a function of the fit parameters for each binary
compound shown in Table 9.1 (Chapter 9) of Ref. [101]. The interpolation scheme for these fit parameters is described
in Ref. [102] and given as

φInGaAsP (x, y) = (1− x) y ψInAs + (1− x) (1− y) ψInP + xy ψGaAs + x (1− y) ψGaP, (A23)

where φ is the quaternary parameter and each ψ is the corresponding binary parameter. The interpolated linear PB

coefficients correspond to a stress applied parallel to the [100] direction in InGaAsP (α
[100]
pe ) and the stress applied parallel

to the [111] direction (α
[111]
pe ). Using Eq. A20, each linear PB coefficient can be expressed in terms of the photoelastic

constants, depending on the orientation of the applied stress. For a stress applied in the [100] direction, the linear PB
coefficient can be expressed as

α[100]
pe = −n4

r (p11 − p12) (S11 − S12) , (A24)

and for a stress applied in the [111] direction, the linear PB coefficient can be expressed as

α[111]
pe = −n4

rp44S44. (A25)

Using the previously calculated index of refraction and compliance matrix coefficients, the relationships between pho-
toelastic constants can be expressed as

p11 − p12 =
−n4

r α
[100]
pe

(S11 − S12)
, (A26)

p44 =
−n4

r α
[111]
pe

S44
. (A27)

For the composition parameter and photon energy used in this physical system, the interpolated relationships between
the photoelastic constants are p11 − p12 = 0.115 and p44 = 0.027.

It is not possible with PB measurements to determine the magnitude and sign of p11 and p12 [103, 104]. In order
to estimate the p11 and p12 photoelastic constants for simulating Brillouin optomechanics in InGaAsP, the measured
dispersion relations of the GaAs and InP binary compounds will be used to estimate the dispersive trends of the
InGaAsP interpolation scheme. As the photon energy approaches the direct band gap energy, the photoelastic constants
experience large dispersion [103–105]. While most dispersion measurements of the binary compounds are plotted as
a function of the operating optical wavelength, the interpolated InGaAsP dispersion will be plotted as a function of
the composition parameter. The operating optical wavelength will be held constant at 1.55 µm and the composition
parameter will be swept from y = 0 (InP) to y = 0.625 (InGaAsP). Since the photoelastic constants of InP at 1.55 µm
are known from Ref. [103], they can be used as a starting point for the InGaAsP dispersion curve. The first step is to
estimate the sign of the p11 and p12 constants in InGaAsP. The binary compounds of InGaAsP, all with different band
gap energies, have similar signs and magnitudes of their photoelastic constants at photon energies below the band gap
energy. Reference [106] has the photoelastic constants of InP, which are p11 = −0.150, p12 = −0.115, p44 = −0.056.
Reference [107] has the photoelastic constants of GaAs, which are p11 = −0.165, p12 = −0.140, p44 = −0.072. Finally,
Ref. [108] has the photoelastic constants of GaP, which are p11 = −0.151, p12 = −0.082, p44 = −0.074. From the signs
of the binary compounds’ photoelastic constants, the signs of p11 and p12 in InGaAsP are estimated to be negative for
photon energies below the band gap.

The next step is to determine the magnitude of the dispersive photoelastic constants in InGaAsP as a function of the
composition parameter. At the starting point (y = 0), the band gap of InP is 1.35 eV which is much larger than the
photon energy of 0.8 eV. At the desired composition (y = 0.625), the band gap reduces to 0.95 eV, which is much closer
to the photon energy. With regard to the dispersion trends, lowering the band gap has a similar effect to increasing
the photon energy (reducing the operating optical wavelength). The dispersion trend of InGaAsP as a function of
composition parameter is shown in Fig. 8. A similar dispersion trend can be seen for GaAs [104] and InP [103] when
their photoelastic constants are plotted as a function of operating optical wavelength. The two measured dispersion
curves from literature and our interpolated dispersion curve all show a similar trend as the photon energy approaches
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FIG. 8. Calculated dispersion of the InGaAsP photoelastic constants as a function of composition parameter. The green points
correspond to the extracted photoelastic constants of InP from the measured data found in [103].

the band gap. The values of p44 and (p11 − p12) become less negative until crossing into positive values. The values of
p11 and p12 become more negative, with the magnitude of p12 eventually becoming larger than the magnitude of p11.
The green points in Fig. 8 correspond to the starting InP photoelastic constants for the InGaAsP interpolation scheme.
These starting InP values at an operating optical wavelength of 1.55 µm are calculated from the fit lines in Ref. [103]
(p11 = −0.127, p12 = −0.109, p44 = −0.064). For the InGaAsP dispersion curve in Fig. 8, the p44 value was explicitly
calculated from Eq. A27. Conservatively, the value of p11 is estimated to be the same as the starting InP value. Then,
the value of p12 can be estimated using the calculated difference (p11 − p12) from Eq. A26. Using this methodology, the
estimated InGaAsP photoelastic constants used in our simulations are p11 = −0.127, p12 = −0.242, and p44 = 0.027.

h. Carrier Transport

From Chapter 10 in Ref. [101], the mobility of InGaAs at room temperature is similar in magnitude to the mobility
of InGaAsP at the composition parameter used in this physical system. The mobility, µ, of InGaAs thin films made at
Sandia for use in AE delayline devices [48] is 2000 cm2/Vs, which is lower than the calculated values for bulk InGaAs as
a result of surface effects limiting the mobility. Since these same surface effects will be present in the fabricated InGaAsP
thin film, its reasonable to assume a similar limit to the mobility for the physical system in this work (µ = 2000 cm2/Vs).
The optimal carrier concentration for AE interactions with MHz and GHz elastic modes typically falls within the range
of 1015 to 1017 cm-3 [48]. The carrier concentration must also be low enough so significant optical losses are not
introduced [55]. Therefore, the simulations and calculations for this physical system will use a carrier concentration of
N = 1 x 1016 cm-3.

The effective mass and plasma frequency of the InGaAsP are necessary to compute the Brillouin nonlinear suscepti-
bility. The effective mass of the electrons in the conduction band edge is given by a linear interpolation as a function of
the InGaAsP composition parameter [98]

m∗ = (0.080− 0.039 y) me. (A28)

For the composition parameter used in this physical system, the effective mass is m∗ = 0.055625 me, where me is the
mass of an electron. Finally, the plasma frequency in a semiconductor material is given as

ω2
e =

Ne2

m∗ε0
, (A29)

where e is the charge of an electron and ε0 is the permittivity of free space. Given the carrier concentration and effective
mass of this physical system, the plasma frequency is ωe/2π = 3.8069 THz.
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TABLE I. Summary of the calculated InGaAsP parameters for the physical system used in this paper.

InGaAsP
Parameter

Calculated
Value

λoptical 1.55 µm

E 0.7999 eV

y 0.625

x 0.288

C11 100.35 GPa

C12 51.85 GPa

C44 47.6625 GPa

S11 1.538 x 10-11 Pa-1

S12 -5.239 x 10-12 Pa-1

S44 2.098 x 10-11 Pa-1

ρ 5232 kg/m3

E0 0.9469 eV

∆0 0.2586 eV

εs 13.3375

A (y) 6.1873

B (y) 8.7841

nr 3.4013

C∗ [100] -1.327 x 10-11 cm2/dyn

C∗ [111] -0.799 x 10-11 cm2/dyn

D∗ [100] 1.932 x 10-11 cm2/dyn

D∗ [111] 2.315 x 10-11 cm2/dyn

α
[100]
pe -3.186 x 10-11 cm2/dyn

α
[111]
pe -0.764 x 10-11 cm2/dyn

p11 − p12 0.115

p11 -0.127

p12 -0.242

p44 0.027

µ 2000 cm2/Vs

N 1 x 1016 cm-3

m∗ 0.055625 me

ωe 2π · 3.8069 THz.
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2. Optical Simulations

Given a physical system and its material parameters, the first step in designing an acoustoelectric Brillouin device is
to examine the phase-matching criteria between the optical mode pair and the phonon wavelength. This section of the
appendix will cover both backward intra-modal and forward inter-modal Brillouin scattering processes. In the case of a
backward intra-modal Stokes process, a higher energy pump photon creates a forward scattered phonon and backward
scattered lower energy Stokes photon in the same optical mode. Similarly, in the case of a forward inter-modal Stokes
process, a higher energy pump photon from one optical mode creates a forward scattered phonon and lower energy
Stokes photon in a second optical mode. Due to momentum conservation, the phonon wave vector can be expressed as
the difference between the pump and Stokes photon wave vectors

qm = kp (ωp)− ks (ωs) , (A30)

where kp is the pump photon wave vector, ks is the Stokes photon wave vector, ωp is the pump photon frequency, and
ωs is the Stokes photon frequency. The required energy conservation can be expressed as

Ωm = ωp − ωs, (A31)

where Ωm is the phonon frequency. Illustrations of the intra-modal and inter-modal dispersion diagrams with phase-
matched phonons are shown in Fig. 9. As the dispersion diagrams show, the phase-matched phonon wave vector is
much larger for backward intra-modal scattering than forward inter-modal scattering. In general, this means backward
scattering Brillouin processes require small phonon wavelengths while forward scattering requires much larger phonon
wavelengths. The phase-matched phonon wavelength can be calculated using Eq. A30 along with expressions for the
photon and phonon wave vectors. The optical wave vectors (kp,s) can be expressed as

kp,s = np,s
eff

2π

λp,s
, (A32)

where np
eff is the pump optical mode’s effective index, ns

eff is the Stokes optical mode’s effective index, λp is the pump
photon wavelength, and λs is the Stokes photon wavelength. Similarly, the wave vector of the phonon (qm) is given as

qm =
2π

λm
, (A33)

where λm is the phonon wavelength. In the case of backward intra-modal Brillouin scattering, the Stokes photon wave
vector is approximately equal to the pump photon wave vector, but opposite in sign (ks ≈ −kp). Using Eq. A30, the
phonon wave vector can be expressed in terms of the pump wave vector

qm = 2 kp (ωp) . (A34)

The phonon wavelength can then be solved for in terms of the optical wavelength and effective mode index

a Backward Intra-modal SBS b Forward Inter-modal SBS
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FIG. 9. Illustrations of (a) backward intra-modal and (b) forward inter-modal dispersion diagrams showing the phase-matched
pump photon, Stokes photon, and phonon.
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FIG. 10. Optical simulation results for both backward intra-modal and forward inter-modal phase matching conditions. (a)
Example TE-like and TM-like optical mode shapes for the InGaAsP-LN-Si physical system. Surface plots of the phase-matched
phonon wavelength for (b) backward intra-modal and (c-f) forward inter-modal Brillouin scattering as a function of the waveguide
width and thickness.

λm =
λp

2np
eff

. (A35)

The phase-matched phonon wavelength for backward intra-modal scattering is smaller than half of the optical wavelength
and strongly depends on the optical mode’s effective index. Using the TE0 optical mode in the InGaAsP-LN-Si physical
system, the phase-matched phonon wavelength for backward intra-modal Brillouin scattering as a function of waveguide
geometry is shown in Fig. 10b. The phonon wavelength, which has an average value around 300 nm, is almost independent
of both the waveguide width and thickness. This phonon wavelength is the same order of magnitude as the waveguide
dimensions, which leads to elastic modes with the strain almost entirely confined in the InGaAsP waveguide. These
elastic waveguide modes will have strain profiles characteristic of either the traditional Rayleigh or Shear Horizontal
(SH) surface acoustic wave (SAW) modes, which means these waveguide modes will have the same favorable propagation
angle as the SAW mode it resembles most.

This phase-matching analysis can then be extended to forward inter-modal Brillouin scattering. Since the phonon
frequency is much smaller than the photon frequencies (Ωm<<ωp,s), both the pump and Stokes photons can be ap-
proximated as having the same optical wavelength when solving for the phase-matched phonon wavelength. Using this
assumption, the required phonon wavelength for forward inter-modal Brillouin scattering is

λm =
λp

np
eff − ns

eff

. (A36)

Due to the relatively small difference between the pump and Stokes effective mode indices, the phonon wavelength for
forward inter-modal Brillouin scattering is typically larger than the optical wavelength. For different combinations of
TE-like and TM-like optical modes (mode shapes shown in Fig. 10a), the phase-matched phonon wavelengths for forward
inter-modal Brillouin scattering range from 2 µm to 20 µm. This wavelength range is consistent with traditional SAW
devices in both bulk and thin film lithium niobate material systems. Therefore, the desired elastic modes for forward
inter-modal Brillouin scattering will be traditional SAW modes with high piezoelectric coupling coefficients (k2) for a
strong AE interaction. The two SAW modes with the highest k2 in Y-cut lithium niobate are the Rayleigh [109] and
Shear Horizontal [89] elastic modes. Additionally, these SAW modes will be horizontally guided and laterally confined
by the density mismatch and sound speed difference between the InGaAsP and lithium niobate. As a result of each
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SAW mode’s strain profile, the Rayleigh SAW will have the strongest optomechanical coupling to optical modes of the
same parity, while the SH SAW will have the strongest optomechanical coupling to optical modes of different parity.
Therefore, the TE0/TE1 and TE0/TM0 optical mode pairs (Fig. 10c,e) are considered for the SH SAW elastic mode
and the TE0/TE2 and TE0/TM1 optical mode pairs (Fig. 10d,f) are considered for the Rayleigh SAW elastic mode.

3. Acoustic Simulations

The next stage in the design process is to consider the strain profiles and piezoelectric coupling coefficient, k2, for each
elastic mode given the phase-matched phonon wavelength. The overlap between the strain profiles and optical fields
determines the strength of the optomechanical coupling, and a high k2 is an indicator of a strong AE interaction. In the
presence of a perfect conductor, the piezoelectric coupling coefficient of a surface acoustic wave can be calculated by the
shift in acoustic velocity as the perfect conductor is brought from infinitely far away to the surface of the piezoelectric
material [110, 111]. In FEA simulation, this can be achieved through two different eigenfrequency simulations. One
will have an electrically free lithium niobate surface and the other will have a grounded lithium niobate surface. The
piezoelectric coupling coefficient can be computed as

k2 =

∣∣∣v 2
free − v 2

ground

∣∣∣
v 2

free

=

∣∣∣f 2
free − f 2

ground

∣∣∣
f 2

free

, (A37)

Here, vfree is the acoustic velocity with a free piezoelectric surface and vground is the acoustic velocity with a grounded
piezoelectric surface. Since the phonon wavelength is the same for both simulations, the piezoelectric coupling coef-
ficient can be expressed in terms of the acoustic eigenfrequency for the free piezoelectric surface (ffree) and grounded
piezoelectric surface (fground).

In the case of an unguided Rayleigh SAW mode in Y-cut lithium niobate, the k2 is highest in the 0° propagation
direction with a value around 5 %. Similarly, the unguided SH SAW mode has its highest k2 around 18 % in the
90° propagation direction. The definition of the calculated k2, however, must be adjusted with the inclusion of the
InGaAsP waveguide into the acoustic simulation. In order to consider the interaction strength between the elastic mode
and free carriers in the InGaAsP, the grounded eigenfrequency is simulated with the perfect conductor placed only at
the interface between the InGaAsP waveguide and lithium niobate surface. This means the Rayleigh and SH SAW
modes used for forward inter-modal Brillouin scattering will only have a fraction of the k2 found in unguided lithium
niobate propagation. As the phonon wavelength approaches the waveguide width from the large wavelength side, a larger
fraction of the elastic mode is guided within the waveguide, resulting in a piezoelectric coupling coefficient approaching
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FIG. 11. Acoustic mode simulation results for both inter-modal and intra-modal SBS processes. Example periodic mode shape
and cross-sectional strain profiles are shown for (a) Rayleigh SAW mode, (b) SH SAW mode, (c) waveguide mode 1, (d) waveguide
mode 2—elastic mode highlighted in the main manuscript, and (e) waveguide mode 3. For each normalized strain profile, the
relative magnitudes between the strain components are shown in parenthesis.
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the unguided k2 limit. For backward intra-modal Brillouin scattering, where the phase-matched phonon wavelength is
smaller than the InGaAsP waveguide width, almost all of the elastic energy is confined in the waveguide. For these
elastic waveguide modes, the piezoelectric coupling strength depends on the displacement profile within the waveguide.

The inclusion of the InGaAsP waveguide on top of the lithium niobate guides the Rayleigh and SH SAW modes
within the InGaAsP, with the amount of guiding dependent on the relative size difference between the waveguide width
and phonon wavelength. Example elastic mode shapes and strain profiles for guided Rayleigh and SH SAW modes are
shown in Fig. 11a-b. Additionally, as more of the elastic energy is guided within the InGaAsP waveguide, there is a
larger overlap between the optical fields and elastic strains. Therefore, it is advantageous in the design process for inter-
modal Brillouin devices to reduce the required phonon wavelength to as close to the waveguide dimensions as possible in
order to achieve higher acoustoelectric and optomechanical coupling strength. Operating near the optical mode cutoff,
however, comes at the expense of additional optical losses. This trade-off between optical losses and coupling strength
will need to be carefully considered when designing acoustoelectric Brillouin devices.

For backward intra-modal Brillouin scattering, example elastic mode shapes and strain profiles for three elastic
waveguide modes are shown in Fig. 11c-e. For waveguide mode 1, the displacement is primarily at the edges of the
waveguide, which has poor overlap with the TE0 optical fields. Since the εzz and εxz strain components are similar to
the SH SAW mode, the propagation angle with the highest k2 is 90°. Waveguide mode 2—the elastic mode highlighted
in the main manuscript—has displacement throughout the entire width of the waveguide and therefore a much larger
overlap with the optical fields. Waveguide mode 2 and the Rayleigh SAW mode have similar strain profiles and the same
dominant strain components (εyy and εzz), which means waveguide mode 2 will have the highest k2 at a 0° propagation
angle. Finally, waveguide mode 3 has a mix of shear and longitudinal strains with several nodes and anti-nodes along
the width of the waveguide. As a result, there is no clear preference in propagation direction and waveguide mode 3 has
similar k2 values in both 0° and 90° propagation directions.

4. Optomechanical Coupling Calculation

After simulating the optical modes, acoustic modes, and piezoelectric coupling coefficient, the next step in the design
process is to compute the optomechanical coupling coefficient (g0). The two main contributions to optomechanical
coupling are from the photoelastic (gpe) and radiation pressure (grp) effects, where g0 = gpe + grp. This section of the
appendix will outline the theory for photoelastic and radiation pressure optomechanical coupling for Stokes scattering
processes and then implement this theory for the InGaAsP-LN-Si physical system.

a. Photoelastic Coupling

The photoelastic coupling coefficient [in units of (rad/s)
√

m] is given as [25]

gpe = |Cm| |Cp| |Cs| ξ
∫∫

A

(
Di

p

)∗
Dj

s p
ijklεkl dA. (A38)

where Dp and Ds are the electric displacement fields of the pump and Stokes photons extracted from simulation, p is
the fourth-rank photoelastic tensor, ε is the second-rank strain tensor extracted from simulation, and ξ is the frequency
constant defined as

ξ =
1

ε0

√
ωp

2

√
ωs

2

√
~Ωm

2
. (A39)

The tensor product is integrated over the cross-sectional area perpendicular to the wave propagation and the elastic strain
and electric displacement fields need to be normalized as described in Ref. [25]. A scaling factor can be implemented for
the phonon displacement (|Cm|), pump photon electric displacement field (|Cp|), and Stokes photon electric displacement
field (|Cs|)

|Cm|2 =
1

Ω2
m

∫∫
A
ρ
(
|ux|2 + |uy|2 + |uz|2

)
dA

, (A40)

|Cp|2 =
1

1
ε0

∫∫
A

1
εr

(
|Dp

x|2 + |Dp
y|2 + |Dp

z |2
)
dA

, (A41)
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|Cs|2 =
1

1
ε0

∫∫
A

1
εr

(
|Ds

x|
2

+
∣∣Ds

y

∣∣2 + |Ds
z|

2
)
dA

, (A42)

where u is the elastic displacement field, εr is the relative permittivity, and Dp,s is the electric displacement field (pump
or Stokes). Since the elastic strain is the symmetric gradient of the displacement, the |Cm| scaling factor is used for
the strain tensor in Eq. A38. To compute this coupling coefficient, the simulation data is extracted and converted
into matrices. The tensor product within the integration is then computed through matrix multiplication [112] and
integrated.

A compacted Voigt notation is used to reduce the second and fourth-rank tensors so that matrix multiplication can be
used within the integration. The compacted notation is 1 = (xx), 2 = (yy), 3 = (zz), 4 = (yz) = (zy), 5 = (xz) = (zx),
6 = (xy) = (yx). This reduces the photoelastic coupling coefficient to

gpe = |Cm| |Cp| |Cs| ξ
∫∫

A

[D] [p] [ε] dA, (A43)

where the electric displacement field product ([D]) is a [1x6] matrix, the photoelastic constants ([p]) are a [6x6] matrix,
and the strain ([ε]) is a [6x1] matrix. InGaAsP has a cubic crystal structure with 3 independent photoelastic constants
and the coupling matrix takes the form

[p] =


p11 p12 p12 0 0 0
p12 p11 p12 0 0 0
p12 p12 p11 0 0 0
0 0 0 p44 0 0
0 0 0 0 p44 0
0 0 0 0 0 p44

 . (A44)

The strain matrix is given as

[ε] =


εxx

εyy

εzz

2 εyz

2 εxz

2 εxy

 , (A45)

and the electric displacement field product matrix is given as

[D] =
[{

(Dp
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∗
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{
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. (A46)

To include the contribution of lithium niobate in the photoelastic coupling coefficient, the treatment above is modified
to use the photoelastic coupling matrix of a trigonal crystal structure when integrating over regions of lithium niobate

[p] =


p11 p12 p13 p14 0 0
p12 p11 p13 −p14 0 0
p31 p31 p33 0 0 0
p41 −p41 0 p44 0 0
0 0 0 0 p44 p41

0 0 0 0 p14
1
2 (p11 − p12)

 . (A47)

Here, there are eight independent photoelastic constants (p11, p33, p44, p12, p13, p31, p14, p41) and these values can be
found in Ref. [113, 114]. Since the optical modes are guided within the InGaAsP, there is little overlap between the
elastic mode and optical fields in the lithium niobate, which means the contribution to the overall photoelastic coupling
is very small.

b. Radiation Pressure Coupling

The radiation pressure coupling coefficient [in units of (rad/s)
√

m] is given as [25]
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grp = |Cm| |Cp| |Cs| ξ
∫∫

A

ε0

[(
E‖∗p ·E‖s

)
∇ε−

(
D⊥∗p ·D⊥s

)
∇ε−1

]
· u dA, (A48)

where E
‖
p,s is the component of the electric field parallel to the defined normal and D⊥p,s is the component of the

electric displacement field perpendicular to the defined normal. Since the physical system presented in this paper only
has discrete permittivities, there exists permittivity discontinuities at the material interfaces. Since the gradient of the
permittivity is zero within the materials, this integral collapses to a line integral around the boundaries of the waveguide.
At the waveguide boundaries, the permittivity is a step function between the permittivity of the waveguide (ε1) and
surrounding material (ε2). Since the gradient of a unit step function is a delta function, the radiation pressure coupling
coefficient can be written as [115, 116]

grp = |Cm| |Cp| |Cs| ξ
∫
L

ε0

[(
E‖∗p ·E‖s

)
∆ε−

(
D⊥∗p ·D⊥s

)
∆ε−1

]
n̂ · u dL, (A49)

where ∆ε = ε1 − ε2, ∆ε−1 = ε−1
1 − ε

−1
2 , and n̂ is the normal of the line integral path.

The optomechanical coupling for key simulated elastic modes is plotted in Fig. 12 at a fixed waveguide thickness as
the waveguide width is swept from 0.4 µm to 1.75 µm (black arrows). For the case of backward intra-modal Brillouin
scattering, the optomechanical coupling trends for three elastic waveguide modes are shown in Fig. 12a. Both waveguide
mode 1 and 2 have an optimal waveguide width which maximizes the optomechanical coupling coefficient. This is a
result of two competing trends found in this physical system. Since all the elastic modes examined in this appendix
have a slower phase velocity in InGaAsP compared to lithium niobate, a larger fraction of the strain is guided within
the InGaAsP as the waveguide width is increased, increasing the overlap with the optical fields. On the other hand,
increasing the waveguide width reduces the magnitude of the optical fields at the boundaries of the InGaAsP waveguide,
reducing the overlap with the strain. When directly comparing the first two waveguide modes, waveguide mode 2 will
have a larger optomechanical coupling coefficient compared to waveguide mode 1, which is a result of the different
strain profiles between the two elastic modes. Waveguide mode 1 has a majority of its strain around the edges of the
InGaAsP waveguide, which has a lower overlap with the optical fields. For waveguide mode 3, there is only a reduction
in optomechanical coupling as the waveguide width is increased. Since waveguide mode 3 has several displacement nodes
along the waveguide width, there exists a minimum waveguide width where this mode is allowed. Overall, waveguide
mode 2 has the highest optomechanical coupling, which is why this simulated elastic mode is used throughout the main
manuscript.

For the cases of forward inter-modal Brillouin scattering shown in Fig. 12b-e, the trends in optomechanical coupling
as a function of waveguide width are influenced by additional factors. For each simulated optical mode, a different set of
waveguide cutoff dimensions exists, creating different cutoff waveguide widths for each optical mode pair. In addition,
the phase-matched phonon wavelength varies as a function of waveguide width, which will change the confinement of the
elastic mode and overlap with the optical fields. For the optical mode pairs shown in Fig. 12b,c,e, the dominant factor
in the optomechanical coupling trends for the Rayleigh and SH SAW modes is the change in phase-matched phonon
wavelength. As the waveguide width is increased, the phase-matched phonon wavelength also increases, reducing the
confinement and overlap with the optical fields. In the case of the TE0 & TM0 optical mode pair (Fig. 12d), the
phase-matched phonon wavelength does not change significantly with waveguide width and the trend in optomechanical
coupling is similar to those found in backward intra-modal Brillouin scattering.

5. Phonon Dissipation

This subsection of the appendix outlines the estimated phonon dissipation of the elastic mode used in the main
manuscript. Given the simulated optimal waveguide geometry for the elastic waveguide mode 2 (w = 1.1 µm and
t = 0.1 µm), the frequency of the simulated elastic mode is Ωm/2π = 8.78 GHz and the phase velocity is vm = 3072 m/s.
Since the simulated elastic waveguide mode 2 in the InGaAsP-LN-Si physical system has similar waveguide dimensions
and frequency to elastic modes reported in silicon with mechanical quality factors (Qm) ranging from 250-1800 [60, 117],
a conservative approximation for the quality factor in our physical system is Qm = 250. The phonon dissipation rate,
Γm, can be expressed as [117]

Γm =
Ωm

Qm
. (A50)

For the simulated elastic mode used in this paper, the phonon dissipation rate is estimated to be Γm/2π = 35.1 MHz.
From Chapter 8 in Ref. [58], the loss coefficient of the elastic mode is given as

αm =
Γm

vm
. (A51)
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FIG. 12. Calculated optomechanical coupling coefficient as a function of the simulated elastic modes for various waveguide
geometries. The optomechanical coupling for key elastic modes is plotted for (a) backward intra-modal and (b-e) forward inter-
modal Brillouin scattering. For each elastic mode, the black arrow indicates the trend in optomechanical coupling as the waveguide
width is increased.

For the simulated elastic mode used in this paper, the loss coefficient is estimated to be αm = 71800 m-1. This loss
coefficient can be converted into units of [dB/cm] through the following conversion
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αm

[
dB

cm

]
=

1m

100 cm

(
10

ln (10)

)
αm

[
1

m

]
. (A52)

This results in an estimated loss coefficient of αm = 3100 dB/cm.

6. Acoustoelectric Gain Calculation

The two predominant acoustoelectric theories for an amplifier consisting of a semiconductor thin film on a piezoelectric
substrate are the normal mode theory [56] and simple theory [118]. Later, the simple theory for AE gain was expanded
to include the effects of loss in the elastic mode [47]. Each of these theories come with its own set of limitations and
assumptions. This subsection of the appendix will outline each theory, and compare the results for backward intra-modal
Brillouin scattering using the simulated elastic mode in the main manuscript and an example elastic mode for forward
inter-modal Brillouin scattering.

The first AE gain theory examined is based on the normal mode theory as described by Kino and Reeder [56], modified
to include a dielectric gap material between the amplifier layer and the piezoelectric substrate. In the presence of a
semiconductor with a finite film thickness, the elastic wave’s net propagation constant (qnet) and loss coefficient (αnet)
can be expressed as

qnet = qm + qAE, (A53)

αnet = αm − αAE, (A54)

where qm and αm are the elastic wave’s unperturbed propagation constant and loss coefficient, respectively. The
acoustoelectric contribution to the propagation constant (qAE) and the acoustoelectric gain coefficient (αAE) are given
as

qAE =
1

2

(Rωc/Ωm +D)ωcεsZ
′
m (qmh) qmtanh (qmt)

(vd/vm − 1)
2

+ (Rωc/Ωm +D)
2 , (A55)

αAE =
(vd/vm − 1)ωcεsZ

′
m (qmh) qmtanh (qmt)

(vd/vm − 1)
2

+ (Rωc/Ωm +D)
2 . (A56)

Here, Ωm is the phonon frequency, h is the gap height between the lithium niobate and InGaAsP waveguide, t is the
InGaAsP waveguide thickness, εs is the InGaAsP permittivity, vm is the elastic wave phase velocity, and vd is the free
carrier drift velocity. The dielectric relaxation frequency (ωc) and diffusion frequency (ωD) can be expressed as

ωc =
eµN

εs
, (A57)

ωD =
v2

me

µ kBT
, (A58)

where e is the charge of an electron, µ is the free carrier mobility, N is the free carrier concentration, kB is the Boltzmann
constant, and T is the temperature. The space charge potential factor (M) above the piezoelectric surface is given as

M (qmh) =
εg + εptanh (qmh)

(εg + εp) [1 + tanh (qmh)]
, (A59)

where εp and εg are the permittivities of the piezoelectric (lithium niobate) and gap dielectric (InP), respectively. The
interaction impedance (Zm) of the elastic wave above the piezoelectric surface is a measure of the overlap between the
electric potential and free carriers and is given as

Zm (qmh) = Zm (0) e−2qmh. (A60)
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The strength of the interaction impedance decays exponentially as the height of the dielectric gap is increased, with a
maximum occurring at the piezoelectric surface

Zm (0) =
k2

Ωm (εg + εp)
, (A61)

where k2 is the piezoelectric coupling coefficient of the elastic mode. The introduction of the dielectric above the
semiconductor thin film will perturb the fields as a result of the top dielectric permittivity (εd). The perturbed values
for the space charge potential factor and interaction impedance are given as

M ′ (qmh) =
M (qmh)

1 + (εd/εg − 1)M (qmh)
, (A62)

Z ′m (qmh) =
Zm (qmh)

[1 + (εd/εg − 1)M (qmh)]
2 . (A63)

Considering semiconductor films of a finite thickness, the space-charge reduction factor can be expressed as

R = (εs/εg)M
′ (qmh) tanh (qmt) . (A64)

The diffusion term, which comes from carrier diffusion in the semiconductor, can be expressed as

D =

√
ωc

ωD

tanh (qmt)

tanh (γdt)
, (A65)

where γd is related to the Debye length (λd) in the semiconductor

γd
∼=
√
ωcωD

vm
=

1

λd
. (A66)

Finally, the conversion of this AE gain coefficient to units of [dB/cm] is given as

αAE

[
dB

cm

]
=

1m

100 cm

(
10

ln (10)

)
αAE

[
1

m

]
. (A67)

The expression for the AE gain from the simple theory is given as [118]

αAE = qm

[
k2 γvΩmτ

1 + (γvΩmτ)
2

]
, (A68)

where the time constant (τ) and non-dimensionalized velocity (γv) are given as

τ =
εp + εd
eµNqmt

, (A69)

γv = 1− vd

vm
. (A70)

The simple theory has a couple of limitations when compared to the normal mode theory. First, the simple theory does
not include any carrier diffusion effects. Second, there is no gap height defined in the simple theory, which means the
semiconductor thin film is assumed to be in direct contact with the piezoelectric substrate. The normal mode theory
can be made to match the assumptions found in the simple theory by setting the temperature to zero (T = 0) for the
diffusion frequency in Eq. A58 and by setting the gap height to zero (h = 0) in all of the expressions.

The inclusion of loss from the elastic mode into the expression for AE gain is done by representing the free
(vf = vfr + i vfi) and metalized (vl = vlr + i vli) phase velocities as complex values. The real component of
the free velocity is simply the phase velocity of the given elastic mode (vfr = vm). The real component of the metalized
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velocity can be determined from the definition of the piezoelectric coupling coefficient. The imaginary part of the free
and metalized velocities can be computed from the complex propagation constant of the elastic mode (qf,l = qm−i αf,l/2)
and is given as

vfi,li =
Ωmαf,l

2 q2
m

. (A71)

The full expression for the AE gain from the simple theory with the inclusion of losses from the elastic mode is given as
[47]

αAE = qm

[
k2 γvΩmτ

1 + (γvΩmτ)
2 +

2 vli

vfr

(γvΩmτ)
2

1 + (γvΩmτ)
2 +

2 vfi

vfr

1

1 + (γvΩmτ)
2

]
. (A72)

This AE gain can again be converted into units of [dB/cm] using Eq. A67.
A comparison of these AE theories for an example backward intra-modal and forward inter-modal Brillouin scattering

process is shown in Fig. 13. The four different AE theories include: the full treatment of the normal mode theory with
no assumptions, the simple theory, the normal mode theory with the same assumptions as the simple theory, and the
simple theory including the losses from the elastic mode. The elastic mode from the main manuscript (waveguide mode
2) is chosen as the example for backward intra-modal Brillouin scattering (Fig. 13a). The full set of parameters for the
AE calculations are Ωm/2π = 8.78 GHz, λm = 0.35 µm, vm = 3072 m/s, αf,l = 71800 m-1, k2 = 5.87 %, t = 0.1 µm,
h = 5 nm, εp = 29.2ε0, εs = 13.3ε0, εg = 12.5ε0, εd = ε0, T = 293.15 K, µ = 2000 cm2/Vs, N = 1 x 1016 cm-3, and
Qm = 250. For waveguide mode 2, all four AE theories show significant differences. The large difference between the
full treatment of the normal mode theory and simple theory can be attributed to significant carrier diffusion effects
when operating at this small phonon wavelength. The two conditions for minimal diffusion effects are Ω2

m << ωcωD

and Rωc/Ωm >> D. Both conditions relate the phonon frequency to constants that are a function of the semiconductor
properties and elastic mode’s phase velocity. Assuming the elastic mode has minimal dispersion, then the amount of
carrier diffusion is proportional to the phonon frequency. Most reported AE amplifiers operate at phonon frequencies
in the range of MHz up to 1 GHz and the carrier diffusion is minimal in this frequency range. Backward intra-modal
Brillouin scattering processes, however, have phase-matched elastic modes at frequencies at least an order of magnitude
larger, which no longer satisfy the two conditions for negligible diffusion effects. Additionally, the phase-matched
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FIG. 13. Calculated AE gain curves as a function of applied drift field. The normal mode theory and simple theory are plotted
for (a) elastic waveguide mode 2 (backward intra-modal)—elastic mode used in the main manuscript—and (b) SH SAW mode
(forward inter-modal).
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phonon wavelength is now the same order of magnitude as the semiconductor film thickness. As a result, the phonon
wave vector-thickness product (qmt) is too large for the small angle approximation in Eq. A56. The full evaluation of
the hyperbolic tangent in the normal mode theory (with assumptions) accounts for the discrepancy with the simple
theory. Both theories have similar magnitudes in AE gain, but the difference in shape with respect to the applied drift
field is a result of the invalid small angle approximation for this qmt product. Finally, the addition of losses from the
elastic mode to the simple theory shifts the AE gain curve, but does not significantly change the shape of the curve.
With the conservative estimate of 250 for the mechanical quality factor, the additional loss terms added to Eq. A72
have a relative magnitude of 6.8 %. Since the carrier diffusion effects are significant for backward intra-modal Brillouin
scattering in the InGaAsP-LN-Si physical system, the full treatment of the normal mode theory was chosen as the AE
theory to use in the main manuscript and appendix to illustrate the different regimes of AE Brillouin dynamics. If the
elastic mode of an acoustoelectrically enhanced Brillouin device exhibits these losses in experiment, the full treatment
of the normal mode theory would need to be expanded to include the effects of losses in the elastic mode for the most
accurate AE theoretical model. Additionally, the acoustoelectric coupling defined using the Hamiltonian formulation
for the acoustoelectric dynamics (see Appendix C) is most similar to the full treatment of the normal mode theory
minus the diffusion effects. Both the normal mode theory and Hamiltonian formulation take into consideration the
cross-sectional overlap between the elastic wave and free carriers including the gap dielectric between the piezoelectric
surface and semiconductor thin film.

For forward inter-modal Brillouin scattering, the phase-matched phonon wavelength is similar to those found in
traditional AE delayline amplifiers using the Rayleigh and SH SAW modes. As an example, the AE gain calculations
for the best simulated SH SAW mode are plotted in Fig. 13b. The full set of parameters for the AE calculations are
Ωm/2π = 1.24 GHz, λm = 3.45 µm, vm = 4289 m/s, αf,l = 1800 m-1, k2 = 8.84 %, t = 0.2 µm, h = 5 nm, εp = 43.6ε0,
εs = 13.3ε0, εg = 12.5ε0, εd = ε0, T = 293.15 K, µ = 2000 cm2/Vs, N = 1 x 1016 cm-3, and Qm = 1000. With a
lower phonon frequency and longer phonon wavelength, the two conditions for minimal carrier diffusion effects in the
normal mode theory are valid. The only significant difference between the full treatment of the normal mode theory
and the simple theory is the introduction of the 5 nm InP gap dielectric between the InGaAsP and lithium niobate.
The longer phonon wavelength also makes the small angle approximation for the qmt product valid. In this case, the
normal mode theory with the additional assumptions is in good agreement with the simple theory. With a estimated
higher mechanical quality factor at these lower phonon frequencies, the additional loss terms added to the simple theory
only have a relative magnitude of 1.1 %. This amount of loss has a minimal effect on the AE gain curve, which means
all four AE theories have good agreement with each other.

7. Acoustoelectric Noise Figure Calculation

We next estimate the levels of intrinsic acoustic noise relative to thermal fluctuations in the acoustoelectric gain
medium for our analysis of the acoustoelectric enhanced optical Brillouin noise figure in Appendix D. To do this, we
analyze the predicted noise figure in the absence of acoustic losses. For the InGaAsP-LN-Si physical system, the internal
noise figure resulting from the noise source in the semiconductor coupling to the elastic wave is given as [119]

Fn = 1 +
t e2DcN |qd|2 Zm (qmh) e−2qmh

kBTαAE

(
eαAEl − 1

eαAEl

)
. (A73)

Here, Dc is a diffusion coefficient, qd is the perturbed carrier wave propagation constant, and the interaction impedance,
Zm, is the same as in Eq. A60-A61. The diffusion coefficient can be expressed as Dc = DTH +DTR, where the thermal
diffusion constant (DTH) and trapping effects (DTR) are given as

DTH =
µkBT

e
, (A74)

DTR =
fTR (1− fTR) v2

d τTR

1 + (ΩmτTR)
. (A75)

The factor fTR represents the fraction of untrapped carriers and τTR is the carrier trapping relaxation time, which can
be estimated as τTR = 1/Ωm. For the case where ωcd/vd >> 1 and qdh << 1, the carrier wave propagation constant
can be approximated as [119]

qd ≈ −i
Ωm (εg + εp)

eµNt
. (A76)

Finally, the internal noise figure can be expressed in decibels through the conversion Fn [dB] = 10 · log10 (Fn).
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TABLE II. Table summarizing the mode triplets for the acoustoelectrically enhanced backward intra-modal Brillouin dynamics
in the InGaAsP-LN-Si physical system. The AE gain value is calculated using the normal mode theory and evaluated at a drift
field of 2 kV/cm. For each elastic mode, the rows with the best simulated results are highlighted in gray.

Optical
Pair

Acoustic
Mode

β t
(µm)

w
(µm)

λm

(µm)
Ωm/2π
(GHz)

vm

(m/s)
|gpe|

[(rad/s)
√

m]
|grp|

[(rad/s)
√

m]
|g0|

[(rad/s)
√

m]
k2

(%)
αAE

(dB/cm)

TE0 / TE0 WG 1 0° 0.1 0.9 0.356 7.597 2704 2228 -358 1843 0.65 413.7

TE0 / TE0 WG 1 0° 0.15 0.75 0.328 7.346 2410 2352 -707 1626 0.23 150.0

TE0 / TE0 WG 1 0° 0.2 0.75 0.302 7.558 2283 2545 -643 1876 0.04 27.2

TE0 / TE0 WG 1 0° 0.3 0.65 0.281 7.915 2224 2927 -611 2304 0.02 14.1

TE0 / TE0 WG 1 90° 0.1 0.95 0.347 7.896 2740 1586 -236 1350 4.22 2093.7

TE0 / TE0 WG 1 90° 0.15 0.75 0.324 7.463 2418 2122 -626 1496 1.29 649.5

TE0 / TE0 WG 1 90° 0.2 0.75 0.301 7.604 2289 2362 -601 1761 0.69 357.1

TE0 / TE0 WG 1 90° 0.3 0.65 0.280 7.947 2225 2835 -592 2244 0.19 100.9

TE0 / TE0 WG 2 0° 0.1 1.1 0.350 8.777 3072 7294 848 7943 5.87 3725.9

TE0 / TE0 WG 2 0° 0.15 0.75 0.328 8.401 2755 7861 1461 9281 1.63 1054.2

TE0 / TE0 WG 2 0° 0.2 0.7 0.305 8.579 2617 5783 1158 6906 0.21 141.0

TE0 / TE0 WG 2 0° 0.3 0.6 0.285 9.079 2588 3200 307 3502 0.01 6.9

TE0 / TE0 WG 2 90° 0.1 1.15 0.343 9.067 3110 6605 967 7572 0.62 305.7

TE0 / TE0 WG 2 90° 0.15 0.8 0.321 8.545 2743 7518 1540 9059 0.03 15.0

TE0 / TE0 WG 2 90° 0.2 0.75 0.301 8.672 2610 5504 1173 6676 0.01 5.1

TE0 / TE0 WG 2 90° 0.3 0.6 0.285 9.082 2588 3043 383 3426 0.06 31.4

TE0 / TE0 WG 3 0° 0.15 0.8 0.325 10.453 3397 2186 161 2345 0.82 524.2

TE0 / TE0 WG 3 0° 0.2 0.75 0.302 10.870 3283 2345 182 2527 0.66 437.8

TE0 / TE0 WG 3 90° 0.15 0.8 0.321 10.611 3406 1978 113 2091 0.41 202.1

TE0 / TE0 WG 3 90° 0.2 0.7 0.304 11.205 3406 2086 250 2332 0.00 0.0

Using the previous two example elastic modes (Fig. 13), the internal noise figure is plotted in Fig. 14 as a function of the
acoustoelectric gain using the full treatment of the normal mode theory for a 1 cm long device in the absence of acoustic
loss. For both elastic modes, the fraction of untrapped carriers is estimated to be fTR = 0.95. For amorphous InSb,
the fraction of untrapped carriers is approximately 0.8, so for our nearly single crystalline epitaxial films we expect fTR

to be substantially closer to 1, with 0.95 being a conservative estimate. This range of acoustoelectric gain corresponds
to operating in the enhanced Brillouin regime (shown in Fig. 3). The noise figure is initially large when entering the
enhanced Brillouin regime from the lossy Brillouin regime (αAE > 0). As the acoustoelectric gain is increased, the noise
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FIG. 14. Calculated internal noise figure as a function of acoustoelectric gain for a 1 cm long device, in the absence of acoustic
loss. The acoustoelectric gain values for the elastic waveguide mode 2 (backward intra-modal)—elastic mode used in the main
manuscript—and the SH SAW mode (forward inter-modal) are taken from Fig. 13 using the full treatment of the normal mode
theory. The range of plotted acoustoelectric gain values corresponds to the enhanced Brillouin regime illustrated in Fig. 3.
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TABLE III. Table summarizing the mode triplets for the acoustoelectrically enhanced forward inter-modal Brillouin dynamics in
the InGaAsP-LN-Si physical system. The AE gain value is calculated using the normal mode theory and evaluated at a drift field
of 2 kV/cm. For each elastic mode, the rows with the best simulated results are highlighted in gray.

Optical
Pair

Acoustic
Mode

β t
(µm)

w
(µm)

λm

(µm)
Ωm/2π
(GHz)

vm

(m/s)
|gpe|

[(rad/s)
√

m]
|grp|

[(rad/s)
√

m]
|g0|

[(rad/s)
√

m]
k2

(%)
αAE

(dB/cm)

TE0 / TE2 Rayleigh 0° 0.15 1.55 4.066 0.865 3516 15.7 15.9 31.5 2.21 299.7

TE0 / TE2 Rayleigh 0° 0.2 1.3 2.902 1.195 3469 21.3 12.4 33.6 3.08 415.0

TE0 / TE2 Rayleigh 0° 0.3 1.1 2.102 1.619 3402 17.5 81.1 97.7 4.91 630.3

TE0 / TE2 Rayleigh 90° 0.15 1.65 4.696 0.802 3766 13.5 13.8 27.3 0.16 22.4

TE0 / TE2 Rayleigh 90° 0.2 1.35 3.192 1.166 3723 27.8 17.4 45.3 0.22 30.9

TE0 / TE2 Rayleigh 90° 0.3 1.15 2.332 1.570 3661 23.1 63.3 86.4 2.05 259.3

TE0 / TM1 Rayleigh 0° 0.3 0.8 2.303 1.495 3444 -19.2 133.3 114.3 3.67 434.4

TE0 / TM1 Rayleigh 90° 0.3 0.8 2.412 1.536 3706 -15.7 129.3 113.6 1.40 172.6

TE0 / TE1 SH SAW 0° 0.15 1.05 5.180 0.702 3636 42.4 49.4 91.6 0.00 0.0

TE0 / TE1 SH SAW 0° 0.2 0.85 3.170 1.129 3577 49.9 75.6 123.7 0.01 1.3

TE0 / TE1 SH/Ray 0° 0.3 0.7 2.314 1.418 3281 374.6 1049.3 1419.8 1.43 169.3

TE0 / TE1 SH SAW 90° 0.15 1.1 5.848 0.773 4519 36.2 44.7 80.9 2.91 342.6

TE0 / TE1 SH SAW 90° 0.2 1.0 4.759 0.935 4449 57.7 68.9 126.6 2.81 298.0

TE0 / TE1 SH/Ray 90° 0.3 0.75 2.689 1.373 3691 113.2 396.2 509.4 1.31 149.5

TE0 / TM0 SH SAW 0° 0.2 1.75 3.123 1.123 3507 34.8 20.7 58.9 0.12 15.3

TE0 / TM0 SH SAW 0° 0.3 1.5 4.673 0.772 3607 16.3 4.5 22.5 0.02 1.3

TE0 / TM0 SH SAW 90° 0.2 1.75 3.453 1.242 4289 46.0 7.7 50.9 8.84 1166.1

TE0 / TM0 SH SAW 90° 0.3 1.5 4.972 0.889 4418 47.4 9.3 55.6 7.56 541.6

figure decreases to a minimum value before increasing again as the diffusion coefficient begins to dominate at high carrier
drift velocities. In the case of the elastic waveguide mode 2, the elastic mode used in the main manuscript, the noise
figure does not reach its minimum value in the enhanced Brillouin regime. This means that the internal noise figure will
continue to decrease for larger acoustoelectric gains up until the coherent Brillouin limit is reached.

8. Mode Triplet Simulation Results

For both backward intra-modal and forward inter-modal Brillouin scattering, an iterative design process is imple-
mented using all the previously described metrics in this section of the appendix. First, the waveguide geometry is
set and simulated to determine the optical modes, which dictates the phase-matched phonon wavelength. The elastic
modes are then simulated with electrically free and grounded boundary conditions at the InGaAsP and lithium niobate
interface. The piezoelectric coupling coefficient is then calculated using the difference in eigenfrequencies for each elastic
mode. Finally, the optomechanical coupling coefficient is computed using the optical and elastic field profiles and the
piezoelectric coupling coefficient is used to compute the AE gain using the normal mode theory. This design process
is repeated for different waveguide geometries until a set of modes are identified with both high AE gain and optome-
chanical coupling. Tables II and III show the simulation results with the rows containing the best performance for each
elastic mode highlighted in gray.

Appendix B: Feasibility of Continuous Operation for Acoustoelectric Brillouin Devices

Acoustoelectric devices for radiofrequency signal processing applications have historically had difficulty operating
continuously with large gain, primarily due to effects related to thermal dissipation of the current required to drive the
acoustoelectric current. [40, 41, 47, 48]. Joule heating arises in acoustoelectric devices when a voltage is applied to the
semiconductor. If the thermal conductivity out of the device is not sufficient, this resistive heating can cause variations
in the device response as temperature increases, and ultimately can lead to thermal runaway and even irreversible
damage. The thermal behavior depends on the semiconductor resistance and geometry, the bias field required to achieve
the necessary acoustic gain, and the material thermal properties of the semiconductor and all the other layers, including
the substrate. However, in contrast to radiofrequency acoustic wave amplifiers that have been previously experimentally
demonstrated, acoustoelectric-Brillouin devices have different metrics and geometries that make continuous operation
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FIG. 15. Contour plots of the dissipated DC power as a function of (a) σt and w and (b) k2 and Ω/2π. (c) ∆Tmax as a function
of w for a 100 nm thick and 1 cm long In0.712Ga0.288As0.625P0.375 semiconductor layer on a bulk lithium niobate substrate or
thin film lithium niobate on silicon substrate. The semiconductor acts as the heat source for the finite element method model
according to the dissipated DC power.

significantly less challenging.
An acoustic wave amplifier for radiofrequency signal processing applications must have significant levels of terminal

gain, meaning that the acoustic gain must be large enough to overcome all acoustic losses and then provide a significant
level of additional acoustic gain. This is accomplished by increasing the applied drift field, which leads to larger dissipated
power and concomitant heating. Ultimately, the ability to operate continuously and to reach peak acoustoelectric gain
is limited by thermal dissipation under these conditions. However, with respect to the acoustoelectric-Brillouin devices
described in this work, improving the performance and achieving the ACB limit only require that the applied drift field
provides enough acoustic gain to overcome the losses inherent to the acoustoelectric effect and the intrinsic phonon
losses. This requires substantially less gain—and thus substantially less heat—than achieving net terminal gain in
radiofrequency acoustic amplifier systems.

To illustrate the feasibility of continuous operation, we analyze the heat generated and temperature increase for an
example device, using the lithium niobate-on-silicon and In0.712Ga0.288As0.625P0.375 platform introduced in this work.
We assume an interaction length of 1 cm, a semiconductor width, w, of 0.5-1.5 µm, a semiconductor thickness, t, of
100-300 nm, an electromechanical coupling coefficient, k2, of 1-9%, and an acoustic wavelength of approximately 350 nm
(corresponding to a phonon frequency of Ωm/2π = 7-11 GHz). A phononic quality factor of 250 (assumed for the prior
calculations) corresponds to a phonon propagation loss of 0.11 dB/Λ, where Λ is the acoustic wavelength. Under these
conditions, it is necessary to achieve an acoustic gain of 0.11 dB/Λ or higher, which corresponds to 3100 dB/cm. The
bulk semiconductor mobility for In0.712Ga0.288As0.625P0.375 is approximately 5000 cm2/V·s. Based on our previous work
[48], we expect the as-processed thin film mobility in these type of acoustoelectric-Brillouin devices to be approximately
2000 cm2/V·s and the expected carrier concentration is 1× 1016 cm−3 (see Appendix A for more details). This carrier
concentration and mobility lead to a conductivity-thickness product, σt, that is 32-96 µS, which is one of the key
factors that determine the strength of the external electric field required to reach a given level of gain (see, for example,
Appendix A 6) as well as the amount of Joule heating that electric field produces to achieve that gain.

From these values, we can estimate the dissipated power. Figure 15a shows the dissipated power required to achieve
an acoustic gain of 3100 dB/cm as a function of σt and w for Ω/2π = 8.78 GHz and k2 = 5.87 %. Figure 15b shows the
dissipated power as a function of k2 and Ωm/2π for a semiconductor width of 1.1 µm and σt = 32 µS. The dissipated
power varies depending on the device configuration, but can be 1 mW or less, which is significantly less than previous
work where large terminal gain was achieved [47, 48]. Low dissipated DC powers are achieved due to two factors. One
factor is the device geometry and semiconductor material parameters have been optimized to make the device highly
resistive. The second factor is that Ωm and k2 are both larger, resulting in larger acoustic gain being produced with
smaller bias fields.

Another aspect that should contribute to the feasibility of continuous operation in acoustoelectric Brillouin devices
is that the interactions take place in a waveguide with small cross-sectional width of approximately 0.5-1.5 µm. This
makes the device more resistive and enables more efficient lateral heat transport by increasing the surface to volume
ratio compared to wider devices.

Beyond reducing the power dissipated, the temperature increase is also decreased by using a piezoelectric compound
substrate that consists of a lithium niobate film on bulk silicon as opposed to a bulk lithium niobate substrate, both of
which were demonstrated in recent work [48]. The thermal conductivity of lithium niobate is 4.6 W/m·K [120] while the
thermal conductivity of silicon is 150 W/m·K [121]. Therefore, the 30× increase of thermal conductivity of silicon over
lithium niobate leads to a significantly smaller temperature rise for a given dissipated power. Although terminal gain
was not achieved, continuous operation of an acoustic wave amplifier has been experimentally demonstrated for both an
acoustic waveguide [122] and a thin film lithium niobate on silicon substrate [47]. Continuous operation and terminal
gain has been achieved in a system using a similar approach, in particular, leveraging a highly thermally conductive
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sapphire substrate [40]. We also reiterate that only net phonon gain, as opposed to terminal gain (which must overcome
all acoustic, electronic, and transducer losses), is necessary to enhance Brillouin optomechanical interactions via the
acoustoelectric effect—a much less stringent requirement.

A finite element method model was used to model conductive and convective heat transfer for this exemplary device
operating in air. We model the 100 nm thick, 1.1 µm wide, and 1 cm long In0.712Ga0.288As0.625P0.375 semiconduc-
tor film on a thin film lithium niobate (5 µm thick) on silicon substrate or a bulk lithium niobate substrate. The
In0.712Ga0.288As0.625P0.375 density is 5204 kg/cm3, the heat capacity at constant pressure is 335 J/kg·K, the thermal
conductivity is 4.35 W/m·K, and the coefficient of thermal expansion is 5.26×10−6 1/K [101]. Figure 15c shows the
maximum temperature difference ∆Tmax, defined as the difference between the maximum steady-state temperature and
the ambient temperature, as a function of w for the case of a bulk lithium niobate substrate and a lithium niobate
film on a silion substrate. For a semiconductor width of 1.1 µm on the thin film lithium niobate on silicon substrate,
∆Tmax = 0.08 K, which is approximately 200X smaller than the temperature rise associated with achieving terminal
gain in our recent acoustic wave amplifiers [48], where the maximum gain applied was limited by needing to avoid
significant temperature increases. In conventional acoustoelectric devices, predicting device behavior is complicated by
Joule heating. For example, heating leads to a temperature-dependent semiconductor conductivity which modifies the
acoustic gain. The results shown here suggest that these thermal effects do not need to be considered for acoustoelectric-
Brillouin devices, at least in the parameter space explored in this work, as the dissipated DC power is relatively small
and thermal dissipation is effective.

Appendix C: Acoustoelectric dynamics

In this section, we formulate a model of acoustoelectric dynamics within photonic and phononic waveguide structures of
arbitrary, but translationally invariant, cross-sectional geometry. This model assumes; (1) the validity of the quasistatic
limit, enabling the electric field to be expressed in terms of a scalar potential, (2) describes the free carriers using a
hydrodynamic description, (3) neglects the dispersion of the material lattice, and (4) captures perturbations of the
charge density and velocity to first order. Assumptions (1)-(4) are well satisfied for the candidate devices considered
here.

We begin with Lagrangian given by

L =

∫
Vsc

d3x

[
−m(ṅ+ vd · ∇n)ψ̇ − 1

2
mn0(∇ψ̇)2 − enϕ+

1

2
ε(∇ϕ)2

]
+

∫
Vout

d3x
1

2
ε(∇ϕ)2, (C1)

where the displacement of the free carriers from equilibrium is expressed as the gradient of the scalar potential ψ
(discussed in more detail below), n is the perturbation of the free-carrier density from equilibrium n0, m and e are the
free carrier mass and charge, ε is the spatially-dependent permittivity of the waveguide structure, and ϕ is the electric
potential. The term containing vd accounts for a constant background drift velocity where the free-carrier drift velocity
vd is directed parallel the waveguide surfaces. For later convenience, the volume integration of the Lagrangian has been
explicitly divided into regions that do (Vsc, sc standing for ‘semiconductor’) and do not contain free carriers (Vout).

The use of the displacement potential ψ to represent the motion of the free carriers is justified in the quasistatic
limit where the electric field is well-described by −∇ϕ. In this limit the Lorentz force acting on the charged fluid is the
gradient of a scalar, and therefore is curl free. Defining the displacement of the electrons from equilibrium by ξ = −∇ψ,
the linearized (hydrodynamic) equations of motion for the electron fluid about a constant drift velocity vd are given by

mξ̈ + mvd · ξ̇ = e∇ϕ. Taking the curl of both sides of this equation shows ∇× ξ = 0, justifying the representation of
the electron displacement by the potential ψ.

To describe the coupling between the potential and the elastic field, we use the interaction Lagrangian given by

Lint =

∫
d3x ϕ∂kdijk∂iuj = −Hint (C2)

which reproduces the classical equations of motion, dijk is the piezoelectric tensor (or more generically, any electro-
mechanical coupling), uj is the jth component of the elastic displacement, and ∂k represents the kth component of the
gradient.

Neglecting the coupling to the elastic field, the least action principle yields the following equations

ṅ+ vd · ∇n = n0∇2ψ̇ (C3)

ψ̈ + vd · ∇ψ̇ =
e

m
ϕ (C4)

−∇ · ε∇ϕ = en. (C5)

Noting that the perturbation to the free-carrier velocity is given by v = −∇ψ̇, Eqs. (C3) and (C4) reproduce the
linearized continuity and hydrodynamic equations in the presence of drift, and Eq. (C5) gives Gauss’ Law. Eliminating
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the charge density, we find the effective equation of motion for the electric and free-carrier displacement potential given
by

(∇ · ε∇∂2
τ + εinω

2
e∇2)

[
ϕ
ψ

]
= 0 (C6)

where ∂τ = ∂t + vd · ∇, ∂2
τ = (∂t + vd · ∇)2, εin is the permittivity within the region containing free carriers, and

ωe =
√
e2n0/(mεin) is the permittivity normalized plasma frequency. Within the region containing free carriers (i.e.

ε = εin = constant), Eq. (C6) admits two solution classes: (1) bulk modes that satisfy (∂2
τ + ω2

e)ϕ = 0, and (2) surface
modes that satisfy ∇2ϕ = 0 everywhere [123, 124]. Assuming the drift current flows along the z-direction and that the
potential takes the form of a plane wave, i.e., ϕ ∝ exp{−i(ωt − qz)} these modes can be fully characterized with the
appropriate boundary conditions. Namely, the electric potential must be continuous across all interfaces and must also
satisfy the Fourier domain boundary condition

εoutn̂ · ∇ϕout = εin

(
1− ω2

e

β2

)
n̂ · ∇ϕin (C7)

where β = ω − vdq, n̂ is a unit vector oriented normal to the surface containing the free carriers, and the subscript
‘in’ and ‘out’ respectively denote quantities evaluated on the respective inner and outer sides of the interface between
the region with free carriers. For bulk modes, the right hand side of Eq. (C7) vanishes, requiring the potential outside
Vsc to vanish [124]. Consequently, bulk modes do not couple to charges outside of Vsc for this model, and therefore
for the candidate system proposed in this paper—with a piezoelectric domain outside the semiconducting region—bulk
modes do not produce acoustoelectric gain [123, 124]. However, with diffusion, bulk modes are not confined within the
semiconducting region [123]. As an example, for the surface modes on a planar interface without drift (vd = 0) Eq. (C7)
yields the well-known surface plasmon frequency ω2

S = εin/(εin + εout)ω
2
e .

1. Acoustoelectric Hamiltonian

To derive the Hamiltonian for the acoustoelectric dynamics, we select n as a generalized coordinate, find the conjugate
momentum (δL/δṅ ≡ P = −mψ̇), and perform a Legendre transform of L to give

H0 =

∫
Vsc

d3x

[
n0

2m
(∇P )2 − Pvd · ∇n+ enϕ− 1

2
ε(∇ϕ)2

]
−
∫
Vout

d3x
1

2
ε(∇ϕ)2. (C8)

The equations of motion for this system can be derived from the Poisson bracket {n(x), P (x′)} = δ3(x−x′), reproducing
Eqs. (C3)-(C5). We quantize this system by requiring the equal-time commutation relation (ETCR) [n(x), P (x′)] =
i~δ3(x− x′) (i.e., we promote the classical Poisson bracket to a commutator multiplied by i~).

Free carrier dissipation is critical to the acousto-electric effect. To model these effects we use an open systems
treatment tailored to reproduce the permittivity of the Drude-Lorentz model for free carriers in the frame of the drift
current, captured by the “bath” Hamiltonian given by

Hbath =

∫
Vsc

d3x

∫ ∞
0

dν

[
1

2m
P 2
ν − Pνvd · ∇Xν +

1

2
mν2X2

ν −mĉνXνn

]
.

Here Pν and Xν denote momenta and position coordinates for the νth bath mode and ĉν is a mode-specific system
bath coupling, i.e., ĉν takes on a specific form when the fields are expanded in normal modes, depending on the normal
mode eigenvalues. The classical equations of motion for the bath variables can be derived from the Poisson bracket
{Xν(x), Pν′(x

′)} = δ(ν − ν′)δ3(x − x′) and the quantum dynamics can be recovered by replacing the Poisson bracket
with a commutator divided by i~.

After simplification, Hamilton’s equations for this coupled system give

(∇ · ε∇∂2
τ + εinω

2
e∇2)ϕ = en0

∫ ∞
0

dν ĉν∇2Xν (C9)

(∂τ
2 + ν2)Xν = − ĉν

e
∇ · ε∇ϕ (C10)

which can be analyzed in terms of bulk modes and surface modes. Owing to the linearity of this coupled system, Eqs.
(C9) and (C10) also give the quantum dynamics of the system when these fields (i.e., ϕ and Xν) are promoted to
operators.
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a. Bulk modes

For bulk modes, orthonormal eigenfunctions of the Helmholtz equation, satisfying ∇2(ψ` exp{iqz}/
√

2π) =

−Q2
`q(ψ` exp{iqz}/

√
2π) and

∫
Vsc

d3x ψ`ψ`′exp{i(q − q′)z}/(2π) = δ``′δ(q − q′) subject to Dirichlet boundary condi-

tions on the boundary of Vsc, which denote from hereon as ∂Vsc, yield the spatial dependence of the potential and
charge density. Using these eigenfunctions as a basis

ϕ =
∑
`

∫
dq

(
ψ`

eiqz√
2π
ϕ`q + c.c.

)
(C11)

Xν =
∑
`

∫
dq

(
ψ`

eiqz√
2π
Xν`q + c.c.

)
, (C12)

we find

(∂2
τ + ω2

e)ϕ`q =
en0

εin

∫ ∞
0

dν cν`qXν`q (C13)

(∂τ
2 + ν2)Xν`q =

cν`qεin
e

Q2
`qϕ`q. (C14)

Here, we assume that the waveguide is translationally invariant along the z-direction, so that ∂τ → ∂t + ivdq in Eqs.
(C13) and (C14), and the system-bath coupling is taken as ĉν → cν`q when expressed in this mode basis. Explicitly
solving for Xν`q, including both homogeneous (X0

ν`q) and particular solutions, inserting the solution into the equation

for ϕ`q and assuming that
√
n0cν`qQ`q = (2γeν

2/π)1/2 ≡ Gν (which produces Ohmic coupling to the bath), we obtain
driven damped motion for the potential, reproducing the physics of the Drude-Lorentz model in the presence of drift
current [125], given by

(∂2
τ + γe∂τ + ω2

e)ϕ`q =
en0

εin

∫ ∞
0

dν cν`qX
0
ν`q. (C15)

Using the solution for ϕ`q, Xν`q can be obtained from Eq. (C10) [124]. When aω`q = aω`q(0) exp{−i(ω − vdq)t}, one
can show that the following mode expansions for the potential and the bath satisfy Eqs. (C9) & (C10) as well as the
ETCR

ϕ = ωe
∑
`

∫
dq

∫ ∞
0

dω

√
~

4πωεin

1

Q`q

(
χ(ω)ψ`e

iqzaω`q +H.c.

)
(C16)

n =
∑
`

∫
dq

∫ ∞
0

dω

√
~n0

4πmω
Q`q

(
χ(ω)ψ`e

iqzaω`q +H.c.

)
(C17)

P = −i
∑
`

∫
dq

∫ ∞
0

dω

√
~mω
4πn0

1

Q`q

(
χ(ω)ψ`e

iqzaω`q −H.c.
)

(C18)

Xν =
∑
`

∫
dq

∫ ∞
0

dω

√
~

4πmω

(
χν(ω)ψ`e

iqzaω`q +H.c.

)
(C19)

Pν = −i
∑
`

∫
dq

∫ ∞
0

dω

√
~mω
4π

(
χν(ω)ψ`e

iqzaω`q −H.c.
)

(C20)

when

[aω`q, a
†
ω′`′q′ ] = δ``′δ(ω − ω′)δ(q − q′) (C21)[

a†ω`q, a
†
ω′`′q′

]
= [aω`q, aω′`′q′ ] = 0 (C22)

χ(ω) =
Gω

−ω(ω + iγe) + ω2
e

(C23)

χν(ω) = δ(ω − ν) +
Gν

−ω2 + ν2

Gω
−ω(ω + iγe) + ω2

e

(C24)
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and the functions χ(ω) and χν(ω) satisfy the Lippmann-Schwinger orthogonality conditions [124]∫ ∞
0

dωχ(ω)χ∗(ω) = 1 (C25)

χ(ω)χ∗(ω′) +

∫ ∞
0

dνχν(ω)χ∗ν(ω′) = δ(ω − ω′) (C26)∫ ∞
0

dωχν(ω)χ∗ν′(ω) = δ(ν − ν′) (C27)∫ ∞
0

dωχν(ω)χ∗(ω) = 0. (C28)

Inserting Eqs. (C16)-(C20) in the total Hamiltonian (i.e., H = H0 +Hbath) and using the orthonormality conditions
Eqs. (C25)-(C28) gives the diagonalized Hamiltonian for the coupled modes of potential and charge

H =
∑
`

∫
dq

∫ ∞
0

dω ~(ω + vdq)a
†
ω`qaω`q. (C29)

Note that the background drift current has the effect of Doppler shifting the frequency of these charge-potential modes.
Importantly, for ω + vdq < 0 phonons and plasmons can be spontaneously generated from the vacuum.

2. Envelope formulation of acoustoelectric dynamics

To describe slowly varying changes to the elastic amplitude, this section develops an envelope formulation of the
acoustoelectric effect. For a phonon of frequency Ω and wavevector qm, phase matching conditions for plasmon-photon
interactions show that two scattering processes are possible: (1) forward scattering, where a phonon can be converted
to a plasmon (or vice versa), and (2) backward scattering, where a phonon and plasmon, are spontaneously emitted.
For forward scattering the phase matched plasmon frequency and wave vector are ω = (1 − vd/vm)Ω and qm, and for
backward scattering, ω = (vd/vm − 1)Ω and −qm. Because ω ≥ 0, these phase matching conditions show that forward
scattering occurs for vm > vd and backward scattering occurs for vm < vd. Therefore, the potential will be comprised
of two envelopes Φω`± with carrier wavevectors ±qm, where Φω`+(Φω`−) is selected for vm > vd(vm < vd).

The envelope Φω`±(z) for the charge density, velocity potential and electric potential describing the spatial changes
along the waveguide is related to the normal mode amplitudes aω`q by

aω`q =
∑
±

∫
dz√
2π

ei(±qm−q)zΦω`±(z)θ(±(vm − vd))) (C30)

where qm is the carrier wavevector. Equations (C30) and (C21) show that the envelope operators satisfy the commutation
relations [

Φω`±(z),Φ†ω′`′±(z′)
]

= δ``′δ(ω − ω′)δ(z − z′) (C31)[
Φω`±(z),Φω′`′±(z′)

]
= 0 (C32)[

Φω`±(z),Φω′`′∓(z)
]

= 0 (C33)[
Φω`±(z),Φ†ω′`′∓(z)

]
= 0. (C34)

Using the envelope description for the potential and elastic field, we find

ϕ ≈ ωe
∑
±

∑
`

∫ ∞
0

dω

√
~

2ωεin

1

Q`qm
ψ`

(
χ(ω)e±iqmzΦω`±(z)θ(±(vm − vd)) +H.c.

)

u ≈
∑
λ

√
~

2Ωλqm
~Uλ
(
eiqmzBλ(z) +H.c.

)
. (C35)

where Ωλqm is the eigenfrequency for the λth mode with wavevector qm and Uλ,j are orthonormal eigenfunctions of
the elastic equation satisfying the eigenvalue equation for the medium’s mechanical motion ∂jCijkl∂k[Uλ,l exp{iqz}] =

−ρΩ2
λq[Uλq,i exp{iqz}] and the orthonormality condition

∫
d3x ρ ~Uλ · ~Uλ′ exp{i(q−q′)z}/(2π) = δλλ′δ(q−q′). Here, we’ve

assumed that the mode profiles ψ` and ~Uλ are real, and ρ is the spatially-dependent mass density. When restricted to a
single mode of the elastic field (i.e., we suppress the sum over λ from hereon) and taking the rotating wave approximation,
the interaction Hamiltonian Eq. (C2) can be expressed in the envelope picture as

Hint = −
∑
`

∫ ∞
0

dω

∫
dz ~(κω`+Φω`+(z)B†(z)θ(vm − vd) + κω`−Φω`−(z)B(z)θ(vd − vm) +H.c.] (C36)
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where the coupling rate (with units of 1/
√
s) is given by

κω`± =

√
1

4εinωΩm

ωeχ(ω)

Q`qm

∫
d2x ψ`∂̃kdijk∂̃iUj (C37)

with the integral taken over the waveguide cross section and ∂̃i = {∂x, ∂y,∓iqm} for i equal x, y and z respectively.
Inserting Eq. (C30) into Eq. (C29) and adding Hint yields Eq. (1) listed in the main text.

3. Acoustoelectric gain and dispersion for bulk modes

The acoustoelectric gain and dispersion can be obtained from the coupled envelope equations. Neglecting Brillouin
coupling, the Heisenberg equations give

Ḃ(z) + iΩmB(z) + vg,b∂zB(z) = i
∑
`

∫ ∞
0

dω [κω`+Φω`+(z)θ(vm − vd) + κ∗ω`−Φ†ω`−(z)θ(vd − vm)] (C38)

Φ̇ω`+(z) + i(ω + vdqm)Φω`+(z) + vd∂zΦω`+(z) = iκ∗ω`+B(z) (vm > vd) (C39)

Φ̇ω`−(z) + i(ω − vdqm)Φω`−(z) + vd∂zΦω`−(z) = iκ∗ω`−B
†(z) (vd > vm) (C40)

To find steady-state time harmonic solutions, we assume that B(B†) oscillates as exp{−iΩt}(exp{iΩt}), giving the
following solution for Φω`+

Φω`±(z) = i
κ∗ω`±
vd

∫ z

−∞
dz′e−i(±Ω−ω∓vdqm)(z−z′)/vd

(
B(z′)
B†(z′)

)
. (C41)

Inserting the solution for Φω`± into the equation for B and noting |κω`+|2 = |κω`−|2 we find

−i(Ω− Ωm)B + vg,b∂zB = −
∑
`

∫ z

−∞
dz′
∫ ∞

0

dω
|κω`+|2

vd

[
e−i(Ω−ω−vdqm)(z−z′)/vdθ(vm − vd)

−e−i(−Ω−ω+vdqm)(z−z′)/vdθ(vd − vm)

]
B(z′). (C42)

The ω-integral,
∫∞

0
dω |κω`+|2

vd
e−i(Ω−ω−vdqm)(z−z′)/vd , exponentially decays as ∼ exp{−γe(z−z′)/(2vd)}, which far exceeds

typical spatial decay rates for phonons. Under these conditions the phonon envelope B(z′) can be replaced with B(z)
and brought outside the integral so that

−
∑
`

∫ z

−∞
dz′
∫ ∞

0

dω
|κω`+|2

vd
e−i(Ω−ω−vdqm)(z−z′)B(z′) ≈ −iP.V.

∑
`

∫ ∞
0

dω
|κω`+|2

Ω− ω − vdqm
B(z)− π

∑
`

|κΩ−vdqm,`+|2B(z)

where we have used
∫∞

0
dz exp (ikz) = iP.V. 1/k+πδ(k) and P.V. denotes the Cauchy principal value. These assumptions

lead to the effective acoustoelectric dynamics including gain and dispersion given by

vg,b∂zB − i(Ω− Ωm −∆ΩAE)B − 1

2
GAEB = 0. (C43)

where

∆ΩAE = −
∑
`

∫ ∞
0

dω|κω`+|2P.V.
1

Ω∓ ω − vdqm

vm > vd

vd < vm
(C44)

GAE = −2π
∑
`

|κΩ−vdqm,`+|2. (C45)

While this analysis was completed for bulk modes, the same expressions apply for the case of the surface modes (described
below).

4. Gain and dispersion for bulk plane-waves

In the uniform plane-wave limit the coupling rate for compressional waves is given by

κω`± ≈
ωeqmdzzzχ(ω)√

4ρεωΩm
δ`,0 (C46)

yielding gain and dispersion given by

GAE = −πω
2
ed

2
zzzq

2
m

2ρεinΩm

|χ(Ω− vdqm)|2

Ω− vdqm
(C47)

∆ΩAE = −ω
2
ed

2
zzzq

2
m

4ρεinΩm
P.V.

∫ ∞
0

dω

ω
|χ(ω)|2 1

Ω∓ ω − vdqm
. (C48)
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5. Surface modes

The acoustoelectric dynamics for the surface modes follows by close analogy with the bulk mode analysis above. In
contrast with the bulk modes, the surface modes have distinct spatial dependence being strongly localized to surfaces,
nontrivial boundary conditions at interfaces, and include the effects of a singular surface charge density.

a. Surface mode Hamiltonian

The Hamiltonian can be derived from Eq. (C1) by: (1) taking n → σδ(x⊥ ∈ ∂Vsc), where σ is a surface charge
density, δ(x⊥ ∈ ∂Vsc) is a delta function with vanishing argument on the boundary of Vsc, and x⊥ is the coordinate
locally normal the boundary of Vsc, (2) performing an integration by parts and dropping terms proportional to ∇2ψ

and ∇2ϕ that vanish for surface modes, (3) finding the conjugate momentum p = −mψ̇ (with ψ̇ restricted to ∂Vsc) to
the surface charge density σ, and (4) performing a Legendre transform. These steps lead to the Hamiltonian for the
surface modes HS , including the impact of a bath (momenta pν and position xν), given by

HS =

∮
∂Vsc

da

[
n0

2m
p
∂p

∂x⊥
− pvd · ∇σ + eσϕS −

1

2
ϕS

(
εin

∂ϕin
∂x⊥

− εout
∂ϕout
∂x⊥

)
+

∫ ∞
0

dν

(
p2
ν

2m
+

1

2
mν2x2

ν − µ̂νxνσ
)]
.(C49)

Here, ϕS in the potential restricted to the boundary ∂Vsc, µ̂ν is the mode-specific (i.e., depending on mode eigenvalues)
system-bath coupling, and it is assumed that the drift velocity is parallel to the waveguide. The dynamics for this
coupled system follow from Hamilton’s equations, yielding

∂τσ =
n0

m

∂p

∂x⊥
(C50)

∂τp = −eϕS −
∫ ∞

0

dν µ̂νxν (C51)

eσ =

(
εin

∂ϕin
∂x⊥

− εout
∂ϕout
∂x⊥

)
(C52)

∂τxν = pν/m (C53)

∂τpν = −µ̂νσ. (C54)

6. Quantization of surface modes

By generalization of the classical Poisson bracket, i.e., {σ(x), p(x′)} = δ2(x−x′) with x and x′ on the boundary ∂Vsc
to the ETCR [σ(x), p(x′)] = i~δ2(x − x′) the charge-potential system can be quantized. The bath variables satisfy an
analogous ETCR [xν(x), pν′(x

′)] = i~δ(ν − ν′)δ2(x − x′). By expressing the charge, potential and bath variables in
terms of the eigenfunctions of the equations of motion Eqs. (C50)-(C54), the Hamiltonian can be expressed in terms of
creation and annihilation operators for surface mode quanta.

Noting that both the electric potential and p satisfy the Laplace equation, we express ϕ ∝ φ`(x‖) exp{iqz}f`q(x⊥)/
√

2π

where ∇2(φ`(x‖) exp{iqz}f`q(x⊥)/
√

2π) = 0 and φ`(x‖) exp{iqz}/
√

2π form a complete set of orthogonal eigenfunctions
on the surface of Vsc. Here, we denote coordinates of the surface as {x‖, z} where z is directed along the waveguide.
Consequently, the eigenfunctions for the potential satisfy the following relations

(∇2
‖ + ∂2

z )(φ` exp{iqz}) = −K2
`qφ` exp{iqz}, (C55)∮

∂Vsc

da φ`φ
∗
`′ exp iq(z − z′)/(2π) = δ``′δ(q − q′) and (C56)

∂2

∂x2
⊥
f`q −K2

`qf`q = 0. (C57)

Likewise, p (the velocity potential) can be expressed as p ∝ φ`(x‖) exp{iqz}h`q(x⊥)/
√

2π where ∂2

∂x2
⊥
h`q −K2

`qh`q = 0.

Critical to the surface mode dynamics are the boundary conditions for the functions f`q and h`q on the surface of Vsc.
These boundary conditions, following directly from Eqs. (C50), (C52), and the ETCRs up to normalization, require[

∂h`q(x⊥)

∂x⊥
− εin

∂f`q(x⊥)

∂x⊥

]
x⊥∈∂Vsc−0+

= −εout
∂f`q(x⊥)

∂x⊥

∣∣∣∣
x⊥∈∂Vsc+0+

, (C58)

h`q(x⊥)
∂h`q(x⊥)

∂x⊥

∣∣∣∣
x⊥∈∂Vsc−0+

= K`q, (C59)



39

and f`q to be continuous. Additionally, the appropriate boundary conditions on the bounding surface of the total system

must be satisfied. Within this eigenfunction basis, and setting µ̂ν
√
n0K`q → Gν ≡

√
2γeν2/π, one can show that the

following mode representations satisfy the equations of motion and ETCRs.

ϕ = ωe
∑
`

∫
dq

∫ ∞
0

dω

√
~εin

4πωK`q

(
∆`q(ω)φ`(x‖)e

iqzf`q(x⊥)aω`q +H.c.

)
(C60)

σ =
∑
`

∫
dq

∫ ∞
0

dω

√
~n0

4πmωK`q

(
∆`q(ω)φ`(x‖)e

iqzH`qaω`q +H.c.

)
(C61)

p = −i
∑
`

∫
dq

∫ ∞
0

dω

√
~mω

4πn0K`q

(
∆`q(ω)φ`(x‖)e

iqzh`q(x⊥)aω`q −H.c.
)

(C62)

xν =
∑
`

∫
dq

∫ ∞
0

dω

√
~

4πmω

(
∆ν`q(ω)φ`(x‖)e

iqzaω`q +H.c.

)
(C63)

pν = −i
∑
`

∫
dq

∫ ∞
0

dω

√
~mω
4π

(
∆ν`q(ω)φ`(x‖)e

iqzaω`q −H.c.
)

(C64)

when aω`q and a†ω′`′q′ satisfy Eqs. (C21)-(C22) and

H`q =
∂h`q(x⊥)

∂x⊥

∣∣∣∣
x⊥∈∂Vsc

. (C65)

Much like the susceptibility χ for the bulk modes, the surface modes satisfy an analogous set of Lippmann-Schwinger
equations yielding

∆`q(ω) =
Gω

−ω(ω + iγe) + ω2
`q

(C66)

∆ν`q(ω) = δ(ω − ν) +
Gν

−ω2 + ν2
∆`q(ω) (C67)

where the surface mode resonance frequency ω`q is determined by the functions f`q and h`q

ω2
`q =

e2n0

m

f`q
h`q

∣∣∣∣
x⊥∈∂Vsc−0+

. (C68)

The functions ∆`q and ∆ν`q satisfy the orthonormality relations Eqs. (C25)-(C28) with substitution of χ → ∆`q and
χν → ∆ν`q.

Substitution of Eqs. (C60)-(C64) into Eq. (C49) leads to the Hamiltonian for the surface modes represented in terms
of creation and annihilation operators. This Hamiltonian, and its formulation in terms of mode envelopes, takes the
exact same form as Eqs. (C29) and (1) with the understanding that ` labels and counts surface modes.

a. Acousto-electric coupling with surface modes

Using the interaction Hamiltonian defined in Eq. (C2) and the formal expression for the electric potential for surface
modes Eq. (C16), the coupling rate defined in the envelope picture is

κω`± = ωe

√
1

4ωΩmK`qm

∆`qm(ω)

∫
d2x φ`(x‖)f`qm(x⊥)∂̃kdijk∂̃iUqm,j (C69)

where the integral is taken over the waveguide cross-section.

7. Connection between normal mode picture and k2

In this section, we show how the acoustoelectric coupling κω` relates to the standard expression for the coupling k2.
Generally, the coupling k2 is defined as the fractional change in the square of the speed of sound for a free system and
grounded system, or equivalently in terms of the ratio of stored interaction energy to injected energy [126]. Given the
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direct connection between the resonance frequency and the sound speed we estimate k2 by the shift in the resonance
frequency Ωm. Assuming that Ωm � |∆ΩAE| we find

k2 =
Ω2

m − (Ωm + ∆ΩAE)2

Ω2
m

≈ −2
∆ΩAE

Ωm
. (C70)

Solving for the frequency shift then allows k2 to be calculated. In the limit that ω`qm ∼ ωe � Ωm and Ωm − vdqm, the
frequency integrals in the expression for ∆ΩAE can be approximated by

P.V.

∫ ∞
0

dω
|χ(ω)|2

ω

1

Ω− vdqm − ω
= P.V.

∫ ∞
0

dω
2γeω/π

(ω2 − ω2
e)2 + γ2

eω
2

1

Ω− vdqm − ω
≈ − 1

ω2
e

(C71)

P.V.

∫ ∞
0

dω
|∆`qm(ω)|2

ω

1

Ω− vdqm − ω
= P.V.

∫ ∞
0

dω
2γeω/π

(ω2 − ω2
`qm

)2 + γ2
eω

2

1

Ω− vdqm − ω
≈ − 1

ω2
`qm

. (C72)

We find k2 for bulk and surface modes given by

k2 =
∑
`

1

2εinΩ2
mQ

2
`qm

∣∣∣∣ ∫ d2x ψ`∂̃kdijk∂̃iU∗j
∣∣∣∣2 (bulk) (C73)

k2 =
∑
`

k2
` =

∑
`

1

2Ω2
mK`qm

ω2
e

ω2
`qm

∣∣∣∣ ∫ d2x φ`(x‖)f`qm(x⊥)∂̃kdijk∂̃iU∗qm,j
∣∣∣∣2 (surface). (C74)

Using ε(Ω) = εin[1− ω2
e(Ω(Ω + iγe))−1] and ε`qm(Ω) = εin[1− ω2

`qm
(Ω(Ω + iγe))−1] we find

|χ(ω)|2

ω
= −2εin

πω2
e

Im

[
1

ε(ω)

]
(C75)

|∆`qm(ω)|2

ω
= − 2εin

πω2
`qm

Im

[
1

ε`qm(ω)

]
(C76)

yielding the compact expressions for the gain given by

GAE = 2k2ΩmεinIm

[
1

ε(Ω− vdqm)

]
(bulk) (C77)

GAE =
∑
`

2k2
`ΩmεinIm

[
1

ε`qm(Ω− vdqm)

]
(surface). (C78)

Appendix D: Noise dynamics

In this section, we examine the noise dynamics of acoustoelectric enhanced Brillouin interactions. We begin with the
envelope equations of motion as detailed in Section III, which are given by

∂B̄

∂t
= −i(Ωm − Ω)B̄ − Γ

2
B̄ ± vg,b

∂B̄

∂z
− ig∗0Ā†sĀp + η

∂Āp

∂t
= −αvg,p

2
Āp ± vg,p

∂Āp

∂z
− ig0ĀsB̄ + ξp

∂Ās

∂t
= −αvg,s

2
Ās ± vg,s

∂Ās

∂z
− ig∗0ĀpB̄

† + ξs

(D1)

We again note that Eq. D1 includes the effects of dissipation in an open system, and as such, we include thermal and
vacuum noise terms η, ξp, and ξs according to the fluctuation-dissipation theorem for the phonon, probe, and pump
fields, respectively.

In general, η will include contributions from both thermomechanical and acoustoelectric effects, arising from interac-
tions with both the phonon and electron baths. For the present analysis, however, we neglect noise processes intrinsic
to acoustoelectric interactions, such as those from trapping effects [119], which for the proposed system are expected
to be smaller than contributions from thermomechanical phonon noise. From the normal mode theory (and given the
parameters considered in this work), we estimate sources of intrinsic acoustoelectric noise to be approximately 40% of
the background thermal noise [119] (see Section A and Fig. 14).

We once again treat the pump wave as undepleted and transform these equations into the Fourier domain as
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−iωĀs[z, ω] +
αvg,s

2
Ās[z, ω] + vg,s

∂Ās[z, ω]

∂z
= −ig∗0ĀpB̄

†[z, ω] + ξs[z, ω]

i(Ω− Ωm −∆ΩAE − ω)B̄[z, ω] +
Γ−GAE

2
B̄[z, ω] + vg,b

∂B̄[z, ω]

∂z
= −ig∗0ĀpĀ

†
s [z, ω] + η[z, ω]

(D2)

We solve these equations in the acoustoelectric enhanced Brillouin (AEB) limit, in which, despite significant phonon
amplification, the coherence length of the phonon field is still much smaller than that of the optical fields. Given this
hierarchy, we eliminate the spatial dynamics of the phonon field, such that

B̄[z, ω] = χAE
B [ω]

(
−ig∗0ĀpĀ

†
s [z, ω] + η[z, ω]

)
, (D3)

and the decoupled Stokes dynamics are given by

∂Ās[z, ω]

∂z
= −MĀs[z, ω] +

Ns[z, ω]

vg,s
(D4)

where M = (−iω + αvg,s/2 − χAEB∗
s )/vg,s and the dressed Langevin term Ns[z, ω] = ξs[z, ω] − ig∗0Āpχ

AE∗

B η†[z, ω]. As
defined in the main text, χAE

B [ω] = (i(Ω− Ωm −∆ΩAE − ω) + (Γ−GAE)/2)−1 and χAEB
s [ω] = |g0|2|Āp|2χAE

B [ω].
The first order ordinary differential equation has the integral solution

Ās[z, ω] =
1

vs

∫ z

0

Ns[z
′, ω]e−M(z−z′)

+
(
Āc

s [0, ω] + ĀN
s [0, ω]

)
e−Mz

(D5)

where Āc
s [0, ω] and ĀN

s [0, ω] represent the coherent and noise input of the Stokes wave.
The number spectral density per unit length (defined by As[z, ω] = limT→∞(1/T )|Ās[z, ω]|2) is

As[z, ω] = (A c
s [0, ω] + A N

s [0, ω])e−2<[M ]z + lim
T→∞

1

T

∫ z

0

dz1

∫ z

0

dz2
〈Ns[z1, ω]N†s [z2, ω]〉

v2
g,s

e−M
∗(z−z1)−M(z−z2)

= A c
s [0, ω]e−2<[M ]z︸ ︷︷ ︸
Amplified signal

+
1

vg,s
e−2<[M ]z +

αvg,s + |g0|2|Ap|2|χAE
B [ω]|2Γnth

2v2
g,s<[M ]

[
1− e−2<[M ]z

]
︸ ︷︷ ︸

Amplified vacuum and thermal fluctuations

(D6)

where <[M ] represents the real part of M as defined above.
The noise factor (F ) is defined by the ratio of the input (SNR1) to output (SNR2) signal to noise ratios, such that

F ≡ SNR1

SNR2
. (D7)

For simplicity, we assume an input signal defined by A c
s [0, ω] = |Ain

s |2δ(ω). The relevant input noise for an optical
amplifier is the vacuum noise [127], such that the input signal to noise ratio is given by

SNR1 =

∫∆ω

−∆ω
dω′|Ain

s |2δ(ω′)∫∆ω

−∆ω
dω′ 1

vg,s

=
|Ain

s |2vg,s

2∆ω
.

(D8)

The output SNR can be obtained from the amplified signal and noise in Eq. D6, which yields

SNR2 =
|Ain

s |2e−2<[M ]z

2∆ω

[
1
vg,s

e−2<[M ]z +
|g0|2|Ap|2|χAE

B [ω]|2Γnth

2v2g,s<[M ]

[
1− e−2<[M ]z

]] .
(D9)
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where ∆ω is a bandwidth much smaller than the acoustoelectric modified Brillouin gain bandwidth (i.e., ∆ω � Γ−GAE).
The resulting noise factor is given by

F ≡ SNR1

SNR2

= 1 +
αvg,s + |g0|2|Āp|2|χAE

B [ω]|2Γnth

2vg,s<[M ]

[
e2<[M ]z − 1

]
.

(D10)

In the limit of large Brillouin amplification and low optical loss, the noise factor simplifies to

F ≈ 1 + nth

(
Γ

Γ−GAE

)
, (D11)

which is the central result of this section. This derivation suggests that for systems in which the thermomechanical
noise is dominant, AEB amplifiers may achieve near quantum-limited performance in the limit of low temperatures (i.e.,
kBT � ~Ωm).
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Appendix E: Index of Notation

Acoustoelectric frequency shift ∆ΩAE Phonon group velocity vg,b

Acoustoelectric gain αAE Phonon lifetime τm

Acoustoelectric gain rate GAE Phonon phase velocity vm

Acoustoelectric phase delay qAE Phonon scaling factor Cm

Acoustoelectric time constant τ Phonon wave vector qm

Boltzmann constant kB Phonon wavelength λm

Compliance matrix constant Sij Photoelastic coupling coefficient gpe

Composition parameters x y Photoelastic matrix constant pij

Debye length λd Photon dissipation rate γ

Density ρ Photon energy E

Dielectric gap height h Piezoelectric coupling coefficient k2

Dielectric gap permittivity εg Piezoelectric permittivity εp

Dielectric relaxation frequency ωc Plasma frequency ωe

Diffusion frequency ωD Propagation angle β

Diffusion term D Pump photon dissipation rate γp

Effective index neff Pump photon envelope operator Ap

Effective mass m∗ Pump photon frequency ωp

Elastic mode loss coefficient αm Pump photon group velocity vg,p

Elastic mode quality factor Qm Pump photon scaling factor Cp

Elastic strain εij Pump photon wave vector kp

Elastic wave displacement ui Pump photon wavelength λp

Elasticity matrix constant Cij Radiation pressure coupling coefficient grp

Electric displacement field Di Refractive index nr

Electric field Ei Scattering efficiency ηef

Electron charge e Semiconductor permittivity εs

Electron mass me Space charge potential factor M

Free carrier concentration N Space charge reduction factor R

Free carrier drift velocity vd Stokes photon dissipation rate γs

Free carrier mobility µ Stokes photon envelope operator As

Free electron scattering rate γe Stokes photon frequency ωs

Interaction Impedance Zm Stokes photon group velocity vg,s

Inverse Debye length γd Stokes photon scaling factor Cs

Linear piezobirefringence coefficient αpe Stokes photon wave vector ks

Non-dimensionalized velocity γv Stokes photon wavelength λs

Optomechanical coupling coefficient g0 Temperature T

Permittivity of free space ε0 Top dielectric permittivity εd

Phonon dissipation rate Γm Waveguide thickness t

Phonon envelope operator B Waveguide width w

Phonon frequency Ωm
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