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Corner states (CSs) in higher-order topological insulators (HOTIs) have recently been of great
interest in both crystals and quasicrystals. In contrast to electronic systems, HOTIs have not been
found in photonic quasicrystals (PQCs). Here, we systemically study the higher-order topology
in the two-dimensional Thue-Morse photonic quasicrystals (TM-PQCs). Not only the topological
phase transition and the non-trivial CSs with fractional charge induced by multipole moments, but
also another type of CSs are found due to the complex structure of TM-PQCs near corners. The
different origins of these CSs are also analyzed based on the tight-binding model. Our work opens
the door to explore richer HOT physics beyond photonic crystals and the robustness of CSs in PQC
shows the potential for applications.

I. INTRODUCTION

In the research of topological systems[1–11], higher-
order topology (HOT) has become a hot-spot since it
could lead to unique topological states beyond tradi-
tional bulk-boundary correspondence [12–18]. Specifi-
cally, a kind of two dimensional (2D) higher-order topo-
logical insulators (HOTIs), i.e., quadrupole insulators
(QIs) [19–21], whose topological invariant, quadrupole
moments qxy, is quantized to 0 or 0.5 if the system
presents fourfold rotation symmetry C4 or mirror sym-
metries Mx := x→ −x and My := y → −y, and non-zero
qxy can give rise to the zero dimensional (0D) non-trivial
corner states (CSs), namely type-I CSs. Besides, addi-
tional type-II CSs that cause by long-range interactions
also have been found [22–24].

Very recently, the concept of HOTIs has extended from
periodic crystals to quasicrystals (QCs) and aperiodic
crystals [25–32], which also show non-trivial zero-energy
CSs in the 2D quantum system. However, in contrast to
the study of HOTIs in electronic systems based on the
tight-binding model (TBM), the realizations and physi-
cal properties of HOTIs in photonic quasicrystals (PQCs)
have not been studied, which have abundant applications
in reality. Even more, the research for HOT CSs of the
electronic systems concentrates on type-I CSs, so we still
cannot answer such questions, such as “in QCs, can we
realize richer CSs, or even find different origins of CSs
beyond the two types of CSs in crystals?”.

In this work, we systemically investigate the HOT
properties of 2D Thue-Morse (TM) PQCs [33, 34]. We
first construct a TM-PQCs with two kinds of dielectric

∗ jiangxunya@fudan.edu.cn

rods, then a TBM bases on the TM-PQC is built. By
tuning difference parameters of TBM, the HOT phase
transition with non-zero qxy is found. Moreover, the dif-
ferent origins of CSs in PQCs are revealed by using weak-
coupling limit [18, 22, 35]. From the different origins, we
demonstrate that, besides the type-I CSs with fractional
charges and the type-II CSs from long-range interactions,
there is another type of CSs from the complex structure
of TM-PQCs which is independent of long-range interac-
tions and beyond the periodic systems. Finally, based on
the strict numerical simulation, we show that all these
CSs can exist in real TM-PQCs and CSs from TM-PQCs
could be more robust compared with those in photonic
crystals (PhCs). This work is valuable in expanding the
understanding of HOT phases beyond periodic photonic
systems and observing CSs in PQCs with special prop-
erties which can be further utilized to design the aimed
devices with topological protection.

II. MODEL AND TOPOLOGICAL PHASE
TRANSITION

A 2D TM sequence SN of order N can be deduced by:

SN =

[
SN−1 S̃N−1

S̃N−1 SN−1

]
and S1 =

[
A B
B A

]
, (1)

where S̃N−1 is obtained by exchanging A and B in SN−1.
The photonic model of 2D square TM sequence can
be generated by placing different dielectric rods in the
square lattice. In particular, TM photonic structure of
basic sequences S1 and S̃1 is shown in Fig. 1(a), and we
mark them with basic square cells. The four corners of a
square cell contain four dielectric rods in the air with ra-
dius r = 0.12a, where a is the side-length of square cell.
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FIG. 1. (a) The S4 TM-PQCs with rods-A and rods-B, the PEC boundary is marked with black dash lines; (b) The TBM
bases on the 2D TM-PQC; (c) The limiting case of TBM with t1 = 0.

The dielectric rods are divided into two types: rods-A
with relative permittivities εA and relative permeability
µA, and rods-B with εB and µB . Then, we can use Eq.
(1) and square cell S1 to deduce higher-order TM-PQC,
e.g., Fig. 1(a) shows a PQC of S4 TM sequence. We can
find a TM-PQC of even order has C4 and Mx(y) symme-
tries, whereas TM-PQC of odd order does not.

In recent works [16, 18, 22], it’s found that TBM is a
good platform to reveal the origins of topological states
in the photonic systems for the lower bands. Following
this path, we also construct a TBM base on TM-PQC
which is shown in Fig. 1(b). The on-site energy of rods-
A(B) is UA(B). Considering the frequency difference of
Mie resonances of two kinds of rods, the nearest-neighbor
coupling between rod-A and rod-B t1 is supposed to be
a small value generally. The inter-cell coupling between
two rods-A(or B) is t2(3), and the next-nearest-neighbor
(NNN) coupling between two rods-A (or B) of inter-cell
on the diagonal direction t4(5) which can open the gap
at energy E = 0. In Fig. 1(c), for the convenience of
our further study, TBM of the limiting case with t1 = 0
is shown, in which the entire structure splits into third
types of isolated clusters: two tetramers, four dimers,
and two singles. The dimers in diagonal directions and
in horizontal/vertical directions are marked with dimers-
I and dimers-II, respectively. Such a split model is helpful
for us to analyze the origins of different topological states
in the next section. Note that the coupling between the
same type of rods inside one cell is neglected since the
large distance between them and we emphasize this by a
red cross in the left-up corner in Fig. 1(c).

To focus on the process of topological phase transi-
tion, we introduce a variable t0 and set t1 = 1 − t0,
t2 = t3 = 1 + t0, t4 = −t5 = 3.5t2, and UA = UB = 0.
In Fig. 2(a), the band structure of open boundary con-
dition versus t0 ∈ [−1, 1] are drawn. By using real space
method [20, 36–40], we calculate the quadrupole moment
qxy of the gap at E = 0 versus different t0 in Fig. 2(b).
We can see qxy jumps from 0 to 0.5 for t0 from −1 to
1, which means a topological phase transition, and the

main jumping happens near t0 = 0, i.e., t1 = t2 = t3.
Specifically, we choose t0 = 0.6 and its band structure
is shown in Fig. 2(c), where type-I CSs at zero energy
that are protected by non-zero quadrupole moment are
marked with red dots. The topological non-triviality of
CSs is also confirmed by the index requirement from the
filling anomaly theory [20] that the indices of CSs in our
model are 127 − 130. Fig. 2(e)-D shows a typical dis-
tribution of type-I CS. What’s more, we calculate the
sum of the lowest half states to show direct distributions
of fractional corner charges [40], which can be proved to
be equal to quadrupole moment [19]. In Fig. 2(f), we
set a large t0 = 0.999 to obtain more localized CSs, and
the distributions of corner charges that are calculated
by the local density of states (LDOS) are shown. It’s
found that the fractional corner charge is quantized to
0.5 which is because of C4 and Mx(y) symmetries, and
the edge charge keeps zero because of C2 symmetry [20].
It should be noted that the labels of x(a) and y(a) that
go from 1 to 8 only, instead of 1 to 16 (See Supplemental
Material S1).

III. THE ORIGINS OF CSS IN TM-QC

Besides type-I CSs that are protected by quadrupole
moment, some other localized states in TM-QC also can
be observed. For example, we choose four typical local-
ized states that are marked in Fig. 2(c) as A-D, and
the four states are drawn in Fig. 2(e). In addition to
non-trivial type-I CS has been mentioned in Fig. 2(e)-D,
there are two CSs in Fig. 2(e)-A and (e)-C and one edge
state (ES) in Fig. 2(e)-B. The two CSs in Fig. 2(e)-A
and (e)-C are not very localized as type-I CSs and are
more likely to be recognized as the type-II CSs [18, 22].
However, in our model the NNN coupling between the
same rods in one cell is neglected which is essential for
the existence of type-II CSs, so the physical origin of CSs
in Fig. 2(e)-A and (e)-C should be reconsidered carefully.

First, we need to go back to Fig. 1(c) in the limiting
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FIG. 2. (a) The band structure of S4 TM-QC with open boundary condition versus t0 ∈ [−1, 1], other parameters are set as
t1 = 1− t0, t2 = t3 = 1 + t0, t4 = −t5 = 3.5t1, and UA = UB = 0; (b) The quadrupole moment qxy versus different t0; (c) The
band structure of S4 TM-QC with t0 = 0.6, four typical localized states are marked with A-D; (d) The local enlarged (a) for
the topological non-trivial region; (e) Four localized states that marked in (c); (f) The distributions of LDOS with t0 = 0.999.

case t1 = 0 to reveal the different origins of such type
of CSs in 2(e)-A and (e)-C. According to Fig. 1(c), we
can obtain some basic clues of the state origin from the
local split structures. Second, we can analyze the origin
of states in Fig. 2 more carefully. Specifically, we zoom
in the area of the red rectangle in Fig. 2(a) and show
the area in Fig. 2(d), where t1 = 1 − t0 is a small value
compared with other coupling terms since t0 > 0.6. In
Fig. 2(d), we mark the states with different colors ac-
cording to their different cluster origins, e.g. the states
from tetramers/dimers-I, dimers-II, dimers-III, and sin-
gles are marked with black, blue, green, and red dots,
respectively. On the right side of Fig. 2(d) near ev-
ery band, in the limit t0 = 1 (t1 = 0), we also show
the symmetry property of the states for different clus-
ters. Next, we will introduce more details of these states
from different clusters, which could be solved theoreti-
cally. First, the tetramers support six eigenstates, two
singlets quadrupole modes with E = −t4(5) + 2t2(3), two
doublets of dipolar modes with E = t4(5), and two sin-
glets monopolar modes with E = −t4(5)−2t2(3). Second,
the dimers-I and dimers-II support eight dipolar modes:

symmetric modes with E = −t2,3,4,5 and antisymmetric
modes with E = t2,3,4,5. Third, the singles support two
eigenstates with E = 0 since UA = UB = 0.

If we introduce non-zero but small t1, we can find topo-
logical phenomena in our 2D-TM systems, like or unlike
2D crystals. For example, when we set t0 = 0.6, the ESs
shown in Fig. 2(e)-B and the type-I CSs shown in Fig.
2(e)-D could be observed, similar to the crystals. From
the field distribution and the energy, we find that the ESs
are from dimers-II structure and located at the system
edges. For the type-I CSs, we find they are from singles at
the corners of the system. So the origin of these ESs and
CSs are similar to crystals. However, since the structure
of 2D-TM systems are much more complex than 2D crys-
tals, some states could be observed in the gaps, like the
states shown in Fig. 2(e)-A and Fig. 2(e)-C which need
to be carefully investigated and are beyond 2D crystals.

For the state in Fig. 2(e)-A, we need go back to Fig.
1(c). From the field distribution of the state and the
structure on the corner in Fig. 1(c), we can see that the
state originated from the coupling of two dimers-II near
the corners by the corner single. We note that this type
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FIG. 3. Band structure of a S4 TM-PQC with εA = 10, εB = 16, and PEC boundary. The distance between PEC and PQC is
d = 0.25a. Eight typical states are marked with A-H, and the Ez field distributions of those states are also shown on the right,
where black (grey) circles are rods-A(B).

of CSs is different from the type-II CSs in crystals [18, 22]
since we suppose no NNN coupling in our model. For the
state in Fig. 2(e)-A whose energy is shown by the green
points in Fig. 2(d), its origin is quite counterintuitive
since when t0 = 1 its energy will converge to zero, the
energy of singles. As we have shown in Fig. 1(c), there
are two singles (e.g., A kind rod at position 4 and B kind
rod at position 5 at both edges) near the corner, which
is because of the complex structure of 2D-TM systems.
Since the coupling t1 = 1−t0 between two kinds of rods is
not zero now, these two singles can couple to each other
and form a kind of dimers which is named dimers-III.
From the field distribution in Fig. 2(e)-C, we can see
that this type of CSs is from the coupling between two
dimers-III near the corner. Hence, when t0 → 1 (t1 →
0), the energy of the CS converges to zero since these
coupled singles are almost decoupled from each other.
Obviously, the origin of those two types of CSs are from
the complex 2D-TM structure, and we mark them as CSs
from structures.

Photonic HOTIs.—In this section, we will study the
real photonic TM-systems to show that all those HOT
states can be realized in real PQCs by strict numerical
results from the software without any approximation, i.e.,
finite-element method (FEM) software COMSOL Multi-
physics. Furthermore, from the analyses with defects or
randomness, it’s found that the CSs in PQCs could be
more robust than the type-II CSs in PhCs. Here, we hope
to note that, according to the analysis based on TBM, the
coupling terms correspond to the couplings between the
rods, not the on-site energies correspond to the Mie reso-
nant frequencies of rods, which are the dominant reason
for the existence of HOTIs. Hence, in real PQCs, rods-A
and rods-B are set to be with different permittivities but
the same radius to ensure the relative strengths of cou-
plings between the rods are similar to coupling terms of
TBM, but with the side-effect of the different frequencies

of Mie resonances[41].
Now, we consider a 2D TM-PQC with εA = 10,

εB = 16, µA = µB = 1, N = 4, and the perfect elec-
trical conductor (PEC) boundary is used, where the dis-
tance between PEC and PQC is d = 0.25a. In Fig. 3,
the eigenstates of Ez polarization are shown, in which
bulk states, edge states, and corner states at dimers or
singles are marked with black, blue, green, and red dots,
respectively. We select eight typical states from low fre-
quency to high frequency which are marked with A-H,
and Ez field distributions of those states are also shown,
where black (grey) circles are rods-A(B). It’s easy to find
the ESs in Fig. 3-B, -D, and -H. Furthermore, there are
three types of CSs in the TM-PQC: non-trivial CS at
single rods is shown in Fig. 3-F, CSs at dimers-II are
shown in Fig. 3-A and -E, and CSs at dimers-III are
shown in Fig. 3-C and -G, and the counterparts of those
three types of CSs in TBM can be found in Fig. 2(e)-D,
-A, and -C, respectively. The symmetric features of CSs
at dimers are also the same as the results of TBM, i.e.,
CSs of lower frequencies are symmetric along the center
of dimers, while CSs of higher frequencies are antisym-
metric.

What’s more, we can calculate the topological invari-
ant of PQCs which from bulk states by using real space
method [40]. In particular, the dipole moments pni (where
n is the n-th gap and i is direction) for the PQC of the
first and second gap are p1x = p1y = 0.5 and p2x = p2y = 0,
respectively, and the quadrupole moments of the second
gap are near qxy = 0.5. Proving that the non-trivial
type-I CSs at the 1st gap are induced by dipole moments
[16], while at the 2nd gap are induced by quadrupole
moments [18, 20] (See Supplemental Material S2). Sur-
prisingly, the solution numbers of type-I CSs of PQCs
do not satisfy the filling anomaly theory for traditional
type-I CSs of PhCs. The violation maybe from the much
more complex photonic band-gap structure of TM-PQC
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and we will investigate it in further work.

It should be emphasized that CSs from structures are
independent of NNN coupling, so this types of CSs found
in this work could be more robust than type-II CSs in
PhCs, which is an important property for real applica-
tions. For example, in Supplemental Material S3, we use
a small defect to reduce the influence of NNN coupling,
e.g., change the radius of rods near the corner, and we
find the CSs in the TM-PQC still exist, but type-II CSs
in PhC disappear. Moreover, the presence of dislocations
of rods in TM-PQC is also considered to simulate the real
materials with imperfections, that is, we change the posi-
tions of the rods near the concerned corner of TM-PQC,
and all types of CSs that are localized at the concerned
corner are almost unchanged, so the robustness of the
CSs in the TM-PQCs is demonstrated

In addition to the results of S4 TM sequence, the re-
sults of S6 TM sequence are also shown in Supplemental
Material S5, where CSs are similar to those of S4 TM se-
quence, except that CSs from dimers are more localized
at the corners and easier to be observed

IV. CONCLUSION

In summary, we have demonstrated that the topolog-
ical nontrivial CSs from multipole moments, can be re-
alized in PQCs, whose structure is without translational
symmetry. What’s more, the types of CSs are found since
the complex structure of PQCs near the corners, so the
CSs from structures could be very universal in other QCs
[42], even in a QC without both rotation and mirror sym-
metries, such as Fibonacci PQCs [43] (See Supplemental
Material S7). Our results reveal rich topological physics
in PQCs. The CSs extend our understanding of HOT
phases and can be used to design devices since the all-
dielectric structure of PQCs. We also believe CSs widely
exist for other waves, e.g., in electronic and phononic
QCs, and the research on these topics could be attrac-
tive.
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