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Integrating conventional superconductors with common III-V semiconductors provides a versatile
platform to implement tunable Josephson junctions (JJs) and their applications. We propose that
with gate-controlled time-dependent spin-orbit coupling, it is possible to strongly modify the current-
phase relations and Josephson energy and provide a mechanism to drive the JJ dynamics, even in
the absence of any bias current. We show that the transition between stable phases is realized
with a simple linear change in the strength of the spin-orbit coupling, while the transition rate can
exceed the gate-induced electric field GHz changes by an order of magnitude. The resulting interplay
between the constant effective magnetic field and changing spin-orbit coupling has direct implications
for superconducting spintronics, controlling Majorana bound states, and emerging qubits. We argue
that topological superconductivity, sought for fault-tolerant quantum computing, offers simpler
applications in superconducting electronics and spintronics.

In the push to implement beyond-CMOS applica-
tions, Josephson junctions (JJs) have found their broad
use due to their high-speed switching, low-power dis-
sipation, and intrinsic nonlinearities[1, 2]. In addi-
tion to the well-established role of JJs as the key el-
ements for superconducting electronics and supercon-
ducting qubits[1–6], there is a growing interest to tai-
lor their spin-dependent properties to enable dissipation-
less spin currents, cryogenic memory[7–14], and fault-
tolerant quantum computing[15–22]. The role of spin-
orbit coupling (SOC) has been extensively studied in
the normal-state properties and recognized for its im-
portance in spintronics[23–25]. However, the supercon-
ducting analogs of the SOC-related effects remain to
be understood. They might even be important when
their normal-state counterparts are negligibly small[26–
32]. Motivated by the recent progress in gate-controlled
SOC in planar JJs based on a two-dimensional electron
gas (2DEG)[33–35], we reveal how time-dependent SOC
tunes many of their key properties and offers an unex-
plored mechanism to drive JJs.

A common description of a JJ circuit, is given by a
Josephson element, resistor, and capacitor connected in
parallel, using the resistively and capacitively shunted
junction model (RSCJ)[1]. The bias current through the
junction, i, is the sum of the supercurrent and the quasi-
particle current flowing in the resistor and capacitor. The
supercurrent is usually assumed as I(ϕ) = Ic sin(ϕ+ϕ0),
where Ic is the maximum supercurrent, ϕ the phase dif-
ference between the superconducting regions, and the
anomalous phase, ϕ0 6= 0, π, arises from the broken time-
reversal and inversion symmetries[36–40].

For a JJ depicted in Fig. 1(a), the interplay between
SOC and the effective Zeeman field h, yields a more
complex current-phase relation (CPR), than I(ϕ) given
above, such that for a generalized RSCJ model

d2ϕ/dτ2 + (dϕ/dτ)/
√
βc + I(ϕ, µ,h, α)/Ic = i/Ic, (1)

where τ = ωpt is a dimensionless time, expressed using

the JJ plasma frequency, ωp =
√

2πIc/Φ0C, Φ0 = h/2e is
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FIG. 1. (a) Schematic of the Josephson Junction (JJ). Two s-
wave superconductors (S), are separated by the middle region
which hosts the Rashba spin-orbit coupling (SOC), with de-
picted k-space spin-orbit fields, and an effective Zeeman field,
h. (b) A mechanical pendulum model of the JJ. The displace-
ment angle ϕ is analogous to the superconducting phase dif-
ference, g is the gravitational acceleration for vanishing SOC
and h. The pendulum is driven by changing effective g′, an
interplay between h and time-dependent SOC. This yields a
tunable current-phase relation and an anomalous phase, ϕ0,
equivalent to the displaced pendulum’s equilibrium.

the magnetic flux quantum, and C the capacitance. The
damping of this nonlinear oscillator is characterized by
the Stewart-McCumber parameter, βc = 2πIcCR

2/Φ0,
where R is the resistance[41, 42] and Q =

√
βc is the

quality factor. The generalized CPR can be modified by
the chemical potential µ, and h, arising from the applied
magnetic field or magnetic proximity effect[43]. Since hz
does not induce ϕ0[44, 45] and only produces CPR rever-
sals, we focus on hz = 0 [Fig. 1(a)]. The CPR can also be
tuned by the Rashba SOC, illustrated in Fig. 1(a), which
is parametrized by its strength α, in the Hamiltonian,
Hso = α(σ × p) · ẑ. Here σ is the Pauli matrix vector,
p the in-plane momentum, for 2DEG with the inversion
symmetry broken along the z-direction[46].

While quasistatic, gate-tunable, changes in SOC and
ϕ0 have been demonstrated in 2DEG-based JJs[33, 34],
the implications of dynamically-tuned SOC on the CPR
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remain unexplored. For a simple CPR ∝ sinϕ, Eq. (1)
has a mechanical analog with a driven and damped pen-
dulum, in which ϕ becomes the displacement angle[41,
42]. A JJ driven by i is equivalent to the pendulum dis-
placed by an external torque from its stable equilibrium,
determined by the gravitational acceleration g, while ωp
determines the oscillation frequency around a stable equi-
librium point[1].

Instead of using i, Fig. 1(b) suggests an entirely differ-
ent way to drive the pendulum: By changing the orienta-
tion of the effective g′ and the new equilibrium, resulting
from the interplay of the static h and time-dependent α.
With JJ advances and gate changes exceeding the GHz
range[3], there is a tantalizing prospect for dynamically-
controlled CPR by time-dependent SOC. Unlike assum-
ing a specific relation, I(ϕ) = Ic sin(ϕ+ϕ0), the CPR can
have a more general and anharmonic form which should
be obtained microscopically. To this end, a single-particle
Hamiltonian, H(p) = p2/2m∗+σ ·h+Hso(p), where m∗

is the effective mass, can be used to solve a BCS model
of superconductivity, given by the effective Hamiltonian

H(p) =

(
H(p)− µ1̂ ∆̂

∆̂† −H†(−p) + µ1̂

)
, (2)

where ∆̂ is a 2×2 superconducting gap in spin space[44].
After diagonalizing the resulting Bogoliubov-de

Gennes equations, Hψ̂ = Eψ̂, where ψ̂ is the four-
component wavefunction for quasiparticle states with en-
ergy E, we match the wavefunctions and generalized ve-
locities at interfaces (x = 0, d), shown in Fig. 1(a). This
allows us to obtain the ground-state JJ energy EGS, to-
gether with the corresponding CPR using the charge con-
servation and the quantum definition of current[44]. The
CPR is related to the JJ energy, I(ϕ) ∝ ∂EGS/∂ϕ[47].

Our numerical findings are illustrated for the JJ de-
picted in Fig. 1(a). The normal region (N) has a length
L = 0.3ξS and a width W = 10L, such that lengths are
normalized by ξS = ~/

√
2m∗∆, where ∆ is the super-

conducting gap in S. The energies are normalized by ∆
and the supercurrent I0 = 2|e∆|/~, where e is the elec-
tron charge, and |e∆|/~ is the maximum supercurrent in
a single-channel short S/N/S JJ[47].

To explore the tunability of CPRs and JJ energies with
SOC, we focus on the parameters for high-quality epi-
taxial InAs/Al-based JJs, ∆Al = 0.2 meV, g-factor 10
for InAs, while its m∗ is 0.03 the electron mass[33, 34].
In these JJs the gate-control of Rashba SOC and thus
its magnitude in the range α ∈ (0, 180 meVÅ) has been
demonstrated[33, 34]. In Fig. 2, at hx = (2/3)∆ ≈
450 mT, we assume gate-control that primarily changes
α, not µ. Experimentally, this could be realized with
dual-gate schemes[48] to independently tune the carrier
density and the electric field, E. However, for a contin-
uous change of α, we are unaware that even in a static
case the calculated CPR and EGS were given.

In Fig. 2(a), for µ = ∆, the anharmonic CPR
changes significantly with α. There is a competition be-
tween sinϕ, and the next harmonic, sin 2ϕ, resulting in

FIG. 2. (a) The evolution of (a) JJ CPR, normalized by
2|e∆|/~, and (b) the JJ energy, normalized by ∆, as a function
of the phase ϕ and the Rashba SOC, α, for chemical potential
µ = ∆ and effective in-plane magnetic field, hx = (2/3)∆.
The gray curve in (b) denotes the JJ transition from ϕ = 0
to ≈ π/2 for a linear increase in α from 112 to 152 meVÅ.

I(−ϕ) = −I(ϕ). However, there is no spontaneous cur-
rent, I(ϕ = 0) ≡ 0, only Ic reversal with α. Such a
continuous and symmetric 0-π transition is well studied
without SOC in S/ferromagnet/S JJs due to the changes
in the effective magnetization or a thickness of the mag-
netic region[49–57]. The corresponding JJ energy land-
scape in Fig. 2(b), shifted such that its overall minimum
value is 0, corroborates this SOC evolution. By increas-
ing α from 0 to 200 meVÅ, the minimum in EGS changes
from ϕ = 0 to π, and then goes back to 0. A gray trace
indicates that by increasing α in a smaller range, the JJ
minimum can transition from ϕ = 0 to ≈ π/2.

While we use an exact (complete) CPR with its an-
harmonicities, their prior descriptions have often re-
lied on an approximate simple harmonic expansion
(sinnϕ, cosnϕ)[58, 59]. However, this approach is not
very efficient with SOC. Instead, it is better to use a
compact form where only a small number of terms gives
a more accurate description[44]

I(ϕ, µ,h, α) ≈
N∑
n=1

∑
σ=±

Iσn sin(nϕ+ ϕσ0n)√
1− τσn sin2(nϕ/2 + ϕσ0n/2)

,

(3)
where τσn is the JJ transparency for spin channel σ and
the phase shifts ϕ0n are additional fitting parameters.
This description includes the anomalous Josephson effect
I(ϕ = 0) 6= 0, revisited in JJ diode effects[60–64]. For a
simple picture of a single anomalous phase[44, 45]

ϕ0 ∝ hyα3, (4)

therefore vanishing in Fig. 2, where h = hxx̂.
A quasistatic gate-controlled SOC suggests that more

important opportunities are available using fast gate
changes, compatible with the advances in JJ circuits[3].
However, the implications of GHz changes in SOC and a
different mechanism to drive JJ, as sketched in Fig. 1(b),
remain unexplored. To obtain the resulting JJ dynamics
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FIG. 3. (a) Time-dependent Rashba SOC, α, controlled by
the E-field, changing at 0.2 GHz and 1 GHz, used also in (b).
(b) Time-dependent phase for different plasma frequencies,
ωp, at damping, βc = 1, and for different βc at ωp = 1000 GHz
(inset). (c) A magnified region for ϕ = 0 to ≈ π/2 transition
at 0.2 GHz (1 GHz) dotted (solid) changes in α from (a).

we use Eq. (1) with i ≡ 0, where the driving arises from
α = α(t), viewed as a time-dependent effective g′.

Some guidance what to expect for JJ dynamics can be
given from the InAs/Al samples, where, in addition to
the previous range of α, Ic ∼ 4µA, R ∼ 100 Ω, and C ∼
15 fF, leading to ωp ∼ 900 GHz and the damping βc ∼ 1,
which is also suitable for the rapid single flux quantum
(RSFQ) applications[1, 4]. We keep hx = (2/3)∆.

The JJ dynamics is driven by a simple linear variation
of α(t) from the gate-controlled E, as shown in Fig. 3(a).
We first consider in Fig. 3(b) the reduction of ωp, from
1000 GHz (similar to InAs/Al JJs[33]) to 10 GHz (much
faster than the α(t)-variation), at βc = 1. The results
reveal a strong delay in the onset in the ϕ = 0 to ≈ π/2
transition, which was indicated from the static picture
in Fig. 2(b). Simultaneously, the time for the ϕ = 0 to
≈ π/2 transition is increased by an order of magnitude.

We next examine in the Fig. 3(b) inset the influence of
reducing βc from the underdamped and critical (βc = 10
and 1) to the overdamped (βc = 0.1) regime, at ωp =
1000 GHz. In addition to the phase oscillation damping,
consistent with the pendulum model in Fig. 1(b), we also
see a delay in the ϕ = 0 to ≈ π/2 transition and its
growing, the trends noted from reducing ωp.

Finally, in Fig. 3(c), the ϕ = 0 to ≈ π/2 transition oc-
curs first for the slower α(t)-variation, but takes approx-
imately the same time as the faster GHz α(t)-variation.
This is encouraging for various applications, since (i) E-
control of SOC allows tailoring the onset of the transi-
tion between different states, (ii) a high-frequency switch-
ing between different equilibrium states and driving JJs
is not limited by the characteristic times for the E-
variation. α(t)-changes at 0.2 GHz give an order-of-

FIG. 4. (a) The JJ energy evolution with ϕ and α at µ =
10∆, hx = (2/3)∆. The gray (brown) curve shows the energy
variation for βc = 10 (βc = 1) starting at ϕ = π and α = 0,
for changing α, as given in (b). (c) The corresponding time-
dependent ϕ confirms the decay to different final phase states.

magnitude faster transitions between stable phases.

While the E-control of α and the evolution of EGS

minima in Fig. 2 have largely determined the JJ dynam-
ics in Fig. 3, it helps to identify other opportunities for
SOC-driven JJs. In Fig. 4 we consider ωp = 10 GHz and
a triangular-like α(t) at µ = 10∆. For an underdamped
regime, βc = 10, the pendulum analogy from Fig. 1(b)
explains the phase evolution of the gray trajectory from
Fig. 4(a), reproduced also in Fig. 4(c). By increasing α to
the maximum at 192 meVÅ, the pendulum is at an unsta-
ble position and will swing towards the ϕ = 0 minimum
(equivalently shown as ϕ = 2π), implying that g′ points
vertically down. With small damping (gray trajectory),
the pendulum passes the equilibrium point, even when,
with α < 80 meVÅ, the equilibrium and the overall min-
imum shift to ϕ = π, with g′ vertically up. Eventually,
with damping it reaches the ϕ = π minimum.

For critical damping, with the same starting point [see
also Fig. 4(c)], the brown trajectory reveals a very dif-
ferent evolution with α. Instead at the overall EGS min-
imum ϕ = π, for α = 0, the phase is locked at the local
minimum ϕ = 0. With a stronger damping, the ϕ oscil-
lations are insufficient to overcome the SOC-dependent
barrier which, for α = 0, separates the local minimum at
ϕ = π from the global one at ϕ = 2π. The tunability
of the SOC-controlled energy landscape alone does not
fully determine generalized CPRs. The influence of the
JJ circuit parameters can enable different ϕ-transitions.

In our previous discussion, the tunability of CPRs and
EGS did not exploit the anomalous Josephson effect[36–
39, 65], which can be understood in analogy with g′

pointing sideways and therefore, breaking the symmetry
from Figs. 2-4 and I(−ϕ) 6= −I(ϕ). This situation can
be simply realized by rotating h along the y-axis, while
we retain all the other parameters from Fig. 2(a). The
resulting CPR in Fig. 5(a) confirms that the JJ super-
current is driven not only by ϕ, but also by ϕ0, which is
responsible for the stated symmetry breaking and, equiv-
alently, the tilted g′. As for SOC cubic in k[44], there
is a strong anharmonic behavior and the expected diode
effect where the sign and magnitude of the supercurrent
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FIG. 5. The evolution of (a) JJ CPR and (b) JJ energy
with ϕ and α, for µ = ∆ and hy = (2/3)∆, rotated by π/2
from Fig. 2. An anharmonic CPR breaks the I(−ϕ) = −I(ϕ)
symmetry in (a) and the corresponding anomalous phase, ϕ0,
increases with α in (b). Inset (a): ϕ(t) for ωp = 1000 GHz,
βc = 1 with a linearly increasing α from 0 to 160 meVÅ over
1 ns, then held at maximum,with its JJ energy path in (b).

depends on the polarity of the applied bias [34].

The implications of the combined broken time-reversal
and inversion symmetries, responsible for the anomalous
Josephson effect, are further illustrated in Fig. 5(b). It
shows the SOC-tunable EGS, single-valued for the gray
path, and leading to the time-dependent diode effect.
This behavior is qualitatively different from the doubly-
degenerate ϕ0 state in Fig. 2(b), which results from the
second harmonic generation in the CPR.

Even with a moderate hy ≈ 450 mT for InAs-based
JJs, with increasing α(t) we see an evolution of the sin-
gle global minimum and thus the changes in the corre-
sponding values of ϕ0 from ϕ = 0 to ≈ 3π/4, in good
agreement with the measured values[33]. This suggests
that at a larger h, for example, in In(As,Sb) with a much
larger g-factor[35], it may be possible to fully control the
tilt angle of g′ and simply swap between 0- and π-states
in JJs, further controlling how the JJ dynamics is driven.

The same geometry in Al/InAs JJs at a larger hy has
been experimentally shown to also support topological
superconductivity[34]. This is important for several rea-
sons, beyond hosting Majorana bound states[16]. Re-
sulting topological superconductivity is associated with
equal-spin p-wave superconductivity which could offer
gate-controlled dissipationless spin currents, a key ele-
ment for superconducting spintronics[7, 8]. Such spin-

triplet supercurrents could be extended over a long
range[66] and overcome the usual competition between
superconductivity and ferromagnetism. A transition to
topological superconductivity is accompanied by an extra
phase jump, ≈ π[67, 68]. Such a π-jump in Al/InAs JJs
was observed at hy ≈ 600 mT[34], an effective field about
25 times smaller, than expected for the 0− π transition

B0−π = (π/2)~vF/(gµBL), (5)

for a spin-polarized system in the absence of SOC[69],
where vF is the Fermi velocity, µB the Bohr magneton,
and L the JJ length. Therefore, SOC plays a crucial role
in understanding various transitions and that, at larger
hy, the range of an effective ϕ0 could exceed 2π[34] and
support 2π pendulum rotation from Fig. 1(b), used in
RSFQ logic and memory[1, 4]. Therefore, in addition
to the prospect of fault-tolerant quantum computing,
the search for topological superconductivity also offers a
promising platform for superconducting electronics and
spintronics.

Without previous studies on SOC-driven JJ dynamics
we have focused on a simple model and not considered
time-dependent magnetic fields[70] or noise[71]. A more
general description could simultaneously include the role
of changing µ and other SOC forms, linear and cubic
in k, shown to give different routes to topological su-
perconductivity and control of Majorana states[44, 72–
74]. However, we expect that our focus only on lin-
earized Rashba SOC, easily tunable by E-field[33, 34],
already clarifies its important role in JJ dynamics.
With changing SOC, there are further opportunities for
gate-controlled Majorana states and probing their non-
Abelian statistics[75, 76] or an added tunability in the im-
plementation of superconducting qubits[3, 77, 78]. This
would extend the previously studied qubit tunability by
voltage or flux[3, 79] as well as the use of π-phase states
for an improved qubit operation[80, 81].
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