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We introduce a fast and highly-efficient physically-realizable bit swap. Employing readily available
and scalable Josephson junction microtechnology, the design implements the recently introduced
paradigm of momentum computing. Its nanosecond speeds and sub-Landauer thermodynamic
efficiency arise from dynamically storing memory in momentum degrees of freedom. As such,
during the swap, the microstate distribution is never near equilibrium and the memory-state
dynamics fall far outside of stochastic thermodynamics that assumes detailed-balanced Markovian
dynamics. The device implements a bit-swap operation—a fundamental operation necessary to build
reversible universal computing. Extensive, physically-calibrated simulations demonstrate that device
performance is robust and that momentum computing can support thermodynamically-efficient,
high-speed, large-scale general-purpose computing that circumvents Landauer’s bound.
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I. INTRODUCTION

Ever since Szilard’s exorcism of Maxwell’s demon [1], de-
termining how much energetic input a particular compu-
tation requires has been a broadly-appreciated theoretical
question. In the current century, however, the question
has taken on a markedly practical bent; a familiar example
is the evolution of Moore’s Law from initially provoca-
tive speculations decades ago to now addressing mate-
rial, thermodynamic, and fabrication restrictions [2–6].
Transistor-based microprocessing presents fundamental
scaling challenges that strictly limit potential directions
for future optimization, and these challenges are no longer
speculative. Clock speed, to take one example, has been
essentially capped for two decades due to energy dissipa-
tion at high rates [7, 8]. By some measures, Moore’s law
is already dead—as integrated circuit manufacturers go
vertical, rather than face the expense of creating smaller
transistors for 2D circuits that yield only marginal gains
[9–11].
Given predicted explosive growth in societal demands for
information processing and that digital microelectronics
is now approaching the physical limits of available archi-
tectures [12], exploring alternative computing paradigms
is not only prudent but necessary. One alluring vision for
the future involves hybrid devices, composed of a suite of
computing modules—classical/quantum, digital/analog,
deterministic/thermal—each with its own architecture
and function that operate in concert. A hybrid architec-
ture allows dynamically harnessing the processing node
best suited for the task at hand. The underlying insight
is that a computing device’s physical substrate should
match its desired processing function [13]. In keeping
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with this, momentum computing demonstrated that low
dissipation operations do not require quasi-static opera-
tion [14]. That is, energy-efficient computation can be
fast in a low-dissipation device.
Reference [14] introduced a design framework and theory
for an arbitrarily low-cost, high-speed bit swap, a logically-
reversible gate—the only known logical framework with
no nontrivial lower bound on its dissipation [12, 15, 16]. It
demonstrated that a universal reversible gate—a Fredkin
gate [17, 18]—can be built by coupling three such devices
together. However, any particular physically-instantiated
implementation will come with its own restrictions and
considerations that are likely to preclude performing the
swap exactly as theorized. These considerations will often
impose their own nontrivial bounds, despite the lack of an
information-theoretic bound. And so, an implementation
linked to a particular substrate must be built and analyzed
in its own right.
We present a physically-realizable device and control pro-
tocols that implement a bit swap gate that operates in the
sub-kBT energy regime using superconducting Josephson
junctions (JJs)—a well-known and scalable microtechnol-
ogy. We recently used this device to measure the thermo-
dynamic performance of bit erasure [19, 20]. That exten-
sive experimental effort demonstrated in practical terms
that the device proposed here is realizable with today’s
microfabrication technologies and allows for detailed stud-
ies of thermodynamic costs. And so, the device’s design
and control protocol open up exploring the energy scales
of highly energy-efficient, high-speed, general-purpose
computing.
The Landauer While there are many different quantities
one might wish to optimize, the perspective here sets
the goal as minimizing the net work invested W when
performing logical operations. It is well known that the
most pressing physical limits on modern computation are
power constraints [21], thus the measure is well suited
to diagnose the problems with current devices as well as
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potential strengths of new ones.

For over half a century now Landauer’s Principle has
exerted a major impact on the contemporary approach to
thermodynamic costs of information processing [22, 23].
Its lower bound of kBT ln 2 energy dissipated per bit
erased has served as standard candle for energy use
in physical information processing. To aid comparing
other computing paradigms and protocols, we refer to
this temperature-dependent information-processing en-
ergy scale as a Landauer : approximately a few zeptojoules
at room temperature, and a few hundredths of a zepto-
joule at liquid He temperatures. See Appendix A for
further comparisons.

To appreciate the potential benefits of momentum comput-
ing operating at sub-Landauer energies we ask where con-
temporary computing is on the energy scale. Consider re-
cent stochastic thermodynamic analyses of single-electron
transistor logic gates [24, 25]—analogs to conventional
CMOS technology. The upshot is that these technolo-
gies currently operate between 103 and 104 Landauers.
More to the point, devices using CMOS-based technol-
ogy will only ever be able to operate accurately above
≈ 102 Landauers [12, 15]. In short, momentum comput-
ing promises substantial improvements in efficiency with
no compromise in speed.

Outline Here we provide a brief overview of each section
and appendix in the text. Section II explains the impor-
tance of bit-swap operations and summarizes the protocol
presented in Ref. [14]. Section III introduces the physi-
cal substrate, highlights why it is a good candidate, and
addresses design restrictions. Section IV reports quanti-
tative results on device performance as measured through
detailed simulations of the microscopic degrees of free-
dom. Section V compares them to related results, both
contemporary and foundational. Section VI concludes,
summarizing the results and briefly outlining future di-
rections and challenges for scaling up to general-purpose
computing.

Appendices include details necessary to understand the
process by which the parameter space of control protocols
was restricted and local work minima were found in simu-
lation. Additionally, they also provide expository infor-
mation that the interested reader might find relevant. In
particular, Appendix A discusses the temperature depen-
dent energy scale, the “Landauer”. Appendix B outlines
key physical differences between continuous-time Markov
chains and hidden Markov chains. Appendix C presents
the equations of motion of the bit-swap Josephson junction
circuit in their dimensional form and their transforma-
tion to simulation-appropriate dimensionless equations.
Appendix D details the process of algebraically elimi-
nating large swaths of protocol parameter space. And,
finally, Appendix E discusses the algorithmic details of
the simulations.

II. BIT SWAP

The Landauer cost stood as a reference for so long since bit
erasure is the dominant source of unavoidable dissipation
when implementing universal computing with transistor
logic gates. It is the elementary binary computation that
most changes the Shannon entropy of the distribution over
memory states. In this way, one sees kBT ln 2 not just
as the cost of erasure, but as the cost of the maximally
dissipative elementary operation on which conventional
computing relies. And so, the Landauer naturally sets
the energy scale for conventional computing.
Taking inspiration from Landauer’s pioneering work, we
investigate the cost of the most expensive operation nec-
essary to physically implement universal momentum com-
puting: a bit swap. The ideal bit swap has no error, but
in the thermodynamic setting one is also interested in an
implementation’s fidelity. And so, we write a swap with
error rates ε0 and ε1 as a stochastic mapping between
memory states m ∈ {0, 1} from time 0 to time τ :

Pε(mτ |m0) =
[

ε0 1− ε0
1− ε1 ε1

]
.

The bit swap’s dominance in the cost of universal momen-
tum computing can be appreciated by considering the
input-output mapping of the Fredkin gate—a 3-bit univer-
sal gate with memory states mxmymz, mi ∈ {0, 1}. All
inputs are preserved except for the exchange 101↔ 110.
We can decompose the informational state space into two
regions. If mx = 0, the operation is simply an identity,
which trivially is costless. If mx = 1 and my = mz, we
once again have an identity. Thus, it is only the subspace
of mx = 1, where my 6= mz that a swap must take place.
Reference [14] provides explicit potentials that impose
effectively 1D swap potentials on a full 3-bit state space
in order to implement the Fredkin gate, demonstrating
that only 1D swap operations need contribute to the
operation’s thermodynamic cost.

A. Momentum Computing Realization

Storing information in a one-dimensional state space, it
is not clear how to operate a thermodynamically-efficient
bit swap with high accuracy. (In this, we recall the
conventional interpretation of efficient to mean quasistatic
or constantly-thermalizing Markovian dynamics [26, 27].)
At time t in the operation, the distribution of initial
conditions corresponding to m(t = 0) = 0 must overlap
with that corresponding to m(t = 0) = 1. And, from
that point forward it is impossible to selectively separate
them based on their initial positions. Information, and
so reversibility, is lost.
Consider, instead, a computation that happens faster
than the equilibration timescale of the physical substrate
and its thermal environment. In this regime, a particle’s
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instantaneous momentum can be commandeered to carry
useful information about its future behavior. Our protocol
operates on this timescale, using the full phase space of
the underlying system’s degrees of freedom to transiently
store information in their momenta. Due to this, the
instantaneous microstate distribution is necessarily far
from equilibrium during the computation. Moreover, the
coarse-grained memory-state dynamics during the swap
are not Markovian; despite both the net transformation
over the memory states and the microscopic phase space
dynamics being Markovian. Nonetheless, the system op-
erates orders of magnitude more efficiently than current
CMOS but, competing with CMOS, the dynamics evolve
nonadiabatically in finite time—on nanosecond timescales
for our physical implementation below.
In this way, momentum computing offers up device de-
signs and protocols that accomplish information process-
ing that is at once fast, efficient, and low error. There is
a trade-off—a loss of Markovianity in the memory-state
dynamics. That noted, the dynamics of the memory
states are faithfully described by continuous-time hid-
den Markov chains (CTHMCs) [28–30], rather than the
continuous-time Markov chains (CTMCs) that are com-
mon in stochastic thermodynamics [26, 27]. See Appendix.
B for a brief review.

B. Idealized Protocol

Reference [14] describes a perfectly-efficient protocol for
implementing a swap in finite time. The operation is
straightforward. We begin with an ensemble of parti-
cles subject to a storage potential. The potential en-
ergy landscape V store(x) must contain at least two po-
tential minima—positioned, say, at x = ±x0—with an
associated energy barrier equal to max{V store(x), x ∈
(−x0, x0)} − V store(x0). During storage, a particle’s en-
vironment is a thermal bath at temperature T . As the
height of the potential energy barrier rises relative to the
bath energy scale kBT , the probability that the particle
transitions between left (x < 0) and right (x ≥ 0) de-
creases exponentially. In this way, if we assign the left
half of the position space to memory state 0 and the right
half to memory state 1, the energy landscape is capable
of metastably storing a bit m ∈ {0, 1}.
At the protocol’s beginning, we instantaneously apply
a new potential energy landscape V comp ≡ kx2/2. The
system is then temporarily isolated from its thermal envi-
ronment, resulting in the particles undergoing a simple
harmonic oscillation. Waiting a time τ until the oscillation
is only half completed, the potential is returned to V store.
The initial conditions—for which x0 < 0 (x0 > 0)—have
then been mapped to xτ > 0 (xτ < 0), achieving the
desired swap computation. If V store is an even function
of x, the computation requires zero invested work as well.
This follows since the harmonic motion created a mirror
image to the original distribution and the energy imparted

to the system at t = 0 is completely offset by the energy
extracted from the system turning off V comp at t = τ .

III. PHYSICAL INSTANTIATION

Due to its conceptual simplicity the protocol does not
require any particular physical substrate. That said, the
practical feasibility of performing such a computation
must be addressed. One obvious point of practical concern
is assuming the system can be isolated from its thermal
environment during the computation. However, total
isolation is not necessary. If τ � τR—the relaxation
timescale associated with the energy flux rate between the
system and its thermal bath—then the device performs
close to the ideal case of zero coupling.
As proof of concept, Ref. [14]’s simulations showed that
this class of protocol is robust: thermodynamic perfor-
mance persists in the presence of imperfect isolation from
the thermal environment, albeit at an energetic cost.
Thus, a system that obeys significantly-underdamped
Langevin dynamics is an ideal candidate as the physical
substrate for bit swap.
We analyze in detail one physical instantiation—a gradio-
metric flux logic cell (Fig. 1), a mature technology for
information processing. With suitable scale definitions,
the effective degrees of freedom—Josephson phase sum
ϕ and difference ϕdc—follow a dimensionless Langevin
equation [19, 20, 31–34]:

dv′ = −λv′dt′ − θ∂x′U ′ + ηr(t)
√

2dt′ , (1)

where x′ ≡ (ϕ,ϕdc) and v′ ≡ (ϕ̇, ˙ϕdc) are vector represen-
tations of the dynamical coordinates. Enacting a control
protocol on this system involves changing the parameters
of the potential over time:

U ′(t′) = U/U0 (2)
= (ϕ− ϕx(t′))2/2 + γ(ϕdc − ϕxdc(t′))2/2

+ β cosϕ cos(ϕdc/2)− δβ sinϕ sin(ϕdc/2) .

The relationships between the circuit parameters and the
parameters in the effective potential U ′ are as follows.
ϕ = (ϕ1 + ϕ2)/2 − π and ϕdc = (ϕ2 − ϕ1), where ϕ1
and ϕ2 are the phases across the two Josephson elements;
ϕx = 2πφx/Φ0 − π and ϕxdc = 2πφxdc/Φ0, where Φ0 is
the magnetic flux quantum and (φx, φxdc) are external
magnetic fluxes applied to the circuit; U0 = (Φ0/2π)2

/L,
γ = L/2`, β = I+2πL/Φ0, and δβ = I−2πL/Φ0, where
L and 2` are geometric inductances; and I± ≡ Ic1 ± Ic2
are the sum and difference of the critical currents of the
two Josephson junctions. All parameters are real and it
is assumed that γ > β > 1� δβ.
Some particularly important parameters of U ′ are ϕx and
ϕxdc, which control the potential’s shape by where the
the dynamical variables ϕ and ϕdc localize in equilibrium,
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FIG. 1. Gradiometric flux logic cell: The superconducting
current has two important flow modes. One circulation around
the inner loop—a DC SQUID. And, the other, a flow through
the Josephson junctions in the inner loop and around the
outer conductor pickup loops—an AC SQUID [32]. This is
the origin of the variable subscripts to distinguish ϕ from ϕdc
and ϕx from ϕxdc.

FIG. 2. (Left) V store, the bistable storage potential. (Right)
V comp, the “banana-harmonic” potential. These potential
energy profiles serve as qualitative pictures to represent pro-
totypical computational and storage potentials, and do not
represent any particularly favorable parameter set.

and γ, which controls how quickly ϕdc localizes to the
bottom of the quadratic well centered near ϕdc = ϕxdc.
At certain control parameters (ϕx, ϕxdc), the effective
potential contains only two minima: one located at ϕ < 0
and one at ϕ > 0. So, the device is capable of metastably
storing a bit, as described above. In point of fact, the
logic cell has been often used as a double well in ϕ with
a controllable tilt and barrier height [19, 32, 34].
The Langevin equation’s coupling constants, λ and η,
determine the rate of energy flow between the system
and its thermal environment and the. They depend on
the parameters L, R, and C. In the regimes at which
one typically finds L, C, and R and with temperatures
around 1 K, the system is very underdamped; ring-down
times are O(103) oscillations about the local minima.
(Notably, the device thermalizes at a rate proportional to
R−1. A tunable R allows the device to transition from the
underdamped to overdamped regime, allowing for rapid
thermalization, if desired.) Finally, θ is a dimensionless

factor that depends on the relative inertia of the two
degrees of freedom, it depends on the circuit architecture.
Appendix C gives the equations of motion and thorough
definitions of all parameters and variables in terms of
dimensional quantities.

A. Realistic Protocol

With the device’s physical substrate set, we now show
how to design energy-efficient bit-swap control protocols.
There are four parameters that depend primarily on de-
vice fabrication: Ic1, Ic2, R, and C. Two that depend on
the circuit design: L and `. And, four that allow external
control: ϕx, ϕxdc, T (the environmental temperature),
and τ (the computation time). Without additional circuit
complexities to allow tunable L, R, and C, we assume
that once a device is made, any given protocol can only
manipulate ϕx, ϕxdc, T , and τ . A central assumption is
that computation happens on a timescale over which the
thermal environment has minimal effect on the dynamics,
so the primary controls are ϕx, ϕxdc, and τ . ϕx is associ-
ated with asymmetry in the informational subspace, and
will only take a nonzero value to help offset asymmetry
from the δβ term in U ′. Thus, ϕxdc primarily controls
the difference between V comp and V store, while τ governs
how long we subject the system to V comp.

V store must be chosen to operate the device in a parameter
regime admitting two minima on either side of ϕ = 0 as
in Fig. 2. They must also be sufficiently separated so
that they are distinct memory states when immersed in
an environment of temperature T .

In the ideal case, V comp is a quadratic well with an oscil-
lation period τ = π

√
m/k. However, U will never give

an exact quadratic well unless β = δβ = 0. So, a suitable
replacement is necessary. The closest approximate is at
the relatively obvious choice ϕxdc = −2π. In this case,
the minima of both the quadratic and the periodic part
of the potential lie on top of each other and the potential
is well approximated by a quadratic function over most
of the relevant position-domain.

However, due to restrictions on V store, transitioning be-
tween V store and V comp may induce unnecessarily large
dissipation since the oscillations in the ϕdc dimension have
a large amplitude. (See Appendix D for details.) Instead,
to dissipate the minimum energy, the control parameters
must balance placing the system as close as possible to
the pitchfork bifurcation where the two wells merge, while
still maintaining dynamics that induce the ϕ < 0 and
ϕ > 0 informational states to swap places due to an ap-
proximately harmonic oscillation. Near this parameter
value, one typically finds a “banana-harmonic” potential
energy landscape. (See Fig. 2 for a comparison of the
distinct potential profiles for storage and computation.)
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FIG. 3. A dynamic computation: 1, 500 trajectories from
V store’s equilibrium distribution in the ϕ (top) and ϕdc (bot-
tom) dimensions. V comp is applied at t ∈ (1, 1 + τ), denoted
by heavy black lines. ϕdc oscillations are several times faster
than the others, as expected when γ � 1. The work done
on the system by the control apparatus, W0 = V comp(t =
1)− V store(t = 1), by its intervention at t = 1 is largely offset
by the work absorbed into the apparatus by its intervention
at t = 1 + τ , Wτ = V store(t = 1 + τ) − V comp(t = 1 + τ),
when V comp re-engages. Visually, we can track this energy flux
by the nonequilibrium oscillations induced at t = 1 and the
return to a near-equilibrium distribution at t = 1 + τ . Time is
measured in units of

√
LC, which is ≈ 2ns for the JJ device.

B. Computation Time

The final design task determines the computation
timescale τ . Under a perfect harmonic potential, the
most energetically efficient τ is simply π

√
m/k. This en-

sures that x(t = 0) = −x(t = τ). Since the design has an
additional degree of freedom beyond that necessary—the
ϕdc dimension—however, we must not only ensure our
information-bearing degree of freedom switches signs, but
also ensure that ϕdc(t = 0) ≈ ϕdc(t = τ). This means
that during time τ , the ϕ variables must undergo n+ 1/2
oscillations and the ϕdc variables must undergo an integer
number of complete oscillations. (See Fig. 3.) Hence, τ
must satisfy matching conditions for the periods of the
oscillations in both ϕ and ϕdc during the computation:

ωτ ≈ (2n− 1)π
ωdcτ ≈ 2nπ .

Figure 4 showcases this by displaying the behavior ob-
served during simulations near the ideal timescale. The
local work minima coincide with local minima in the aver-
age kinetic energy, but not every kinetic energy minimum
coincides with a work minimum. While there are kinetic
energy minima every half-integer oscillation in ϕdc, only
integer multiples of ϕdc oscillations yield minimum work.
The equations of motion governing the system are stochas-
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FIG. 4. Performing a successful and low-cost bit swap: (Top)
Ensemble averages, conditioned on initial memory state, of the
fluxes and their conjugate momenta. Line width tracks the dis-
tribution’s variance. The shaded region indicates timescales
that are potentially successful swap operations. These are
probed more closely in the bottom two plots. (Middle) Ensem-
ble averaged work, kinetic energy, and conjugate momentum
in the ϕdc coordinate. Note that work minima occur only
at whole-integer oscillations of the momentum. Each dataset
is scaled to its maximum value, so that it saturates at 1.
This emphasizes the qualitative relationships rather than the
quantitative. (Bottom) Computational fidelity f of the swap,
approaching a perfect swap.

tic, dissipative, and nonlinear, so the frequencies of the dif-
ferent oscillations ω, ωdc are nontrivial nonlinear stochas-
tic mappings of device parameters, initial positions, and
protocol parameters. They are not easily determined
analytically. However, they change smoothly with small
changes in the parameters they depends on. Thus, we
were able to use an algorithmic approach to find the
timescales that yield local minima and explore the regions
surrounding them.

C. Physically-Calibrated Bit Swap

We are most interested in the effect of parameters that are
least constrained by fabrication. And so, all simulations
assume constant fabrication parameters with I+, R, and C
set to 2.0 µA, 371 Ω, and 4.0 nF, respectively. To explore
how the I− asymmetry affects work cost, we simulated
protocols with both a nearly-symmetric device (I− =
7 nA) and a moderately-asymmetric device (I− = 35 nA).
Given devices with the parameters above, what values
of the other parameters yield protocols with minimum
work cost? This involves a twofold procedure. First,
create a circuit architecture by setting L and γ, thus
fully specifying the device; details in Appendix E. Second,
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determine the ideal protocols for that combination of
device parameters.

D. Computational Fidelity

To determine the best successful protocol, we must de-
fine what a successful bit swap is. First, we set a lower
bound for the fidelity f : f ≥ 0.99. We define f over an
ensemble of N independent trials as: f = 1−Ne/N , with
Ne counting the number of failed trials, trials for which
sign[ϕ(t = 0)] = sign[ϕ(t = τ)]. Second, the distribution
over both ϕ(t = τ) and ϕ(t = 0) must be bimodal with
clear and separate informational states. The criteria used
for this second condition is:

〈ϕ < 0〉+ 3σϕ<0 < 〈ϕ > 0〉 − 3σϕ>0 , (3)

were σs and 〈s〉 are standard deviations and means of ϕ
conditioned on statement s being true.
The final choice concerns the initial distribution from
which to sample trial runs. For this, we used the equilib-
rium distribution associated with V store with the environ-
mental temperature set to satisfy kBT = 0.05U0. Here,
we ensure fair comparisons between different parameter
settings by fixing a relationship between the potential’s
energy scale and that of thermal fluctuations. This re-
sulted in temperatures from 400− 1400 mK, though it is
possible to create superconducting circuits at much higher
temperatures [35–38] using alternative materials.
Sampling initial conditions from a thermal state assumes
no special intervention created the system’s initial dis-
tribution. We only need wait a suitably long time to
reach it. Moreover, this choice is no more than an algo-
rithmic way to select a starting distribution. It is not a
limitation or restriction of the protocol. Indeed, if some
intervention allowed sampling initial conditions from a
lower-variance distribution, it could be leveraged into
even higher performance.

IV. PERFORMANCE

Appendix E lays out the computational strategy used to
find minimal 〈W 〉 implementations among the protocols
that satisfy the conditions above. Since the potential is
held constant between t = 0 and t = τ , work is only done
when turning V comp on at t = 0 and turning it off at
t = τ . The ensemble average work done at t = 0 is W0 ≡
〈V comp(ϕ(0), ϕdc(0))−V store(ϕ(0), ϕdc(0))〉 and returning
to V comp at time τ costs Wτ ≡

〈
V store(ϕ(τ), ϕdc(τ)) −

V comp(ϕ(τ), ϕdc(τ))
〉
. Thus, the mean net work cost is

the sum 〈W 〉 = W0 + Wτ . As we detail shortly, this
yielded large regions of parameter space that implement
bit swaps at sub-Landauer work cost. This result and
others demonstrate the notable and desirable aspects of
momentum computing: accuracy, low thermodynamic
cost, and high speed. Let’s recount these one by one.
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FIG. 5. Performance of the minimum work protocol as γ,
the ratio of device inductances, goes from a region where the
computation fails (f < 0.99) to a region of perfect fidelity
(f = 1.0). Note that in the parameter space region in which
the computation becomes successful, the work costs decrease
as the fidelity approaches unity. Finally, τ decreases as the
work cost minimizes to ≈ 1 Landauer—showing that the work
cost does not display 1/τ adiabatic compute-time scaling. The
parameter γ controls the starting parameters for the suite of
simulations represented by each data point and should not be
read as the primary independent variable responsible for the
behavior. Rather, the plots show τ , f , and 〈W 〉min evolving
jointly to more preferable values.

A. Accuracy

Tradeoffs between a computation’s fidelity and its thermo-
dynamic cost are now familiar—an increase in accuracy
comes at the cost of increased W or computation time
[39–44]. These analyses conclude that accuracy generally
raises computation costs.
Momentum computing does not work this way. In fact, it
works in the opposite way. The low cost of a momentum
computing protocol comes from controlling the distribu-
tion over the computing system’s final state. Due to this,
fidelity and low operation cost are not in opposition, but
go hand in hand, as Figs. 4 and 5 demonstrate.

B. Low Thermodynamic Cost

Conventional computing, based on transistor-network
steady-state currents, operates nowhere near the theo-
retical limit of efficiency for logical gates. Even gates in
Application Specific Integrated Circuits (ASICs) designed
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for maximal efficiency operate on the scale of 104 − 106

Landauers [45, 46]. The physically-calibrated simula-
tions described above achieved average costs well below
a Landauer for a wide range of parameter values with
an absolute minimum of 〈W 〉min = 0.43 Landauers, as
shown in Figure 6 (left). For the less-ideal asymmetric
critical-current device (right panel), the cost increases
to only 〈W 〉min = 0.60 Landauers. And, the bulk of the
protocols we explored operated at < 10 Landauers. Alto-
gether, the momentum computing devices operated many
orders of magnitude lower than the status quo. Moreover,
the wide basins reveal robustness in the device’s perfor-
mance: an important feature for practical optimization
and implementation.

C. High Speed

Paralleling accuracy, the now-conventional belief is that
computational work generally scales inversely with the
computation time: W ∼ 1/τ [39, 47–49]. Again, this is
not the case for momentum computing, as Figs. 4 and
5 demonstrate. Instead, there are optimal times τ∗ that
give local work minima and around which the work cost
increases.
Optimal τ∗s are upper bounded: the devices must operate
faster than particular timescales—timescales determined
by the substrate physics. The bit swap’s low work cost
requires operating on a timescale faster than the rates at
which the system exchanges energy and information with
the environment. Thus, momentum computing protocols
have a speed floor rather than a speed limit.
However, even assuming perfect thermal isolation there
is a second bound on τ∗. The computation must termi-
nate before the initially localized ensemble—storing the
memory—decoheres in position space due to dispersion.
For our JJ device this is the more restrictive timescale.
Due to local curvature differences in the potential, the
initially compact state-space regions corresponding to
peaks of the storage potential’s equilibrium distribution
begin to decohere after only one or two oscillations. Once
they have spread to cover both memory states, the stored
information is lost. This means it is most effective to limit
the duration of the swap to just a half-oscillation of the
ϕ coordinate. For our devices, this typically corresponds
to operating on timescales < 15 ns.

V. RELATED WORK

Reversible computing implementations of various opera-
tions have been proposed many times over many decades.
Perhaps the most famous is the Fredkin billiards imple-
mentation [18]. While ingenious, it suffers from inherent
dynamical instability (deterministic chaos) and cannot
abide any interactions with the environment. At the
other end of the spectrum is a family of superconducting

L (10−10H)

FIG. 6. Thermodynamic energy cost 〈W 〉min for momentum-
computing bit-swap over 5, 120 parameter combinations of
L and γ. (Left) Slightly asymmetric device with I− = 7 nA
gives the overall minimum 〈W 〉min = 0.43 Landauers (large
solid white circle). (Right) Substantially asymmetric device
with I− = 35 nA gives the overall minimum 〈W 〉min = 0.60
Landauers (large solid white circle). (Both) Small white circles
indicate parameter values with protocols yielding 〈W 〉min < 1
Landauer. Black squares (lower right in each) represent param-
eter values where no successful swap was accomplished. Note
that when the asymmetry is low, it can effectively be offset by
the parameter ϕx, but for higher asymmetry, protocols that
cost less than 1 Landauer are less common.

adiabatic implementations [50–57]. These are low cost
in terms of dissipation and are stable, but they suffer
from fundamental speed limits due to the adiabaticity
requirement: 〈W 〉 ∝ 1/τ .
Other recent implementations [58–60] of reversible logic
using JJs are more akin to the proposal at hand, in that
they require nearly-ballistic dynamics and attempt to
recapture the energy used in a swap at the final step.
While these implementations are markedly different, their
motivation follows similar principles. Particularly, the
framework for asynchronous ballistic reversible computing
(ABRC) proposed in [59, 60] might serve as a testbed for
momentum computing elements.
Another distinguishing feature of the present design is
that the phenomenon supporting the computing is inher-
ently linked to microscopic degrees of freedom evolving
in the device’s phase space. This moves one closer to the
ultimate goal of using reversible nanoscale phenomena
as the primitives for reversible computing—a goal whose
importance and difficulty were recognized by Ref. [61].
Working directly with the underlying phase space also
allows incorporating the thermal environment. And, this
facilitates characterizing the effect of (inevitable) imper-
fect isolation from the environment.
It is worth noting the similarity between the optimal
timescales τ∗ and the principal result in Ref. [62] in
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which a similar local minima emerges when comparing
thermodynamic dissipation to computation time. These
minima also come from certain matching conditions be-
tween the rate of thermalization and the system’s response
time to its control device. Another qualitatively similar
result [63] found faster operation could lead to reduced
errors in overdamped JJs under periodic driving. These
similarities could point to a more general principle at
play.

VI. CONCLUSION

Our detailed, thermodynamically-calibrated simulation
of microscopic trajectories demonstrated that momentum
computing can reliably (i) implement a bit swap at sub-
Landauer work costs at (ii) nanosecond timescales in (iii)
a well-characterized superconducting circuit.
These simulations served two main purposes. The first
highlights momentum computing’s advantages. The pro-
posed framework uses the continuum of momentum states
to serve as the auxiliary system that allows a swap. In
doing so, it eliminates the associated tradeoffs between
energetic, temporal, or accuracy costs that are commonly
emphasized in thermodynamic control analyses [39–42].
Momentum computing protocols are holistic in that low
energy cost, high fidelity, and fast operation times all come
from matching parallel constraints rather than competing
ones.
The second purpose points out key aspects of the proposed
JJ circuit’s physics. The simulations reveal several guid-
ing principles—those that contribute most to decreasing
work costs for the proposed protocols. The system is so
underdamped that thermal agitation is not the primary
cause of inefficiency. The two main contributors are (i)
the appearance of dispersive behavior in the dynamics of
an initially-coherent region of state space and (ii) asymme-
tries inherent to the device that arise from differing critical
currents in the component superconducting JJ elements.
Notably, if the elements are very close to each other in Ic,
then symmetry can be effectively restored by setting the
control parameter ϕx to counteract the difference. How-
ever, the more asymmetry, the harder it is to find ultra
low-cost protocols; cf. Fig. 6 left and right panels. Note,
too, that initial-state dispersion can be ameliorated by
using a V comp that is as harmonic (quadratic) as possible.
However, this typically requires lower inductance L, pos-
sibly complicating circuit fabrication. Additionally, the
potential-well separation parameter β’s linear dependence
on L hinders the system’s ability to create two distinct
states during information storage. Though these tradeoffs
are complicated, our simulations suggest that dispersion
can be controlled, yielding swap protocols with even lower
work costs.
Since the protocol search space is quite high-dimensional
and contains many local-minima, we offer no proof that
the protocols found give the global work minimum. Very

likely, the thermodynamic costs and operation speed of
our proposed JJ momentum computing device can be sub-
stantially improved using more sophisticated parameter
optimization and alternative materials. Even with the
work cost as it stands, though, sub-Landauer operation
represents a radical change from transistor-based archi-
tectures. One calibration for this is given in the recent
stochastic thermodynamic analysis of a NOT gate com-
posed of single-electron-state transistors [24] that found
work costs 104 times larger.
Several several open questions remain as to how well mo-
mentum computing gates scale into a fully functioning
computational device. The analysis here is atomic in that
we compare gate-to-gate, focusing on determining only
the work costs implied by stochastic thermodynamics. We
did not considered any penalties levied by interconnects,
readout, or clocking. It remains to be seen how much
overhead these provide. The gate-for-gate analysis still
stands, but the cost of momentum computing will only
dominate when the architecture that supports computa-
tion is accomplished at a similarly low cost. One of the
most promising candidates, as stated above, is ABRC
[59].
Note, too, that running at low temperatures requires
significant off-board cooling costs, as also required in
superconducting quantum computing. Our current flux
qubit implementation requires operating at liquid He
temperatures [19, 20]. However, there are also JJs that
operate at N2 temperatures, promising system cooling
costs that are 2 to 3 orders of magnitude lower [35–38].
Moreover, the physics necessary to build a momentum-
computing swap—underdamped behavior and controllable
multiwell dynamics—is far from unique to superconduct-
ing circuits. As an example, nanoelectromechanical sys-
tems (NEMS) are another well-known technology that is
scalable with modern microfabrication techniques. NEMS
provide the needed nonlinearity for multiple-well poten-
tials, are extremely energy efficient, and have high Q
factors even while operating at room temperature [64–66].
Momentum computing implemented with NEMS rather
than superconductors completely obviates the cooling in-
frastructure and so may be better suited for large-scale
implementations. However, operating at room temper-
ature obscures the basic thermodynamic flows. That
is, NEMS are not the implementations to use to exper-
imentally probe the fundamental physics predicted by
stochastic thermodynamics.
Conversely, the JJ implementation at low temperatures
augmented with appropriate calorimetry will provide a
key experimental platform for careful, controlled, and de-
tailed study of the physical limits of the thermodynamic
costs of information processing. Thus, these devices are
necessary to fully understand the physics of thermody-
namic efficiency. And so, beyond technology impacts,
the proposed device and protocols provide a fascinating
experimental opportunity to measure energy flows that
fluctuate at GHz timescales and at energy scales below
thermal fluctuations. Success in these will open the way
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to theoretical investigations of the fundamental physics of
information storage and manipulation, time symmetries,
and fluctuation theorems [43, 67].
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Appendix A: The Landauer: A Standard Candle for
Thermodynamic Computation

A long and checkered history underlies the physics of
information and energy, arguably originating in the para-
dox of Maxwell’s Demon [68]. Most recently, though, the
paradigm of thermodynamic computing emerged to frame
probing their limits [69]. In this setting, Landauer’s Prin-
ciple says that kBT ln 2 energy units must be expended to
erase a single bit of information. Beyond erasure, though,
his Principle also stands as a challenge—Can conventional
computing paradigms operate at sub-Landauer scales? It
seems not. Landauer’s theory and follow-on results [70–
72] and recent experiments [42, 73] verified the lower
bound.
To apply more broadly, Landauer’s Principle generalizes
to W ≥ kBT∆H, where ∆H is the change in Shannon en-
tropy between a computational system’s initial and final
information-bearing states [71, 74, 75]. Despite the Prin-
ciple’s generalization beyond bit erasure, the Landauer
scale remains a familiar reference point for the energy
costs of binary operations; its familiar use coming at the
expense of ignoring specifics of any given logical operation
[44].
An efficient bit-swap operation, for example, has zero
generalized Landauer cost, as it is logically reversible.
However, since many thermodynamic computing architec-
tures do not have access to dynamics that can accomplish
reversible computing efficiently, the Landauer scale pro-
vides a common reference to compare gate performance
across physical substrates and design paradigms. It also
facilitates comparing across substrates that operate at
different temperatures. Table I lists thermodynamic ener-
gies for a range of physical environments. Table II gives
Landauer work energies for various information processing

operations in environments and at temperatures where
thermodynamic computers operate.

Appendix B: Limits of Stochastic Thermodynamics
for Information Processing

Stochastic thermodynamics [26, 27] has been the predom-
inant framework for analyzing the thermodynamic costs
of stochastic mappings. It assumes the memory state m
obeys stochastic Markovian dynamics: continuous-time
Markov chains (CTMCs), where the state distribution ~p(t)
changes continuously as a function of itself: ~̇p(t) = f(~p, t).
The resulting dynamics are necessarily represented by
a master equation over the memory-state distribution
~̇p(t) = A(t)~p(t) [76]. This framework is powerful, yielding
great insight into physical processes when its assumptions
are met.
The framework, however, does not apply to momentum
computing. To appreciate why, consider justifying Marko-
vian dynamics over memory states. Assume a microscopic
physical system S that serves as a computational sub-
strate. While allowing the universe to be deterministic,
S can exhibit stochastic dynamics since it represents only
a portion of the partially-observed universe. The very
typical assumption that S’s local environment acts as
a large weakly-coupled heat bath with quickly relaxing
degrees of freedom yields dynamics on S that are also
Markovian and, therefore, can be represented by CTMCs.
However, computationally-useful memory states are not
the CTMC-obeying microstates of S, but a set M of
mesostates that represent coarse-graining over S. It is
possible, depending on the variables or timescales of inter-
est, that this coarse-graining ignores only rapidly-relaxing
subsystems of S. ThenM inherits the Markov property
that governs the microstates [26]. This strategy—coarse
graining over physical degrees of freedom irrelevant to the
dynamics—is analogous to establishing S as a stochastic,
Markovian subsystem of the universe. A straightforward
example of this case is whenM consists of positional de-
grees of freedom and S evolves by overdamped Langevin
dynamics.
When implementing momentum computing, however, the
coarse-graining yielding M is applied over hidden mi-
crostates that contain dynamically relevant information
not determined fromM’s instantaneous realizations. As
a consequence, the dynamic over the coarse-grained states
is not Markovian. CTMCs cannot be used. A straight-
forward example of this arises whenM consists of posi-
tional degrees of freedom and S evolves by underdamped
Langevin dynamics. On the downside, a general analytical
treatment of such partially-observed systems (continuous-
time hidden Markov chains) is highly nontrivial [27, 77–
79]. On the upside, the possibility of hidden states allows
for substantially more general forms of computation. As
the results here showed, the benefits of this expanded
space are quite substantial.
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Environment Temperature T Thermodynamic Energy
Kelvin(K) Joules(J)

Microprocessor 373 5.2× 10−21

Room Temp 293 4.0× 10−21

Liquid N2 77 1.1× 10−21

Liquid He 4.2 5.7× 10−23

1 K 1.0 1.4× 10−23

1 mK 0.001 1.4× 10−26

TABLE I. Thermodynamic energy in environments at various temperatures.

Operation Landauers (L) Environment T Energy
Kelvin (K) Joules (J)

CMOS gate [24] 7000 293 1.9× 10−17

CMOS gate [25] 3000 293 8.4× 10−18

CMOS bound [12, 15] 100 293 2.8× 10−19

Bit Erase (Ideal) [22] 1 293 2.8× 10−21

Bit Erase (Ideal) [22] 1 1 9.6× 10−24

Bit Swap (JJ) 0.43 1 4.1× 10−24

Bit Swap (Ideal) 0 293 0
Bit Swap (Ideal) 0 1 0

TABLE II. Landauers and work energies (Joules) for various information processing operations in environments and at
temperatures where thermodynamic computers may operate.

Note that the bit swap computation is, in general, prob-
lematic to implement using CTMCs since input-output
mappings whose determinants are negative are disal-
lowed when memory-state dynamics are restricted to obey
CTMCs. Formally, auxiliary systems can be added to the
set of memory states. Done correctly this again permits
using CTMCs in the augmented state space to accomplish
the computation [76].
However, physically-embedded computations do not gen-
erally allow the required perfect control over the system
Hamiltonian. Indeed, one need look no further than the
present work to see how nontrivial it is to implement
an operation as simple as a harmonic oscillation in a
physically-realistic device.
Moreover, adding auxiliary subsystems increases state-
space dimension and complicates control apparatus and
control protocols. Due to the increased complication,
in many settings, adding auxiliary dimensions is simply
not physically possible. On top of this, the timescale of
these augmented computations must be longer than the
equilibration time of the auxiliary systems and thermal en-
vironment. In this way, adding auxiliary systems imposes
additional speed limits to computations. In short, adding
auxiliary subsystems addresses the shortfalls of CTMCs,
but does not sidestep their fundamental limitations.
We illustrate this by considering an efficient bit swap
implemented via a Markovian embedding. First, it aug-
ments the system with an unoccupied auxiliary state A
to serve as a transient memory. It then quasistatically
translates memory state 0 to A, while memory state 1 is
translated to 0. Finally, it quasistatically translates A to
1.

Quasistatic processes cost arbitrarily little work, but they
take arbitrarily-long times. To compute faster (τ → 0),
the work cost will diverge as 1/τ [39, 47–49]. Increasing
fidelity requires raising the scale of the barrier separating
the states. Doing so, though, increases the energetic cost
at a given computational speed; maintaining the same
work cost, then, requires slowing the operation. In short,
the trade-offs in Markovian embedding complicate design
and, more to the point, reduce performance.

Appendix C: Flux Qubit Dimensionless Equations of
Motion

In terms of the dimensional degrees of freedom, the flux
qubit equations of motion are:

¨̂ϕ = − 2
RC

˙̂ϕ− 1
C
∂
ϕ̂
U(ϕ̂, ϕ̂dc) (C1)

¨̂ϕdc = − 2
RC

˙̂ϕdc −
4
C
∂
ϕ̂dc

U(ϕ̂, ϕ̂dc) , (C2)

where the dimensional ϕ̂s are related to the main text’s
dimensionless fluxes and phases by the magnetic flux
quantum 2π/Φ0. With the addition of thermal noise, the
Langevin equation is:

dvi = − νi
mi

vidt−
1
mi

∂xiU(x)dt+ 1
mi

r(t)
√

2νiκdt ,
(C3)
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where κ ≡ kBT . Matching these variables to the equations
of motion yields:

x = (ϕ̂, ϕ̂dc) (C4)

v =
(

˙̂ϕ, ˙̂ϕdc
)

(C5)

m =
(
C,
C

4

)
, and (C6)

ν =
(

2
R
,

1
2R

)
, (C7)

where subscript i has been dropped in favor of a vector
representation.
The task is to write each physical quantity z in terms of a
dimensional constant and dimensionless variable by defin-
ing scaling factors according to the following prescription:
z ≡ z′zc, where zc is a dimensionful constant.
Setting mc = C and νc = 1/R are obvious choices. Addi-
tionally, since the potential factors into U = U0×U ′( 2π

Φ0
·x),

a good choice for positional scaling is xc = Φ0/2π.
It is advantageous to write nondimensional kinetic ener-
gies as 1

2m
′v′2 without additional scaling factors. This

means setting the energy scaling as:

Ec = mc
x2
c

t2c
. (C8)

This does not uniquely determine the energetic scale, since
tc is still free. The two obvious choices are to scale to
the temperature—KE′ = 1 corresponds to kBT units
of dimensional energy—or to the potential energy scale—
KE′ = 1 corresponds to U0 units of dimensional energy.
Choosing the latter yields:

Ec = U0 = mc
x2
c

t2c
and (C9)

x2
c

L
= mc

x2
c

t2c
. (C10)

Evidently, the timescale is tc =
√
LC, which is a workable

timescale for our purposes given that the dynamics of
interest happen on the scale of τ ≈ ωLC . Setting the
timescale to the potential energy rather than the thermal
energy may well become common practice in simulating
momentum computation, since protocols must be timed
precisely with respect to the dynamics of the potential
energy surface.
The Langevin equation, in terms of the nondimensional
quantities defined above, becomes:

dv′
xc
tc

= − ν′νc
m′mc

v′xcdt
′ − 1

m′mc

(
U0

xc
∂x′U ′(x′)

)
tcdt

′

(C11)

+ 1
m′mc

r(t)
√

2ν′νcEcκ′tcdt′ .

Simplifying algebra then yields:

dv′ = −
√
LC

RC

ν′

m′
v′dt′ − 1

m′
∂x′U ′(x′)dt′ (C12)

+
(

L

R2C

)1/4 √
ν′κ′

m′
r(t)
√

2dt′ .

Finally, we define λ, θ, and η as nondimensional parame-
ters that serve as our dimensionless Langevin coefficients.
This yields the Langevin equation for the simulations
detailed in Appendix E:

dv′ = −λv′dt′ − θ∂x′U ′ + ηr(t)
√

2dt′ , (C13)

with:

λ =
√
LC

RC

ν′

m′
, (C14)

θ = 1
m′
, and (C15)

η =
√
λκ′

m′
, (C16)

where:

x′ = (ϕ,ϕdc), (C17)

v′ = d

dt′
x′, (C18)

ν′ = (2, 1/2), (C19)
m′ = (1, 1/4), and (C20)

κ′ = kBT

U0
. (C21)

Appendix D: Effective Potential and Simulation
Details

We consider two cases: critical-current symmetric and
asymmetric JJ pairs.

1. Symmetric Approximation

We can obtain reasonable estimates for good ϕxdc values
by assuming a perfectly symmetric device δβ = 0. Fur-
thermore, we also set ϕx = 0 for all cases. This allows
two symmetric wells on either side of ϕ = 0. In practice,
since δβ 6= 0 in a real device, ϕx would be calibrated to
compensate for the asymmetry; see Sec. D 2.
In the symmetric case, the potential splits into two
components—periodic and quadratic:

β cosϕ cos ϕdc

2 + 1
2ϕ

2 + γ

2 (ϕdc − ϕxdc)2 . (D1)

The periodic term allows for multiple minima, while the
quadratic terms force the dynamical variables to stay
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close to their respective parameters. This localization
means we focus only on the the area near ϕ = ϕx and
ϕdc = ϕxdc.
To employ the potential most flexibly, we must charac-
terize the relevant fixed points that occur in this region.
Following Refs. [19, 33], we choose to search in the do-
main −π < ϕ < π and −2π < ϕdc < 0. Fixed points
occur when all components of the gradient vanish:

∂ϕU
′ = −β sinϕ cos ϕdc

2 + ϕ = 0 (D2)

∂ϕdcU
′ = −β2 sin ϕdc

2 cosϕ+ γ(ϕdc − ϕxdc) = 0 (D3)

The first condition is met whenever ϕ = 0 and, also, when
ϕ

β sinϕ = cos 1
2ϕdc. Consider the case where ϕ = 0—the

“central” fixed point. To find the ϕdc location of the fixed
point ϕ0

dc, we look to the gradient’s second term. This
yields the condition:

ϕ0
dc −

β

2γ sin ϕ
0
dc
2 = ϕxdc (D4)

F 0(ϕdc = ϕ0
dc, β, γ) = ϕxdc .

The central fixed point occurs close to the parameter ϕxdc,
but is offset by a value ≤ β/2γ.
The equation above can be solved numerically with ease
to find the location of the central fixed point. To classify
the fixed point, we look at the Hessian. While the general
expression for the eigenvalues is rather verbose, the case
where ϕ = 0 simplifies to:

λ1 = −β cos ϕ
0
dc
2 + 1 (D5)

λ2 = γ − β

4 cos ϕ
0
dc
2 . (D6)

λ2 > 0 as long as γ > β/4. And, since we assume γ > β,
this condition is always met. Thus, this fixed point is
either a saddle point or a minimum based on whether
ϕ0

dc is greater or less than ϕcdc ≡ −2 cos−1 1
β , respectively.

(We only use the negative branch of cos−1 due to the
domain of ϕdc.) See Fig. 7 for an example of the behavior
of the central fixed point for typical parameters.
We can also find an expression for ϕcxdc(β, γ) ≡ F 0(ϕdc =
ϕcdc), the critical value of the control parameter at which
the central fixed point transitions between a saddle point
and a minimum:

ϕcxdc(β, γ) = ϕcdc −
β

2γ sin ϕ
c
dc
2

= −2 cos−1 1
β

+ β

2γ

√
1− 1

β2 . (D7)

Naively, the best strategy to form a low cost protocol is to
take values of ϕxdc just above and below ϕcxdc. However,
there are several factors that introduce complications. For

3.25 3.00 2.75 2.50 2.25
dc

2.8

2.6

2.4

2.2

2.0

xd
c

xdc=-2.35

c
xdc=-2.56

c
dc = -2.82

0
dc=-2.60

dc 2 sin1
2 dc

FIG. 7. Fixed point at ϕ = 0 in an ideal device with β = 6.2
and γ = 12.0: Red (Blue) background indicates regions where
the fixed point is a saddle point (local minimum). For example,
if ϕxdc = −2.35, the central fixed point is a saddle point at
ϕdc = −2.6. To find a stable fixed point at ϕ = 0, a control
parameter less than ϕcxdc is necessary, which falls at −2.56 in
the example above.

one, the energy scale separating the two wells when ϕxdc ≈
ϕcxdc is very small and it will typically be overwhelmed by
thermal energy at the temperatures of interest (400−1400
mK). A second is that the approximation of δβ = 0
actually has a most pernicious effect near ϕxxdc. (This is
discussed in Sec. D 2.)
Finally, we have yet to consider the other fixed points at
ϕ 6= 0. Doing so reveals that sometimes ϕcxdc corresponds
to a subcritical pitchfork bifurcation—yielding a potential
with a third (undesirable) minimum rather than a single
one.
When ϕ 6= 0 we can rewrite Eqs. (D2) and (D3):

ϕ

β sinϕ = cos 1
2ϕdc (D8)

β

4γ sin ϕdc

2 cosϕ− 1
2ϕxdc = 1

2ϕdc . (D9)

The potential is symmetric, so these fixed points come
in pairs ϕ±. Substituting ϕdc/2 = − cos−1(ϕ±/β sinϕ±)
into the second equation yields the following for ϕ±:

ϕxdc = β

2γ

√
1−

(
ϕ±

β sinϕ±

)2
cosϕ± − 2 cos−1 ϕ±

β sinϕ±
(D10)

ϕxdc = F±(ϕ = ϕ±, β, γ) . (D11)
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FIG. 8. ϕ 6= 0 fixed points appear when the value of the
function plotted equals the external ϕxdc parameter. Note that
for some β and γ combinations, there is a qualitatively different
behavior. Especially for larger β, there is a coexistence region
of three potential minima. For the β ≈ γ example, one would
want to set ∆C > 0.5 to make sure V comp falls well outside of
the three minima range. Horizontal lines show the values of
ϕcxdc. (See Appendix E.)

Note that the sign changes due to the domain restriction
of ϕdc. Figure 8 shows how these fixed points behave
as β, γ, and ϕxdc change. The value of ϕxdc tangent to
the curve when ϕ = 0 corresponds to the critical control
parameter value ϕcxdc, which can be seen by verifying
limϕ→0 F

±(ϕ) = ϕcxdc.
As a last note, different values of β and γ have qualita-
tively different fixed point profiles depending on whether
the central fixed point undergoes a supercritical or subcrit-
ical pitchfork bifurcation when ϕxdc = ϕcxdc. The critical
value β∗ where the bifurcation of the central fixed point
transitions between being supercritical and subcritical is
given by:

lim
ϕ→0

∂2
ϕF
±(ϕ, β∗, γ) = 0 . (D12)

Once again, the full derivative is quite verbose. However,
taking the limit ϕ→ 0 gives:√

β∗2 − 1
6β∗2

(
−3β∗

2
+ 4γ + 2

)
= 0 (D13)

β∗ =
√

4γ + 2
3 . (D14)

Interestingly, when β > β∗, there is always a parameter
space region with three distinct minima. This might be

useful, in fact, for single-bit computations that require
more states. For bit swap, though, the goal is for the
system to jump between a V store with 2 minima and a
V comp with a single minimum (see Figure 10). And so,
care must be taken to avoid the three-minima regions
when β > β∗.

2. δβ 6= 0

The device just considered is ideal. In reality δβ 6= 0, and
exact analytic work is much less fruitful. Introducing the
asymmetric terms augments the potential:

Uasym(ϕ,ϕx, δβ, ϕdc) = 1
2ϕ

2
x − ϕϕx − δβ sinϕ cos ϕdc

2 .

(D15)

In short, one must vary ϕx to offset the effect of δβ,
provided a symmetric potential is preferred.
There are two obvious strategies to minimize the effects
of asymmetry. Either a strategy that minimizes the effect
of Uasym at the central fixed point—the “min of mid”
strategy—or at the fixed points at ϕ±—the “min of max”
strategy. It stands to reason that one uses the former to
set ϕx for V comp and the latter for V store.
The “min of mid” strategy is easy to implement. Simply
set the derivative of ∂ϕUasym|ϕ=0 = 0, with the intent
of having the asymmetrical part of the potential be as
flat as possible near ϕ = 0. Simple algebra yields: ϕx =
−δβ sinϕdc/2.
The “min of max” strategy requires numerical solution.
First, note that the maximum value of Uasym occurs when
ϕ = ϕmax = arccos( ϕx

δβ sin .5ϕdc
). Then, use a symbolic

solver (e.g., SymPy’s nsolve function) to find the value of
ϕx that minimizes Uasym(ϕmax, ϕx, δβ, ϕdc).
Figure 9 shows that the effect of δβ 6= 0 is, unsurprisingly,
the most noticeable near the bifurcation of the central
fixed point. For the bit swap, as described in Sec. II B, we
need only two different profiles for the potential: one in
which we have two symmetric wells and one in which we
have a single well placed midway between them. Thus, we
must keep the ϕxdc parameter sufficiently far away from
ϕcxdc. The strategy employed in the simulations described
below always involves setting a minimum distance that
ϕxdc must be from ϕcxdc, in order to avoid falling into the
pitfalls described here.

Appendix E: Searching for Minimal-Work Bit Swaps

The following lays out the computational strategy to find
low work-cost implementations.
We are most interested in the effect of parameters that
are the most removed from fabrication, so all simulations
assume JJ elements with I+, R, and C set to 2.0 µA,
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FIG. 9. Fixed point bifurcation diagram for the (left) idealized
δβ = 0 device and (right) a device with δβ = 0.2. Blue
indicates stable minima and red saddle points. On the right
plot, the δβ = 0 fixed points are plotted as well, with low
opacity to help see the difference. The naive “minimum of
maximum” strategy has been used to minimize the effect of
Uasym. And, we can see that the symmetric approximation
works fairly well as long as |ϕxdc − ϕcxdc| > .2. It is likely that
more evolved solution strategies will improve results.

FIG. 10. (Left) V store, the bistable storage potential. (Right)
V comp, the “banana-harmonic” potential. These potential
energy profiles serve as qualitative pictures to represent pro-
totypical computational and storage potentials, and do not
represent any particularly favorable parameter set.

371 Ω, and 4.0 nF, respectively. To explore how asym-
metry affects work cost, we simulated protocols with a
nearly-symmetric device with I− = 7 nA, a moderately-
symmetric device with I− = 35 nA, and an asymmetric
device with I− = 60 nA. Additionally, kBT is always
scaled to U0, so that κ′ ≡ kBT/U0 = 0.05.
Given devices with the parameters above, what values of
the remaining parameters yield protocols with minimum
work cost? This involves a twofold procedure. First,
create the circuit architecture by setting L and γ by hand;
thus, fully specifying the device. Second, determine the
ideal protocols for that combination of device parameters
through simulation.

L’s order of magnitude was chosen from previous results
[19, 20, 31–34] to be 10−9H. Noting that a lower L results
in a more harmonic potential during computation, we set
a minimum L to be 0.3nH. This is in order to stay within
the parameter range for which β > 1 and we can still use
the analytic expressions derived above. To assure γ > β,
γ values were tested in the range [3.0, 20.0].
After choosing a pair of circuit parameters L and γ, we
turn to simulation. First, V store must be chosen by setting
ϕstore
x and ϕstore

xdc . This is done by calculating ϕstore
xdc ≡

ϕcxdc + ∆S, where ϕcxdc(γ, β) is from Eq. (D7). The
parameter ∆S is initialized manually to a value ∆S∗
when starting a new round of simulations. (∆S∗ = 0.16
was used in the heatmaps shown in Fig. 6.) Then, using
the “min of max” method (Sec. D 2), we set ϕstore

x .
Finally, V store is tested by sampling 50,000 states from
V store’s equilibrium distribution using a Monte Carlo algo-
rithm. The resulting ensemble is verified by determining
that it contains two well-separated informational states
by asserting that:

〈ϕ < 0〉+ 3σϕ<0 < 〈ϕ > 0〉 − 3σϕ>0 , (E1)

where 〈s〉 and σs are means and standard deviations of
ϕ conditioned on s being true. If the ensemble fails the
test, ∆S is incremented and the process is repeated. If
the ensemble succeeds, we have found a viable V store.
Then, we move on to establish V comp by choosing ϕcomp

x

and ϕcomp
xdc . Similar to ϕstore

xdc , ϕcomp
xdc ≡ ϕcxdc−∆C with ∆C

manually set. The value of ∆C does effect the eventual
work cost, but the work costs vary smoothly, and a single
value of ∆C tends to work well over a large parameter
range. Manually setting a single value for ∆C, rather than
allowing it to adjust itself to fall into a local minimum,
substantially reduces simulation run time. However, we
expect that given more compute resources a wider range
of sub-Landauer protocols will be discovered. Figure 11
shows the effect of changing ∆C for three different devices.
Once ∆C is chosen, we use the “min of mid” (Sec. D 2)
method to set ϕcomp

x and fully determine V comp.
Next, a preliminary simulation is run to identify an ap-
proximate value of the computation time τ . To make
the simulation run quickly, the ensemble above is coarse-
grained into two partitions based on whether ϕ > 0 or
ϕ < 0. Then, each partition is coarse-grained again into
≈ 250 representative points through histogramming. A
Langevin simulation is run over the histogram data, ex-
posing it to V comp for a time O(10)

√
LC. This ensures

capturing the time with the best bit swap. Next, weight-
ing the simulation results by histogram counts within
each partition, we obtain conditional averages for an ap-
proximation of the behavior over the entire ensemble.
These averages are parsed for a set of times at which
there are indications of a successful and low-cost bit swap:
〈ϕ(t = 0) < 0〉 > 0, 〈ϕ(t = 0) > 0〉 < 0, and values of 〈ϕ̇〉
and 〈 ˙ϕdc〉 that are close to zero. See, for example, the
blue highlighted portion on the top panel of Fig. 4. In
this way, a range (τmin, τmax) is determined for τ .
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FIG. 11. Thermodynamic performance under changing ∆C for devices with three different symmetry parameters: In each case,
the x axis variable is L ∈ (0.3, 1)nH and the y axis γ ∈ (3, 20). The numerical figures at the top of each panel are the minimum
and average values of 〈W 〉min. The outlined (black line) regions represent pieces of parameter space where the minimal work
protocols cost less than one Landauer. The simulations represented by each point in the heatmaps used 10, 000 samples from
the equilibrium distribution. And, 1, 200 parameter sets were tested in each map.

Now, a larger simulation is completed to determine τ
that give the lowest work value. Another 40,000 samples
are generated from V store’s equilibrium distribution, and
a Langevin simulation is run on the full ensemble by
exposing it to V comp for τmax time units. Since the
potential is held constant between t = 0 and t = τ , work
is only done when turning V comp on at t = 0 and turning
it off at t = τ . The average work done at t = 0 is W0 ≡
〈V comp(ϕ(0), ϕdc(0))−V store(ϕ(0), ϕdc(0))〉 and returning
to V comp at time t costs Wt ≡

〈
V store(ϕ(t), ϕdc(t)) −

V comp(ϕ(t), ϕdc(t))
〉
. Thus, the mean net work cost at

time t is the sum W (t) = W0 +Wt.

Additionally, for each t ∈ (τmin, τmax) we calculate the
fidelity f(t) and whether the final states are well-separated
informational states, s(t):

f(t) = 1− 1
N

N∑
i=1

bool [signϕi(t = 0) = signϕi(t = t)]

s(t) = bool [〈ϕ < 0〉+ 3σϕ<0 < 〈ϕ > 0〉 − 3σϕ>0] .
(E2)

Finally, we choose the minimum work protocol via
inf (W (t) : f(t) ≥ 0.99, s(t) = True).
After this, we move on to the next pair of L and γ.
Typically, these are chosen to be individually close to the
last pair. And, and instead of re-initializing ∆S to its
initial value by hand, we decrement ∆S from its current
value by a small amount if ∆S > ∆S∗, using this value as
the starting point for the next L and γ pair. This allows
the value of ∆S to drift from its starting point towards
more favorable values as the parameters change, while
still preferring to be close to the known well-behaved
parameter value ∆S∗. Setting a new initial value for ∆S
goes full circle, to find the next minimum work protocol
by repeating the procedure.
This procedure yielded rather large ranges of parameter
space over which we found very low work-cost bit swap
protocols. Here, we offer no proof that the protocols found
achieve the global minimum work, since the protocol space
is high dimensional and contains many local minima. That
said, improved algorithms and a larger parameter-range
search should result in even lower work costs.
Langevin simulations of the dimensionless equations of mo-
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tion employed a fourth-order Runge-Kutta method for the
deterministic portion and Euler’s method for the stochas-

tic portion of the integration with dt set to 0.005
√
LC.

(Python NumPy’s Gaussian number generator was used
to generate the memoryless Gaussian variable r(t).)

[1] L. Szilard. On the decrease of entropy in a thermodynamic
system by the intervention of intelligent beings. Z. Phys.,
53:840–856, 1929.

[2] G. E. Moore. The future of integrated electronics.
Fairchild Semiconductor internal publication, 2, 1964.

[3] G. E. Moore. Cramming more components onto integrated
circuits. Proc. IEEE, 86(1):82–85, 1998.

[4] G. E. Moore. Lithography and the future of moore’s law.
IEEE Solid-State Circuits Society Newsletter, 11(3):37–42,
2006.

[5] J. D. Hutcheson and G. D. Hutcheson. Is semiconductor
manufacturing equipment still affordable? In IEEE 1993
Interl. Symp. Semiconductor Manufacturing, pages 54–62.
VLSI Research Inc., 1993.

[6] G. D. Hutcheson and J. D. Hutcheson. Technology and
economics in the semiconductor industry. Scientific Amer-
ican, 274(1):54–62, 1996.

[7] P. P. Gelsinger, P. A. Gargini, G. H. Parker, and
A. Y. C. Yu. Microprocessors circa 2000. IEEE Spectrum,
26(10):43–47, 1989.

[8] M. M. Waldrop. More than Moore. Nature, 530(7589):144–
148, 2016.

[9] P. Ball. Semiconductor technology looks up. Nature
Materials, 21(2):132–132, 2022.

[10] M. Vinet, P. Batude, C. Tabone, B. Previtali, C. LeRoyer,
A. Pouydebasque, L. Clavelier, A. Valentian, O. Thomas,
S. Michaud, et al. 3D monolithic integration: Techno-
logical challenges and electrical results. Microelectronic
Engineering, 88(4):331–335, 2011.

[11] R. Courtland. Transistors could stop shrinking in 2021.
IEEE Spectrum, 53(9):9–11, 2016.

[12] Technology Working Group. The International Roadmap
for Devices and Systems: 2020, Executive Summary. Tech-
nical report, Institute of Electrical and Electronics Engi-
neers, 2020.

[13] R. Feynman. Simulating physics with computers. Intl. J.
Theo. Phys., 21(6/7):467–488, 1982.

[14] K. J. Ray, A. B. Boyd, G. W. Wimsatt, and J. P. Crutch-
field. Non-Markovian momentum computing: Thermody-
namically efficient and computation universal. Phys. Rev.
Res., 3(2):023164, 2021.

[15] M. P. Frank. Approaching the physical limits of comput-
ing. In 35th International Symposium on Multiple-Valued
Logic (ISMVL’05), pages 168–185. IEEE, 2005.

[16] S. Bhattacharya and A. Sen. A review on reversible
computing and it’s applications on combinational circuits.
International Journal, 9(6), 2021.

[17] T. Toffoli. Reversible computing. In Intl. Colloquium on
Automata, Languages, and Programming, pages 632–644.
Springer, 1980.

[18] E. Fredkin and T. Toffoli. Conservative logic. Intl. J.
Theo. Phys., 21(3-4):219–253, 1982.

[19] O.-P. Saira, M. H. Matheny, R. Katti, W. Fon, G. Wim-
satt, J. P. Crutchfield, S. Han, and M. L. Roukes. Nonequi-
librium thermodynamics of erasure with superconducting
flux logic. Phys. Rev. Res., 2(1):013249, 2020.

[20] G. Wimsatt, O.-P. Saira, A. B. Boyd, M. H. Matheny,
S. Han, M. L. Roukes, and J. P. Crutchfield. Harness-
ing fluctuations in thermodynamic computing via time-
reversal symmetries. Phys. Rev. Res., 3(3):033115, 2021.

[21] D. J. Frank. Power-constrained CMOS scaling limits.
IBM J. Res. Dev., 46(2.3):235–244, 2002.

[22] R. Landauer. Irreversibility and heat generation in the
computing process. IBM J. Res. Develop., 5(3):183–191,
1961.

[23] C. H. Bennett. Thermodynamics of computation - a
review. Intl. J. Theo. Phys., 21:905, 1982.

[24] C. Y. Gao and D. T. Limmer. Principles of low dissipation
computing from a stochastic circuit model. Phys. Rev.
Res., 3(3):033169, 2021.

[25] N. Freitas, J.-C. Delvenne, and M. Esposito. Stochastic
thermodynamics of nonlinear electronic circuits: A realis-
tic framework for computing around kT. Phys. Rev. X,
11:031064, Sep 2021.

[26] M. Esposito. Stochastic thermodynamics under coarse
graining. Phys. Rev. E, 85(4):041125, 2012.

[27] U. Seifert. From stochastic thermodynamics to ther-
modynamic inference. Ann. Rev. Cond. Mat. Physics,
10:171–192, 2019.

[28] J. Bechhoefer. Hidden Markov models for stochastic
thermodynamics. New J. Physics, 17(7):075003, 2015.

[29] P. Strasberg, G. Schaller, N. Lambert, and T. Brandes.
Nonequilibrium thermodynamics in the strong coupling
and non-Markovian regime based on a reaction coordinate
mapping. New J. Physics, 18(7):073007, 2016.

[30] P. M. Ara, R. G. James, and J. P. Crutchfield. Elusive
present: Hidden past and future dependency and why we
build models. Phys. Rev. E, 93(2):022143, 2016.

[31] A. Barone and G. Paterno. Physics and applications of
the Josephson effect, volume 1. Wiley Online Library,
1982.

[32] S. Han. Variable β RF SQUID. In Single-electron Tun-
neling and Mesoscopic Devices: Proceedings of the 4th
International Conference, SQUID’91 (sessions on SET
and Mesoscopic Devices), Berlin, Fed. Rep. of Germany,
June 18-21, 1991, volume 31, page 219. Springer Verlag,
1992.

[33] S. Han, J. Lapointe, and J. E. Lukens. Effect of a two-
dimensional potential on the rate of thermally induced es-
cape over the potential barrier. Phys. Rev. B, 46(10):6338,
1992.

[34] R. Rouse, S. Han, and J. E. Lukens. Observation of reso-
nant tunneling between macroscopically distinct quantum
levels. Phys. Rev. Let., 75(8):1614, 1995.

[35] A. A. Yurgens. Intrinsic Josephson junctions: recent
developments. Supercond. Sci. Technol., 13:R85–R100,
2000.

[36] L. Longobardi, D. Massarotti, D. Stornaiuolo, L. Galletti,
G. Rotoli, F. Lombardi, and F. Tafuri. Direct transi-
tion from quantum escape to a phase diffusion regime
in YBaCuO biepitaxial Josephson junctions. Phys. Rev.
Lett., 109:050601, 2012.



17

[37] S. A. Cybart, E. Y. Cho, T. J. Wong, B. H. Wehlin,
M. K. Ma, C. Huynh, and R. C. Dynes. Nano Josephson
superconducting tunnel junctions in Y Ba2Cu3O7 − δ di-
rectly patterned with a focused helium ion beam. Nature
Nanotech, 10(7):598–602, 2015.

[38] L. S. Revin, D. V. Masterov, A. E. Parafin, S. A. Pavlov,
and A. L. Pankratov. Nonmonotonous temperature depen-
dence of shapiro steps in YBCO grain boundary junctions.
Beilstein J. Nanotechnol., 12:1279–1285, 2021.

[39] A. B. Boyd, A. Patra, C. Jarzynski, and J. P. Crutchfield.
Shortcuts to thermodynamic computing: The cost of fast
and faithful information processing. J. Stat. Physics, in
press, 2021.

[40] S. Lahiri, J. Sohl-Dickstein, and S. Ganguli. A universal
tradeoff between power, precision and speed in physical
communication. arXiv.org:1603.07758, 2016.

[41] P. R. Zulkowski and M. R. DeWeese. Optimal finite-time
erasure of a classical bit. Phys. Rev. E, 89(5):052140,
2014.

[42] A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dil-
lenschneider, and E. Lutz. Experimental verification of
Landauer’s principle linking information and thermody-
namics. Nature, 483(7388):187–189, 2012.

[43] P. M. Riechers, A. B. Boyd, G. W. Wimsatt, and J. P.
Crutchfield. Balancing error and dissipation in computing.
Phys. Rev. Res., 2(3):033524, 2020.

[44] L. Gammaitoni. Beating the Landauer’s limit by trading
energy with uncertainty. arXiv.org:1111.2937, 2011.

[45] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen,
and O. Temam. Diannao: A small-footprint high-
throughput accelerator for ubiquitous machine-learning.
ACM SIGARCH Computer Architecture News, 42(1):269–
284, 2014.

[46] R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, and
D. Englund. Large-scale optical neural networks based on
photoelectric multiplication. Phys. Rev. X, 9(2):021032,
2019.

[47] P. R. Zulkowski and M. R. DeWeese. Optimal control of
overdamped systems. Phys. Rev. E, 92(3):032117, 2015.

[48] E. Aurell, K. Gawȩdzki, C. Mejía-Monasterio, R. Mo-
hayaee, and P. Muratore-Ginanneschi. Refined second
law of thermodynamics for fast random processes. J. Stat.
Physics, 147(3):487–505, 2012.

[49] D. Reeb and M. M. Wolf. An improved Landauer principle
with finite-size corrections. New J. Physics, 16(10):103011,
2014.

[50] K. K. Likharev. Classical and quantum limitations on en-
ergy consumption in computation. Intl. J. Theo. Physics,
21(3):311–326, 1982.

[51] K. K. Likharev and A. N. Korotkov. Single-electron
parametron: Reversible computation in a discrete-state
system. Science, 273(5276):763–765, 1996.

[52] N. Takeuchi, D. Ozawa, Y. Yamanashi1, and
N. Yoshikawa. An adiabatic quantum flux parametron as
an ultra-low-power logic device. Supercond. Sci. Technol.,
26(3):035010, 2013.

[53] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa. Simula-
tion of sub-kbt bit-energy operation of adiabatic quantum-
flux-parametron logic with low bit-error-rate. App.
Physics Lett., 103:062602, 2013.

[54] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa. Reversible
logic gate using adiabatic superconducting devices. Sci-
entific Reports, 4:6354, 2014.

[55] I. I. Soloviev, N. V. Klenov, S. V. Bakurskiy, M. Yu.

Kupriyanov, A. L. Gudkov, and A. S. Sidorenko. Beyond
Moore’s technologies: operation principles of a supercon-
ductor alternative. Beilstein J. Nanotech., 8:2689–2710,
2017.

[56] I. I. Soloviev, A. E. Schegolev, N. V. Klenov, S. V.
Bakurskiy, M. Y. Kupriyanov, M. V. Tereshonok, A. V.
Shadrin, V. S. Stolyarov, and A. A. Golubov. Adiabatic
superconducting artificial neural network: Basic cells. J.
Appl. Physics, 124(15):152113, 2018.

[57] A. E. Schegolev, N. V. Klenov, I. I. Soloviev, and M. V.
Tereshonok. Adiabatic superconducting cells for ultra-low-
power artificial neural networks. Beilstein J. Nanotech.,
7:1397–1403, 2016.

[58] K. D. Osborn and W. Wustmann. Reversible fluxon
logic for future computing. In 2019 IEEE International
Superconductive Electronics Conference (ISEC), pages
1–5. IEEE, 2019.

[59] M. P. Frank. Asynchronous ballistic reversible computing.
In 2017 IEEE International Conference on Rebooting
Computing (ICRC), pages 1–8. IEEE, 2017.

[60] M. P. Frank, R. M. Lewis, N. A. Missert, M. A. Wolak,
and M. D. Henry. Asynchronous ballistic reversible fluxon
logic. IEEE Trans. Appl. Superconductivity, 29(5):1–7,
2019.

[61] K. Morita. Reversible computing. In R. A. Meyers, editor,
Encyclo. Complexity Sys. Sci., pages 7695–7712. Springer,
2009.

[62] S. S. Pidaparthi and C. S. Lent. Energy dissipation during
two-state switching for quantum-dot cellular automata.
J. Appl. Physics, 129(2):024304, 2021.

[63] A. L. Pankratov and B. Spagnolo. Suppression of timing
errors in short overdamped josephson junctions. Phys.
Rev. Lett., 93:177001, Oct 2004.

[64] R. Lifshitz and M. C. Cross. Nonlinear dynamics of
nanomechanical and micromechanical resonators. In Re-
views of Nonlinear Dynamics and Complexity, volume 1.
Wiley-VCH Verlag GmbH and Co. KGaA, 2008.

[65] M. H. Matheny, M. Grau, L. G. Villanueva, R. B. Kara-
balin, M. C. Cross, , and M. L. Roukes. Phase synchro-
nization of two anharmonic nanomechanical oscillators.
Phys. Rev. Lett., 112:014101, 2014.

[66] J. W. Ryu, A. Lazarescu, R. Marathe, and J. Thingna.
Stochastic thermodynamics of inertial-like Stuart-Landau
dimer. New J. Physics, 23:105005, 2021.

[67] A. B. Boyd, P. M. Riechers, G. W. Wimsatt, J. P. Crutch-
field, and M. Gu. Time symmetries of memory determine
thermodynamic efficiency. arXiv.org: 2104.12072, 2021.

[68] H. Leff and A. Rex. Maxwell’s Demon 2: Entropy, Clas-
sical and Quantum Information, Computing. Taylor and
Francis, New York, 2002.

[69] T. Conte et al. Thermodynamic computing.
arXiv.org:1911.01968, 2019.

[70] A. B. Boyd, D. Mandal, and J. P. Crutchfield. Identifying
functional thermodynamics in autonomous Maxwellian
ratchets. New J. Physics, 18:023049, 2016.

[71] J. M. R. Parrondo, J. M. Horowitz, and T. Sagawa. Ther-
modynamics of information. Nature Physics, 11(2):131–
139, 2015.

[72] G. W. Wimsatt, A. B. Boyd, P. M. Riechers, and J. P.
Crutchfield. Refining Landuaer’s stack: Balancing error
and dissipation when erasing information. J. Stat. Physics,
183(16):1–23, 2021.

[73] Y. Jun, M. Gavrilov, and J. Bechhoefer. High-precision
test of Landauer’s principle in a feedback trap. Phys. Rev.



18

Lett., 113:190601, 2014.
[74] R. Landauer. Irreversibility and heat generation in the

computing process. IBM J. Res. Dev., 5(3):183–191, 1961.
[75] S. Deffner and C. Jarzynski. Information processing and

the second law of thermodynamics: An inclusive, Hamil-
tonian approach. Phys. Rev. X, 3(4):041003, 2013.

[76] J. A. Owen, A. Kolchinsky, and D. H. Wolpert. Number
of hidden states needed to physically implement a given
conditional distribution. New J. Physics, 21(1):013022,
2019.

[77] T. Koyuk and U. Seifert. Operationally accessible bounds
on fluctuations and entropy production in periodically
driven systems. Phys. Rev. Lett., 122(23):230601, 2019.

[78] C. Maes. Frenetic bounds on the entropy production.
Phys. Rev. Lett., 119(16):160601, 2017.

[79] P. Strasberg and M. Esposito. Non-Markovianity and
negative entropy production rates. Phys. Rev. E,
99(1):012120, 2019.


	Gigahertz Sub-Landauer Momentum Computing
	Abstract
	Introduction
	Bit Swap
	Momentum Computing Realization
	Idealized Protocol

	Physical Instantiation
	Realistic Protocol
	Computation Time
	Physically-Calibrated Bit Swap
	Computational Fidelity

	Performance
	Accuracy
	Low Thermodynamic Cost
	High Speed

	Related Work
	Conclusion
	Acknowledgments
	The Landauer: A Standard Candle for Thermodynamic Computation
	Limits of Stochastic Thermodynamics for Information Processing
	Flux Qubit Dimensionless Equations of Motion
	Effective Potential and Simulation Details
	Symmetric Approximation
	=0

	Searching for Minimal-Work Bit Swaps
	References


