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We have studied acoustic topological edge modes in a honeycomb phononic crystal composed of 

metallic nano-pillars on a LiNbO3 substrate. Acoustic band calculations show that the topological 

surface acoustic wave (SAW) mode inhabits the edge of the honeycomb phononic crystal in spite of the 

hybridization with the internal acoustic modes of the substrate. Pulse-type microwave impedance 

microscopy realized clear visualization of the gigahertz topological edge mode between two mutually 

inverted topological phononic crystals. A frequency-dependent image showed that the edge mode 

evolves as the bulk SAW modes are suppressed owing to the energy gap formation, consistent with the 

topological nature. The realization of a topological waveguide in a simple pillar structure on a substrate 

might pave a new path to the development of topological SAW devices for a wide range of usages such 

as quantum computing, sensing and communication applications. 
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I. INTRODUCTION 

Since the discovery of the quantum Hall effect (QHE) [1], the topological aspect of electronic states has 

attracted much attention [2-4]. One of the most prominent properties of topological electronic states is the 

formation of edge or surface states. In a two (three)-dimensional topological crystal, for example, the edge 

(surface) is conducting even when the Fermi energy is located in an energy gap. The anomalous properties, 

including robust one-way transport along the edge (surface), are thought to be the hallmark of topological 

electronic states. The concept of topology is not restricted to the electronic states but is common to other 

Bloch states, such as photons [5], magnons [6], and phonons [7,8]. For these bosonic quantum waves, the 

topological edge state should work as a low dissipative waveguide, offering significant potential for 

applications. 

Of particular importance may be the phonon since it carries sound and heat [9]. The control of heat is one 

of the most important issues for resolving energy-related problems. Sound waves or higher frequency 

acoustic waves are also widely utilized in modern society. Among various acoustic devices, surface acoustic 

wave (SAW) devices have been important components for a wide range of usages [10] including quantum 

computing systems [11-15] and sensing applications [16,17] as well as radio-frequency communications 

[18,19]. Thus, the controllability of acoustic wave contributes their significant development. For these 

purposes, in the field of phononics, intensive studies have been performed for realizing various properties, 

such as negative refraction [20], cloaking [21], and rectification [22,23]. In particular, artificial periodic 

structures with a period comparable with the wavelength, termed a phononic crystal (PnC), have been 

developed to realize such properties. This approach can be applied to research on topological phononic 



properties. 

Among the wide phononic spectrum ranging from kHz sound waves up to THz thermal phonons, the 

most prominent progress in topological research can be seen in airborne sound waves in the kHz range [24-

29]. Since the wavelength of kHz sound waves is relatively long, it is possible to fabricate topological 

phononic crystals with centimeter-scale periodicity. Consequently, various topological acoustic phases have 

been quickly realized in the kHz region, including the Zak phase [24], the QHE [25], the quantum spin Hall 

effect [26], the valley Hall effect [27], the higher-order topological state [28], and Weyl semimetal states [29]. 

Compared with these low-frequency airborne sound waves, only a few experiments have succeeded in 

realizing topological acoustic states operating at much higher frequencies, such as MHz [30-33] and GHz 

[34]. There are two reasons for this: The most critical reason would be the increased difficulty of fabricating 

the sub-micron scaled device. The other reason would be high frequency measurement with high spatial 

resolution. Especially for GHz sounds, one cannot use classical probes such as microphone [24-29] and also 

optical ones [30-33] because the required spatial resolution is smaller than 1 m, which is below the 

diffraction limit of visible light. However, it seems important to realize topological acoustic properties at 

these high frequencies, especially in the GHz range, since these microwave frequencies are compatible with 

commercial telecommunication applications [18,19]. In addition, the SAW devices with GHz working 

frequency are becoming increasingly important for the development of quantum technologies such as 

quantum transduction among disparate systems [12-15] and quantum control of SAW [11]. Quite recently, 

with the use of microwave impedance microscopy (MIM), Zhang et al. observed a topological edge state of 

a 1 GHz acoustic wave in a two-dimensional PnC fabricated on a free-standing membrane [34]. However, 

the fabrication process of such a structure is cumbersome for realizing practical devices. Here, we reveal that 

a patterned piezoelectric substrate hosts a similar topological waveguide of a SAW by means of acoustic band 

calculations and MIM. The simplified fabrication method of such a topological waveguide would be more 

applicable to practical devices. 

 

II. RESULTS AND DISCUSSION 

A. Design of a topological phononic crystal 

To realize the topological edge state of acoustic waves, we fabricated periodically arranged nano-pillars 

on a Z-cut LiNbO3 substrate forming honeycomb lattices with a lattice constant L of 840 nm, as shown in 

Figs. 1(a) and 1(b). Their unit cell consisted of two different Au cylinder-like pillars with the same height h 

= 158 nm and substrate. The average diameter and asymmetric factor,  = (dm- dn)/(dm+ dn), of the bottom 

diameters, dm and dn, for these pillars were 273 nm and 0.37, respectively. The diameters at the upper surfaces 

of both pillars were 85% of the bottom ones. In electronic systems, a honeycomb lattice with two inequivalent 

atoms in a unit cell is known to show the quantum valley Hall effect (QVHE) [35]. In the QVHE, nontrivial 

Berry curvature diverges around the pair of energy extrema in momentum space, denoted as K and K’ valleys. 

Although the total Berry curvature must be zero owing to the preserved time-reversal symmetry, its 

integration around each valley becomes nonzero, producing valley-dependent Chern numbers (called valley 

Chern numbers). Then, topological valley transport may emerge at the interface of materials having valley 

Chern numbers of opposite signs. The question here is whether the SAW version of the QVHE is realized in 

the honeycomb latticed pillars on a substrate. This is not so simple to answer because the internal acoustic 



wave mode of the substrate may be hybridized with the topological surface mode. To answer this question, 

we performed acoustic band calculations for the system described above [Fig. 1(b)] based on a finite element 

method using a commercial software COMSOL 5.2. To simplify the calculation, we assumed that the 

thickness of the substrate was four times as large as the lattice constant of the honeycomb lattice L, while the 

thickness was much larger (0.5 mm) in the experiment. Details of the calculation are shown in the Appendix 

A. Figure 1(c) shows the obtained acoustic band for  = 0 and  = 0.37. In order to distinguish a SAW 

localized on the surface and a bulk acoustic wave (BAW) extending over the interior of the substrate, we 

evaluated for the case of  = 0.37 how much strain energy is concentrated on the surface. The dark-red 

(white-yellow) color indicates that elastic energy was more localized at the surface (extended over the bulk), 

meaning that the eigenmode had a SAW (BAW) character. Because of the finite thickness of the substrate, 

many standing wave modes with bulk-like nature were discerned close to the  point at finite frequencies. 

As the thickness increased, the number of standing wave modes increased but all the bulk-like modes settled 

in the colored region irrespective of the substrate thickness. On the other hand, the surface-like flat modes 

were discerned at around 1.4 GHz and 2.0 GHz, originating from localized pillar resonances, as previously 

confirmed in various pillar-type PnCs [32, 33, 37]. Most important here are the dispersive surface modes 

around the K point. For  = 0, the dispersive SAW modes showed band crossing so that a Dirac point appeared 

at the K point around 2.4 GHz. This is consistent with previous reports in the MHz range [37]. When the 

asymmetry was introduced, the two-fold degeneracy at the K point was lifted, and the SAW band gap 

emerged, indicating the topological valley Hall insulating state of the SAW. Importantly, these SAW modes 

around the K valley were well separated from the BAW modes in the colored area. Therefore, the topological 

nature of the two-dimensional honeycomb PnC was preserved even in the presence of the substrate. To 

scrutinize the topological transition, the  dependences of acoustic mode frequencies at the K point are 

displayed in Fig. 1(d). In the course of the reversal of , the bandgap at the K valley first closed and then 

reopened, corresponding to the reversal of valley Chern numbers. The upper and lower branches had 

clockwise or counter-clockwise rotational strain motion. As depicted by red or blue colors in the inset of Fig. 

1(d), these two rotational states are analogous to the electronic states with pseudospins of opposite sign. 

These acoustic band structure and resultant topological properties [35, 38, 39] are also reproduced by a 

simplified model based on the tight-binding model, in which the honeycomb-latticed nanopillars are regarded 

as an array of local resonators [37, 40] coupled via the substrate (see Appendix B). 

 

B. Methods of microwave impedance microscopy and device fabrication 

To directly visualize a topological SAW mode at gigahertz frequency with sub-micron spatial resolution, 

we developed a pulse-type MIM imaging system, as shown in Fig. 2(a). It is based on a commercial atomic 

force microscopy (AFM) system (EDU-AFM, Thorlabs) and a conductive cantilever (12Pt-400B, Rocky 

Mountain Nanotechnology). Microwave electronics consist of a microwave generator (MG3692C, Anritsu), 

a pulse generator (DG645, Stanford Research Systems), an IQ-mixer (MMIQ-0218LXPC, Marki 

Microwave), and a boxcar integrator (SR250, Stanford Research Systems). The unique feature different from 

conventional MIM systems [34, 41-43] is to use pulse modulated microwaves with a pulse duration of 150 

ns. In this system, one can separate SAW and electromagnetic crosstalk in the time domain. Since the distance 

from the interdigital transducer (IDT) to the PnC was about 1.3 mm, SAW signals arrived at the PnC 0.3 s 



late from electromagnetic crosstalk. The time-delayed SAW signal was selectively detected by means of the 

boxcar integrator, and was digitized by a data acquisition (DAQ) system (NI USB-6361). An IDT and 

topological PnC were fabricated on a Z-cut LiNbO3 surface by using a standard electron beam lithography 

and lift-off technique. In order to excite a SAW over a wide frequency range between 2.2 GHz and 2.55 GHz, 

a chirped IDT was fabricated, as schematically shown in Fig. 2(a), in which the period of the IDT was 

continuously varied from 1.48 m to 1.62 m. The details of the fabrication process were described in the 

Supplemental Material [36]. To realize a topological SAW waveguide, we prepared two honeycomb lattices 

with valley Chern numbers of opposite signs, shown in Figs. 2(b) and 2(c), which are hereafter denoted as A 

and B lattices, respectively. The boundary between the upper A lattice and the lower B lattice was located at 

the center of the SAW propagation area, as schematically shown in the inset of Fig. 2(a). Figures 2 (d) and 

2(e) show typical AFM and MIM images around the AB interface. These AFM and MIM images were 

obtained simultaneously under SAW excitation at 2.22 GHz. On the lefthand side where there was no PnC, 

the periodic intensity modulation existing only in the MIM image corresponds to the SAW launched from 

the left IDT. This is also confirmed by line profiles of AFM and MIM displayed in Figs. 2(f) and 2(g), 

respectively. The average height of the pillars measured by AFM was 153 nm, which is close to the designed 

total thickness of 158 nm. 

 

C. Imaging of the topological edge state 

To demonstrate the topological SAW edge mode, we show MIM images in the vicinity of the AB interface 

[see Fig. 3(a)] at various frequencies between 2.22 GHz and 2.52 GHz in Figs. 3(b)-3(h). At 2.22 GHz and 

2.30 GHz, the SAW propagating from the left side readily penetrated the PnC, showing the strong contrast 

caused by the PnC structure. The large intensity variation in the PnC seems to have been caused by 

interference with the reflected SAW at the PnC boundary and the scattered SAW due to imperfections. On 

the other hand, at 2.52 GHz, the SAW intensity was quite suppressed in the PnC, whereas the wavefront of 

the SAW was clearly seen before the PnC boundary. Between 2.35 GHz and 2.45 GHz, SAW propagation 

was discerned only around the boundary of the A-B lattices, which is the topological edge mode as discussed 

below. 

To clarify the nature of the boundary mode, we examine the vertical position-dependent SAW intensity 

in the PnC shown in Fig. 4(a), comparing it with the band calculation around the K valley shown in Fig. 4(b). 

We obtained the intensity by Fourier transformation (FT) of the MIM image. The details of the FT analysis 

are shown in the Supplemental Material [36]. In the band calculation below 2.3 GHz, there exists a bulk 

surface acoustic mode around the K point. For this reason, we observed a large SAW intensity in the interior 

of A and B lattices in this frequency range. The large and fine intensity modulations in the PnC is not 

attributed to the measurement error, but to the vertical periodicity of the PnC and the aforementioned 

scattering and interference effect. This can be inferred by the fact that the intensity fluctuation outside the 

PnC was negligibly small as shown in the Fig. S2 (see Supplemental Material [36]). Above 2.35 GHz, the 

bulk surface acoustic state is gapped but the edge state should emerge according to the band calculation. This 

is in agreement with the experimental observation; the SAW intensity is discernible only around the interface. 

The edge mode intensity shows a maximum around 2.39 GHz, which seems to correspond to the Drac point 

for = 0. In the frequencies higher than 2.50 GHz, the upper bulk surface acoustic band shows up, but the 



dispersion relation is almost flat. Therefore, the SAW intensity is localized at the boundary of the PnC and 

suppressed inside the PnC regardless of the location. Faint contrast reflecting the PnC may originate from 

some residual electromagnetic crosstalk. Figure 4(c) summarizes the edge and bulk mode intensities as a 

function of frequency. The intensity of the edge mode was deduced from Gaussian fitting to the position-

dependent SAW intensity around the interface. The bulk mode intensity was evaluated from the FT intensity 

inside the PnC. Both the intensities are normalized by that outside the PnC. While the bulk mode intensity is 

suppressed above 2.35 GHz, the edge mode intensity rapidly increases around 2.35 GHz and shows a peak 

around 2.39 GHz. A small difference in the bandgap frequency between calculation and experiment may be 

attributable to the derivation of some material parameters used in the calculation and the fabricated PnC (see 

Appendix A for details). The contrastive frequency dependence of the bulk and edge intensities ensures the 

validity of the topological edge state. 

 

III. CONCLUSION 

In conclusion, we have demonstrated a topological SAW mode around 2.4 GHz in a honeycomb lattice 

made of metallic pillars on a LiNbO3 piezoelectric substrate. With the use of a pulsed MIM system, we 

visualized the topological edge mode. The frequency dependence of the edge mode intensity is contrastive 

with that of the bulk SAW mode, which ensures the topological nature. While a similar topological edge 

state was previously realized in a purely two-dimensional system [34], the present result shows that the 

topological edge mode traveling along the surface is robust against hybridization with the interior BAW 

modes of the substrate. The method of topological patterning on a substrate seems quite useful for 

implementing topological waveguides and other functionalities into practical acoustic devices working at 

GHz frequencies. The achievements may contribute to the further development of SAW devices for various 

purposes including quantum state engineering [11], transducers [12-15], sensing [16,17], and communication 

applications [18,19]. 
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APPENDIX A: NUMERICAL BAND CALCULATION 

The acoustic band calculation was performed using COMSOL Multiphysics 5.2. We deduced 

eigenfrequencies at each specific wavevector taking Floquet periodic boundary condition with the unit cell 

structure shown in Fig. 1(b). The physical parameters of LiNbO3 substrate were density  = 4.7 [g/cm3], 

elastic stiffness tensors C11 = 202.897 [GPa], C12 = 52.9177 [GPa], C13 = 74.9098 [GPa], C14 = 8.99874 [GPa], 

C33 = 243.075 [GPa], and C44 = 59.9034 [GPa], relative permittivity coefficients 11 = 43.6, 33 = 29.16, 

piezoelectric constants represented by e-form e15 = 3.69594 [C/m2], e22 = 2.53764 [C/m2], e31 = 0.193644 

[C/m2], and e33 = 1.30863 [C/m2]. The physical parameters of Au pillars were density  = 19.3 [g/cm3], 

Young’s modulus = 79 [GPa], and Poisson’s ratio = 0.4, respectively. For simplicity, we did not consider the 

Ti layer between Au pillars and LiNbO3 substrate and instead assumed that pillars were made only of Au. We 



confirmed that the Ti adhesion layer hardly affected the acoustic band calculation. Since LiNbO3 is 

anisotropic, the crystal orientation of LiNbO3 was prescribed as in the experiment: Z is parallel to the surface 

normal and Y is parallel to -K direction of PnC. 

As discussed in the main text, some eigenmode is localized on the surface (SAW-like) and another mode 

is extended over the interior of substrate (BAW-like). In order to identify which eigenmode is SAW(BAW)-

like, we have calculated a parameter  of these eigenmodes given by 

𝜂 =  ∭ 𝐸(𝒓)𝑑𝑉 / ∭ 𝐸(𝒓)𝑑𝑉
𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙𝑝𝑖𝑙𝑙𝑎𝑟𝑠

, 

where E(r) is the elastic energy density.  takes the value from 0 to 1, the larger (smaller) value indicates 

more SAW-like (BAW-like).  for each eigen mode of  = 0.37 was represented by color in Fig. 1(c). 

In addition, we have evaluated -dependent angular momentum at the K point. As shown in the inset of 

Fig. 1(d), the blue and red colors represent the angular momentum along Z-direction at a position r, that was 

evaluated by Lz (r) = Re[u(r)]Im[v(r)]-Re[v(r)]Im[u(r)], in which the u(r), v(r), w(r) are the X, Y, Z-

components of the complex displacement vector Uk(r, t) = (u(r), v(r), w(r)) exp(it). 

 

APPENDIX B: TIGHT-BINDING MODEL 

To understand the topological properties of our PnC, we introduced a simplified model that are based on a 

discretized model. The honeycomb-latticed nanopillars can be regarded as an array of local resonators 

coupled via the substrate [37, 40] as schematically displayed in Figs. 5(a) and 5(b). Therefore, it would be a 

reasonable approximation to treat it by tight-binding framework. The tight-binding Hamiltonian of a 

honeycomb lattice for phononic system spanning over the m and n sublattices can be given by 

𝐻(𝒌) = (
𝜀𝑚 + 𝑏(𝒌) 𝑎∗(𝒌)

𝑎(𝒌) 𝜀𝑛 + 𝑏(𝒌)
), 

where 

𝑎(𝒌) = 𝑡1(𝑒𝑖𝒌⋅𝝉1 + 𝑒𝑖𝒌⋅𝝉2 + 𝑒𝑖𝒌⋅𝝉3), 

𝑏(𝒌) = 𝑡2[𝑒𝑖𝒌⋅(𝝉𝟐−𝝉𝟑) + 𝑒𝑖𝒌⋅(𝝉3−𝝉1) + 𝑒𝑖𝒌⋅(𝝉1−𝝉2) + 𝑒𝑖𝒌⋅(𝝉3−𝝉2) + 𝑒𝑖𝒌⋅(𝝉1−𝝉𝟑) +

𝑒𝑖𝒌⋅(𝝉𝟐−𝝉1)]. 

Here m, n represent on-site energies of two sublattices, and 𝑡1 and 𝑡2 is real numbers representing nearest 

neighbor and next-nearest neighbor hopping, respectively. j (j = 1, 2, 3) indicates vectors connecting nearest 

neighbor sites as shown in Fig. 5(b). Here, we assume on-site energies of the two sublattices are linearly 

proportional to the diameter of nanopillars. Then, we may write them as m = 0 + /2 and n = 0 - /2, 

where 0 and  indicates the average energy and energy separation of the two sublattices, respectively. 

After diagonalizing the Hamiltonian, eigen energy can be given by 

𝐸(𝒌) =  𝜀0  +  𝑏(𝒌) ± √(
Δ𝜀𝛼

2
)

2
+ |𝑎(𝒌)|2. 

The obtained dispersion relationships were shown in Fig. 6(b). The two modes start at finite frequencies at  

point and get closer to each other at K point. This well reproduces two SAW-like modes calculated by finite 

element method as shown in Fig. 6(a). 



The topological property for the honeycomb tight binding model has been well known [35, 38]. To clearly 

demonstrate it, the momentum expansion of the Hamiltonian around K = (4/3L, 0) is useful. By taking up 

to linear order in k, we get 

𝐻(𝑲 + 𝛿𝒌) = 𝐻0 + 𝐻(δ𝒌) ≃ (𝜀0 − 3𝑡2)𝐼 + (
Δϵα/2 𝑡̃δ𝑘−

𝑡̃δ𝑘+ −Δϵα/2
), 

where I indicates 2 × 2 identity matrix, 𝑡̃ = −√3𝑡1𝐿/2, and δ𝑘± = δ𝑘𝑥 ± 𝑖 δ𝑘𝑦. Finally, by using Pauli 

matrices σ𝑖(𝑖 = 𝑥, 𝑦, 𝑧), 𝐻(δ𝒌) can be reduced to the form of massive Dirac Hamiltonian as 

𝐻(δ𝒌) = 𝑡̃(σ𝑥δ𝑘𝑥 + σ𝑦δ𝑘𝑦) + 𝑀(𝛼)σ𝑧, 

where 𝑀(𝛼) = Δ𝜖𝛼/2. This is similar to the Hamiltonian for describing electronic topological insulators 

[39]. Then, the momentum space Berry curvature for the first band is derived by [35] Ω(𝛿𝒌) =

(1/2)𝑡̃2𝑀(𝛼)[𝑀(𝛼)2 + 𝑡̃2|𝛿𝒌|2]−3/2. The integration over the K valley results in the valley Chern number, 

which can be given by [27, 38] 𝐶 = 1/2 sgn[𝑀(𝛼)]. It obviously represents that the sign of valley Chern 

number reverses with the reversal of 𝑀(𝛼) ∝  𝛼. This is consistent with the topological transition or band 

inversion during the reversal of  as discussed in Fig. 1 (d). 
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FIG. 1. (a) A scanning electron microscopy (SEM) image of a topological valley PnC with  = 0.37. (b) A 

schematic diagram of the unit cell structure of the topological valley PnC in the band calculation. (c) 

Calculated band structure for  = 0.37 and  = 0. For the case of  = 0.37, the color represents the ratio of 

elastic energy in the two pillars to that of the whole unit cell including the substrate, which represents the 

degree of surface (bulk) nature for the eigenmode. The blue shaded region represents the area above the 

sound line, where bulk acoustic modes inhabit. (d) Calculated frequencies of the upper and lower SAW modes 

at the K point as a function of asymmetric factor . Inset represents eigen modes of the lower and higher 

branches at  = ± 0.37. Red and blue colors correspond angular momentum along the Z-direction. 

 

 

 

 

 

 

 

 



 

FIG. 2. (a) Setup of the MIM experiment. A chirped IDT and two mutually inverted honeycomb lattices (A, 

B lattices) made of metallic pillars were fabricated on a piezoelectric substrate. By using pulse-modulated 

microwaves and a time-domain gating technique, only the SAW signal was detected. X, Y, and Z axes 

correspond to the crystal orientation of LiNbO3. A SAW propagates along Y-direction, which is parallel to 

the zigzag direction of the PnC. (b), (c) SEM images of two topological PnCs with (b)  = -0.37 and (c)  = 

0.37. (d), (e) Examples of Atomic Force Microscopy (AFM) and MIM images near the AB domain boundary, 

as shown in the inset of (a). During the scanning, a SAW with a frequency of 2.22 GHz was launched from 

the chirped IDT. Scale bars are 2 m. (f), (g) Line profiles of (f) AFM and (g) MIM images shown in the red 

and the blue dot lines in (d) and (e), respectively. 

 

 



 

FIG. 3. (a) AFM image near the AB domain boundary. (b)-(h) MIM images at various SAW input frequencies. 

Scale bars are 2 m. 

 

 

 

 

 

 

 

 

 

 

 



 

FIG. 4. (a) Vertical position dependence of SAW intensity around the A-B boundary at various frequencies. 

The black lines between 2.35 GHz and 2.45 GHz show the results of fitting to the Gaussian function for 

estimating the edge mode intensity. The dashed rectangle in the left inset represents the analyzed region for 

the estimation of intensity. (b) Acoustic band structure close to the SAW bandgap at the K point, which is 

reproduced from Fig. 1(c). The color stands for the character of acoustic modes as in the Fig. 1(c). (c) Edge 

and bulk mode intensities as a function of the excitation frequency. These intensities were normalized by that 

outside the PnC. We multiplied the intensities of edge modes by a factor of 4. The blue dot line is a guide to 

the eye. 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 5 (a). A schematic of honeycomb-latticed nano-pillars on an elastic substrate. There are two types of 

pillars with distinct diameters. These are regarded as local resonators having different eigen frequencies and 

are mutually coupled via the substrate. (b) A simplified model that treat the honeycomb-latticed pillars by 

tight-binding approximation. Unit cell consists of two sublattices labeled by m and n, which corresponds to 

the two pillars. The primitive translation vectors are 𝒂1 = 𝐿(1 0) and 𝒂2 = 𝐿(1/2 √3/2), and three 

vectors are also defined as 𝝉1 = 𝐿 (0 −1/√3) , 𝝉2 = 𝐿 (1/2 1/(2√3)) , and 𝝉3 =

𝐿(−1/2 1/(2√3)). Each pillars have nearest neighbor hopping t1 and next nearest neighbor hopping t2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 6. Calculated acoustic band structures of  = 0 and  = 0.37 by using (a) the finite element method and 

(b) the tight-binding model, respectively. The former was reproduced from Fig. 1(c). The dispersion of  = 

0.37 deduced by the tight-binding model was also displayed in (a) for comparison. For describing (b), we 

used 0 = 2.27 GHz,  = 0.5 GHz, t1 = 0.208 GHz, and t2 = -0.037 GHz. 

 

 

 


