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The in-plane thermal conductance of a vacuum gap supporting the propagation of hybridized
guided modes along its interfaces with two polar SiO2 materials is quantified and analyzed as a
function of the gap distance and temperature. In contrast to the well-known cross-plane thermal
conductance, we show that the in-plane one increases with the gap distance up to 1 cm, in which it
takes its maxima that increase with temperature. A maximum thermal conductance per unit width
of 103 mWm−1K−1 is found at 500 K, which is more than 6 (3) orders of magnitude higher than the
corresponding one found in the near-field (far-field) regime. This top polariton thermal conductance
along the cavity is pretty much equal to the radiative one predicted by Planck’s law and therefore
it could be useful to amplify or evacuate heat currents along macroscale gaps.

Surface phonon-polaritons (SPhPs) are electromag-
netic surface modes generated by the coupling of in-
frared photons with optical phonons at the interface of
polar materials [1–3]. These surface excitations are able
to propagate a distance much longer than the typical
mean free paths of phonons and electrons, which makes
of them powerful energy carriers [4–9]. In thermal radi-
ation across a vacuum gap, for instance, the evanescent
coupling of SPhPs inside the gap can enhance the heat
transport several orders of magnitude over the blackbody
limit [10–15]. This remarkable enhancement appears in
the near-field regime and has a wide variety of applica-
tions in thermophotovoltaics [16, 17], thermal computing
[18] and photonics[19–21].

While the near-field radiation inside a gap is driven
by the cross-plane propagation and coupling of evanes-
cent SPhPs, their in-plane propagation can also be ex-
ploited to carry heat along surfaces, via propagative
modes [4, 5, 22, 23]. Previous theoretical [4, 5] and exper-
imental [24, 25] works revealed that the SPhP contribu-
tion to the in-plane heat flux along ultra-thin polar films
can actually compete with the their phonon counterparts.
This high SPhP contribution arises from the evanescent
coupling between the SPhPs propagating along the two
nanofilm surfaces, distances longer than the correspond-
ing cross-plane ones outside of the nanofilm [5]. The
SPhP coupling shows up not only in single nanofilms, but
also in microscale structures, as is the case of a 10−µm-
thick silicon layer sandwiched by two SiO2 nanofilms that
was recently studied [26]. As a result of the strong cou-
pling of SPhPs propagating along its two SiO2 nanofilms,
this SiO2/Si/SiO2 structure can efficiently enhances the
in-plane SPhP heat transport to values ten times higher
than the corresponding one of a single SiO2 nanofilm.
Taking into account that silicon is a non-absorbing ma-
terial within a wide range of infrared frequencies relevant
for the propagation of SPhPs [27], the coupling of these
energy carriers via a vacuum gap is also expected to gen-
erate a significant heat current along its interfaces. Fur-
thermore, as the number of SPhP modes increases with
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FIG. 1: Scheme of a vacuum gap between two identical
semi-infinite polar materials of relative permittivity ε1.
The gap supports the propagation of HGMs via
symmetric (even) and antisymmetric (odd) modes.

the gap distance [1, 26, 28], their thermal activation and
combined contribution to this heat current along a mi-
crogap could even be comparable to the Planck’s limit of
thermal radiation, but it is not studied yet, till now.

The purpose of this letter is to theoretically demon-
strate the resonant behavior of the in-plane thermal con-
ductance of a vacuum gap, as a function of its distance
d. In contrast to the well-known cross-plane thermal
conductance, it is shown that the in-plane one exhibits
its lowest values as d → 0 and its highest one at about
d = 1 cm. This thermal resonance occurs due to the ther-
mal activation of hundreds of hybridized guided modes
(HGMs), resulting from the interaction of SPhP modes
with standing waves propagating outside and inside the
cavity, respectively. Unlike the single mode supporting
the SPhP heat transport along a nanofilm [22], these
HGMs maximize their energy density and coupling for
a macroscale cavity.

Let us consider a gap supporting the propagation of
HGMs along its interfaces with two semi-infinite and
identical polar materials, as shown in Fig. 1. These ma-
terials have a relative permittivity ε1 and are separated
by a gap of permittivity ε0 and distance d. Assuming
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that the surface z = 0 of both polar materials is uni-
formly heated up with a thermal source, the heat prop-
agates along the z axis mainly and the in-plane thermal
conductance G of the gap due to HGMs is given by [22]

G

a
=

1

2π2

∫
~ωRe(β)τ(ω)

∂f

∂T
dω, (1)

where a is the system width (dimension perpendicular to
the xz plane), ~ is the Planck’s constant divided by 2π,
Re(β) is the real part of the in-plane HGM wave vector

β, f = [exp (~ω/kBT )− 1]
−1

is the Bose-Einstein distri-
bution function, T is the average temperature, kB is the
Stefan-Boltzmann constant, ω is the spectral frequency,
and τ is the transmission probability given by

τ =
π

2λ

(
1− 4ψ(0)

πλ

)
, (2)

where λ = l/Λ, Λ = [2Im(β)]
−1

is the HGM in-plane
propagation length and ψ(ξ) = E5(ξ) − E5(λ − ξ), be-

ing En(x) =
∫ π/2
0

cosn−2(θ)e−x/ cos(θ)dθ. Equation (2)
thus establishes that the transmission of HGMs along
the length l is determined by λ. In the diffusive regime
(λ = l/Λ � 1), the ratio ψ(0)/λ → 0 and τ ≈ 0, while
in the ballistic limit (λ� 1), 1− 4ψ(0)/πλ→ 2λ/π and
τ ≈ 1. The HGM heat transport is hence enhanced along
a system with a length l smaller than the HGM propaga-
tion length (l� Λ), as indicated by Eq. (1). In any case,
according to Eqs. (1) and (2), the HGM thermal con-
ductance depends on the material properties through the
product Re(β)τ(2lIm(β)) driven by the HGM wavevector
β(ω), which is given by the dispersion relation of HGMs
propagating along the vacuum gap shown in Fig. 1. As G
increases with this product, the optimal material config-
uration to maximize the HGM heat transport is given by
a large wave vector Re(β) and a long propagation length
(small Im(β)). After solving the Maxwell equations un-
der proper boundary conditions for the transverse mag-
netic polarization required for the existence of HGMs[4],
the following dispersion relations are obtained[1, 28, 29]

ε0p1 + ε1p0 tanh (p0d/2) = 0, (3a)

ε1p0 + ε0p1 tanh (p0d/2) = 0, (3b)

where the cross-plane wavevectors pn are given by p2n =
β2 − εnk

2
0, with k0 = ω/c and c being the wavevec-

tor and speed of light in vacuum, respectively. Equa-
tions (3a) and (3b) represent the symmetric (even) and
antisymmetric (odd) HGM modes with respect to the
magnetic field[29]. For a vacuum cavity (ε0 = 1) in
between two lossless materials (Im(ε1)= 0), as is the
case of silicon (ε1 = 11.7) [27], the solutions of Eqs.
(3a) and (3b) do not correspond to confined waves and
hence the cavity is unable to transport HGM energy.
The existence (Re(pn)> 0) and propagation (Λ > 0)
of HGMs can only be determined for lossy (absorbing)

materials (Im(ε1)> 0), as is the case of a wide vari-
ety of polar dielectrics (i. e. SiO2, SiC, SiN, hBN)
[30]. In the “far-field” limit (|p0| d � 2 or d → ∞),
the HGMs propagating along the surfaces x = ±d/2 de-
couple, tanh(p0d/2) → 1 and Eqs. (3a) and (3b) reduce
to the dispersion relation of HGMs propagating along a
single interface (SI) ε0p1 + ε1p0 = 0 [28], which yields

β = k0

√
ε0ε1
ε0 + ε1

. (4)

The HGM wavevector and hence the HGM thermal con-
ductance G of an infinitely thick cavity (d→∞) become
independent of the gap distance. As HGMs propagate
along both decoupled interfaces, for this thick cavity G is
determined combining Eqs. (1) and (4), and multiplying
Eq. (1) by two. On the other hand, in the “near-field”
limit (|p0| d � 2), the odd mode does not support the
propagation of HGMs (Λ > 0), while the even one split
into the following two branches (solutions)

β ≈ p0 ≈ p1 ≈ −
2

d

ε0
ε1
, (5a)

β

k0
≈
√
ε1;

p0
k0
≈
√
ε1 − ε0;

p1
k0

=
2

d

(
1− ε1

ε0

)
ε1k0. (5b)

Given that in this “near-field” limit, the gap distance
d → 0, the branch 1 in Eq. 5(a) is characterized by
a large wavevector Re(β) ∝ d−1 and a small propaga-
tion length Λ ∝ d of HGMs propagating with frequencies
satisfying the condition Re(ε1(ω)) < 0. This latter fea-
ture results from the strong energy absorption by the
polar materials, while the former one is related to the
strong coupling of the HGMs propagating along the sur-
faces x = ±d/2, as shown in the supplementary material
(SM) through the analysis of the Poynting vector [29].
According to Eq. (2), the product Re(β)τ and hence the
contribution of the branch 1 to G become independent
of d. This result also applies for branch 2 in Eq. (5b),
which indicates that the HGM thermal conductance in
the “near-field” limit is independent of the gap distance,
as is the case in the “far-field” regime. The HGM ther-
mal conductance G(d) thus takes two asymptotic values
for d → 0 and d → ∞, in which the HGM propaga-
tion exhibits strong absorption (small Λ) and weak cou-
pling (small Re(β)), respectively. As none of these two
conditions represent the optimal configuration (weak ab-
sorption and strong coupling) for maximizing the HGM
thermal conductance, the maximum value of G is ex-
pected to appear at an intermediate gap distance, as
shown below. For a finite d value, both HGM modes
in Eqs. (3a) and (3b) have, in general, a infinite num-
ber of branches, as tanh (p0d/2) = tanh (iπn+ p0d/2),
for n = 0, 1, 2, .... Taking into account that tanh(x +
iy) = [tanh(x) + i tan(y)] / [1 + i tanh(x) tan(y)] = 1 for
tanh(x) = 1, which is well satisfied for x > 2, one of these
solutions of both the even and odd modes is given by
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the “far-field” mode (Eq. (4)) that shows up for a thick
enough gap determined by the condition Re(p0)d > 4.
According to Eq. (4), this inequality is fulfilled for fre-
quencies, such that J(ω) > 0, where

J =
(ε0k0d)

2

25
[|ε0 + ε1| − Re(ε0 + ε1)]− |ε0 + ε1|2 . (6)

In absence of absorption (Im(ε1) = 0), Eq. (6) indicates
that the persistent “far-field” mode appears for frequen-
cies fulfilling the condition Re(ε1) < −ε0. In presence
of absorption (Im(ε1) > 0), this mode appears for fre-
quencies inside and outside the corresponding frequency
interval obtained in absence of absorption.
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FIG. 2: Spectra of the (a) dispersion relation and (b)
in-plane propagation length of HGMs propagating along
a 1 cm-surrounded by SiO2, in comparison with the
corresponding ones (black lines) obtained for a single
interface (d→∞). Calculations were done for 5
representative branches of the first 200 ones of the
symmetric mode.

The HGM propagation parameters and thermal con-
ductance along a vacuum gap (ε0 = 1) in between two
SiO2 materials are now numerically analyzed in compar-
ison with their corresponding counterparts obtained for
an infinite gap distance (d→∞). Calculations are done
with the experimental data of the complex and spectral
SiO2 permittivity reported in the literature [5] and plot-
ted in the SM [29]. The dispersion relation βR = Re(β)
and in-plane propagation length Λ of HGMs propagating
along a 1-cm-thick vacuum cavity are respectively shown
in Figs. 3(a) and 3(b), for 5 representative branches of
the first 200 ones of the symmetric mode (Eq. (3a)).
Note that βR increases with frequency, such that its first
branch (n = 1) is pretty much superposed with the light
line k0 = ω/c. Higher-order branches also exhibit this
photon-like nature at high enough frequency but reduce
the value and span of the wavevector at low frequency.
Furthermore, the existence of hundreds of branches with
βR values generally higher than those of the SI, for a
relevant range of frequencies (see Fig. 4), indicates that
the cavity is a better polariton thermal conductor than
a SI, as established by Eq. (1). This is confirmed by
Fig. 2(b), which shows that the propagation length of
HGMs propagating along the cavity is generally greater

than that along a SI (black line) and its maxima show up
at frequencies (14.8 and 38.9 THz) where the SI propaga-
tion length exhibits its minima. This extreme values are
induced by the dips of the real part of the permittivity
of SiO2, as shown in Fig. S3 of the SM [29]. More im-
portantly, as Λ is generally greater than the considered
cavity length l = 1 mm, HGMs can travel along the whole
cavity, which yields a transmission probability τ ≈ 1, as
determined by Eq. (2). In contrast to the SI, the cavity
thus allows to optimize and multiply (several branches)
the two parameters βR and τ enhancing the HGM heat
transport along its surfaces.
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FIG. 3: Spectra of the cross-plane (a) propagation
lengths and (b) wavelength of HGMs propagating along
a 1-cm-thick gap surrounded by SiO2, in comparison
with the corresponding ones (black lines) found for an
infinitely thick cavity (d→∞).

Figure 3(a) shows the frequency dependence of the

cross-plane propagation length δm = [2Re(pm)]
−1

inside
(m = 0) and outside (m = 1) the cavity, for 5 represen-
tative branches of the first 200 of the symmetric mode.
δm drives the exponential decay of the Poynting vector in
the cross-plane direction, as established by Eqs. (8) and
(9) of the SM. Note that δ0 reduces as the branch order
increases, while δ1 remains invariant. Since δ0 is gener-
ally greater than the considered cavity distance d = 1
cm, in particular for the first branch (n = 1), the HGMs
propagating alone the two cavity interfaces are strongly
coupled. This coupling indicates that the HGM thermal
conductance in Eq. (1) represents the contribution of all
HGM modes propagating not only along the interfaces,
but also inside the cavity. According to Fig. 2(b), this
coupling allows HGMs to propagate in-plane distances
much longer than those in absence of it (SI case), with a

intracavity cross-plane wavelength λ0⊥ = 2π [Im(p0)]
−1

independent of frequency, as shown in Fig. 3(b). Shorter
wavelengths are obtained for higher-order branches, such
that d = nλ0⊥, for n = 1, 2, 3, .... This latter condi-
tion maximizes the HGM Poynting vector along the cav-
ity surfaces x = ±d/2, as demonstrated in the SM[29],
and is analogous to the standing waves pattern of a gui-
tar string. This maximization of the electromagnetic en-
ergy density of HGMs is directly correlated to the one of
their thermal conductance determined by Eq. (1), since
they exhibit relatively long in-plane propagation lengths
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(transmission τ ≈ 1) without a significant reduction of
their in-plane wavevector (see Fig. 2). Standing modes
of HGMs are thus expected to optimize their heat trans-
port along the cavity. These cavity modes obtained for a
cavity distance d = 1 cm are also present for other cavity
distances, but not for all frequencies and branches, which
indicates that the maximum HGM thermal conductance
could be obtained for d = 1 cm, as confirmed below.
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FIG. 4: Spectrum of the HGM thermal conductance for
a 1-cm-thick gap surrounded by SiO2, in comparison
with the corresponding one (black line) got for a thick
gap (d→∞). Calculations were done for T = 500 K.

The contribution of 5 representative branches of the
symmetric mode to the spectrum Gω/a of the HGM ther-
mal conductance per unit width (G =

∫
Gωdω in Eq.

(1)) is shown in Fig. 4. The maxima of Gω at 27.7 THz
indicate that the major contribution to the HGM ther-
mal conductance arises from the vicinity of this frequency
that maximize both βR and Λ, in presence of the high-
frequency attenuation of the Bose-Einstein distribution
function f . Note that the contribution of the branches
predicted for a gap distance d = 1 cm, are much higher
than the corresponding one obtained for an infinitely
thick cavity (d → ∞) characterized by two (uncoupled)
single interfaces. The 1-cm-thick cavity is therefore able
to support the transport of more HGM thermal energy
than this latter one, and actually more than a cavity of
any other thickness, as shown in Fig. 5(a). For the sake
of accuracy, calculations for the 1-cm-thick cavity were
done for the first 800 branches with a significant contribu-
tion (G/a > 0.1 µWm−1K−1) for each mode (even and
odd). Other cavity thicknesses involve a smaller num-
ber of branches and not all of them are cavity modes
(d = nλ0⊥) with a significant contribution, which hence
yield a lower HGM thermal conductance. Note that the
contribution of the even mode is generally higher than
that of the odd one, such that their odd/even ratio ρ
(green line) increases with the gap distance until reach-
ing the unity for an infinitely thick gap. For nanogaps, on
the other hand, ρ goes to zero due to the vanishing con-
tribution of the odd mode, as is the case of nanofilms as
well [5]. By contrast, the contributions of both the even

and odd modes reach their maxima for a 1-cm-thick cav-
ity with ρ = 0.85. The maximum of the total (even+odd)
thermal conductance (G/a = 103 mWm−1K−1) is more
than 3 orders of magnitude higher than the correspond-
ing one (G/a = 0.035 mWm−1K−1) obtained for a thick
cavity (d → ∞) at 500 K. Higher or lower temperatures
respectively yield larger or smaller HGM thermal conduc-
tances, as shown in Fig. 5(b). For the three considered
temperatures, the maxima of G/a appears for a gap dis-
tance about d = 1 cm and their values are pretty much
the same than the corresponding ones that could be ob-
tained by pure radiation, if the cavity surfaces z = 0; l
would be excited by a temperature difference δT , as de-
tailed in the SM [29]. These comparable values indicate
that HGMs can be as good as thermal photons to trans-
port heat along a cavity and therefore they could be used
to amplify heat currents along macroscale gaps. The siz-
able gap distance (d = 1 cm) along with the relatively
high maxima of the HGM thermal conductance are ex-
pected to facilitate its observation and application.
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FIG. 5: HGM thermal conductance per unit width of a
vacuum gap, as a function of its distance. (a)
Contribution of the even and odd modes at 500 K and
(b) the total values for three representative
temperatures. The green line in (a) stands for the ratio
between the odd and even mode contributions, while
the dashed lines in (b) represent the predictions of
Planck’s theory [31], as detailed in the SM [29].
Calculations were done by summing up the
contributions of the first 800 branches of each of the
even and odd modes, for a = l = 1 mm and δT = 10 K.

Even though the resonant polariton thermal transport
reported in this Letter was obtained for a 1-cm-thick cav-
ity surrounded with parallel plates and this parallelism
is not difficult to establish for a macroscale cavity, we
anticipate that slight deviations from this configuration
could lead to other effects. For instance, the lack of align-
ment between the plates could give rise to focusing or
defocusing of HGMs, as reported for conical and wedge
structures [32]. Furthermore, the replacement of the flat
cavity with a cylindrical one could be used to tailor the
resonant energy transport of HGMs.

In summary, the resonant behavior of the in-plane
thermal conductance of a vacuum gap supporting the
propagation of hybridized guided modes has been studied
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as a function of the gap distance. For a 1-cm-thick gap
and temperature of 500 K, a maximum thermal conduc-
tance per unit width of 103 mWm−1K−1 has been found,
which is more than 6 (3) orders of magnitude higher than
the corresponding one found in the near-field (far-field)
regime. This resonance is generated by the thermal ex-
citation of hundreds of cavity modes that maximize the
energy density and coupling of polaritons propagating
along the gap interfaces. Furthermore, it has been shown
that hybridized guided modes are powerful energy carri-
ers able to transport heat along the cavity as much as
thermal photons and therefore they could be useful to
enhance or evacuate heat currents along macroscale gaps.
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