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Imaging is indispensable for nearly every field of science, engineering, technology, and medicine.
However, measurement noise and stochastic distortions pose fundamental limits to accessible spa-
tiotemporal information despite impressive tools such as SIM, STORM/PALM, and STED mi-
croscopy. How to combat this challenge ideally has been an open question for decades. Inspired by
a ‘virtual gain’ technique to compensate losses in metamaterials, ‘active convolved illumination’ has
been recently proposed to significantly improve the signal-to-noise ratio, hence data acquisition. In
this technique, the light pattern of the object is superimposed with a correlated auxiliary pattern,
the function of which is to reverse the adverse effect of losses, noise, and random distortion based
on their spectral characteristics. Despite enormous implications in statistics, any experimental evi-
dence verifying the theory of this novel technique has been lacking to date. We find experimentally
that the active convolved illumination does not only boost the resolution limit and image contrast,
but also the resistance to pixel saturation. The results confirm the previous theories and open up
new horizons in a wide range of disciplines from atmospheric sciences, seismology, biology, statistical
learning, finance, and information processing to quantum noise beyond the fundamental boundaries.

I. INTRODUCTION

Imaging is an indispensable tool in the toolbox of
nearly every field of science, engineering, technology, and
medicine. Unfortunately, encoding the desired informa-
tion into electromagnetic waves imposes a limit to the
performance of imaging systems at the outset – the de-
tection of the fields by the interaction of photons (the
light signal) and matter (the light detector) means that
the signal-to-noise ratio (SNR) for long exposures will al-
ways be limited physically by shot noise. A näıve analysis
would reveal that adding up more photons in the detector
would lead to higher SNR. This is true, however typically
(e.g., for incoherent light), the magnitude of the trans-
fer function for an imaging system with an unobstructed
pupil decreases with increasing spatial frequency [1]. It
follows that the spectral SNR then also decreases with in-
creasing spatial frequency, since the shot noise variance
is constant in the spatial frequency domain [2–4]. Con-
sequently, adding up more photons blindly does not lead
to much increase for the SNR of high spatial frequen-
cies. One also does not have the freedom to arbitrarily
increase the number of photons collected, since at some
point the detector will become saturated. Each specific
imaging modality will have its specific limitations. For
example, in fluorescence imaging only a certain exposure
can be obtained before photobleaching occurs and high
intensity becomes detrimental for live specimen.
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Subwavelength optical engineering through metama-
terials and metasurfaces offers unprecedented opportu-
nities in a wide range of applications such as superres-
olution imaging [5–9], photolithography [10, 11], wire-
less and optical communications [12, 13], multifunctional
and flat optics and photonics [14–16], metalenses [17], in-
telligent metaphotonics [18], light detection and ranging
[19], autonomous vehicles [20], and quantum information
[21, 22]. However, the photon losses hinder their further
viability [23–25]. Inspiration from research in loss com-
pensation for metamaterials and plasmonics employing
‘virtual gain’ [25–28] led us to propose a unique perspec-
tive on the noisy imaging problem [2, 27, 29–34]. The
fundamental resolution limit to superresolving lenses is
not determined by the diffraction limit, but rather by a
shot noise limit, i.e. where the shot noise overcomes the
transfer function in the spatial frequency domain [4, 35–
37]. How to tackle this problem ideally has been an open
question for decades [36–40]. The active convolved illumi-
nation (ACI) technique has recently been proposed the-
oretically as a ubiquitous noise and distortion mitigation
scheme to improve the image SNR by systematically ma-
nipulating the image spectrum depending on the underly-
ing stochastic behavior [2, 27, 31–34]. Popular techniques
to improve image resolution or SNR are structured illu-
mination microscopy (SIM) [3, 41–44], stimulated emis-
sion depletion (STED) microscopy [41, 45, 46], stochastic
optical reconstruction microscopy/photoactivated local-
ization microscopy (STORM/PALM) [41, 47, 48], and
computational methods [36–40, 49, 50] including ma-
chine learning [35, 51]. An interesting method for far-
field imaging with a constant ‘photon budget ’ (i.e., a con-
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stant number of photons in the object plane), based on a
split-pupil-optimization, has recently been put forward to
break the SNR limit imposed by Fermat’s principle [4].
However, ACI operates down at the physical layer and
enhances data acquisition, thus it is expected to benefit
both conventional and novel approaches.

The working principle of the ACI technique is illus-
trated in Fig. 1. As shown in Fig. 1(a), most imaging
systems suffer from various mechanisms of signal photon
loss such as impedance mismatch, absorption, scattering,
diffraction, and noise. This, in general, results in a low-
fidelity information transfer from the object plane to the
receiver plane. It was hypothesized that the ACI could
overcome the loss of information as depicted in Fig. 1(b)
[2, 27, 31, 32]. The light pattern which forms the object
(black line) is superimposed with an auxiliary pattern
(blue line) correlated with the object. Therefore, the
light pattern on the same object plane differs from the
object. The purpose of the auxiliary is to manipulate
the image spectrum to compensate the adversary pho-
tons, so that the object pattern is transferred through
the system unscathed. The auxiliary pattern is typically
found by characterizing the spectral distribution of noise
obtained from the reference imaging system in Fig. 1(a)
[2], as the noise poses the fundamental limit to acces-
sible spatial information [4, 35, 36]. The auxiliary and
object patterns can also be implemented as an inherently
single entity (i.e., from a single undivided source) in the
object plane as shown in Fig. 1(c) [33]. The negative
values for the auxiliary is not precluded. For incoherent
imaging this physically means the energy is reduced at
those locations, which is indeed useful to prevent exces-
sive noise, long average exposure, and pixel saturation.
Another equivalent implementation, which is discussed
theoretically and realized experimentally in the present
work, is illustrated in Fig. 1(d). In contrast with Figs.
1(b) and 1(c), where the image spectrum is manipulated
from the object plane only, here instead, it is manipu-
lated from both the object plane, via a varied exposure
time or intensity, and pupil plane simultaneously. Uti-
lizing the pupil plane aids in a simple construction of an
embedded auxiliary (i.e., embedded with the original ob-
ject pattern as a single entity) in the object plane. In
this case, the embedded auxiliary is simply proportional
to the original object pattern.

The previous works on the foundations of ACI [2, 27,
31–34], along with further inspiration from other research
on noisy far-field imaging [3, 4], led us to construct the
current work, which presents the first experimental evi-
dence for the theory of ACI. Following the implementa-
tion sketched in Fig. 1(d), we find for incoherent light
that by suppressing the detection of the high-SNR spatial
frequency harmonics in an object, while amplifying the
magnitude of those with low SNR, the resulting image
can have large SNR for previously low-SNR spatial fre-
quencies, due to a prudent control of the flat overall noise
level dictated by the Poisson distribution. This does not
only manage the exposure time efficiently, but also leads

to enhanced image resolution and contrast beyond what
is possible with common post-processing.

The previous body of literature [2, 27, 31–34] on ACI
has been only theoretical and typically utilized a high
spatial frequency passband function, in conjunction with
an increased exposure, to enhance the resolution perfor-
mance of thin metal films acting as near-field plasmonic
superlenses [2, 31–34]. This passband function was used
to not only compensate the losses inherent in the metal
film (i.e., virtual gain), but also to improve the image
spectrum SNR similar to what we have shown in this
work at far-field. This imaging method has been called
[32] ‘active convolved illumination’ for a couple reasons.
First, the term ‘active’ was chosen since an added energy
[33] (though not strictly necessary) was used to obtain en-
hancement over the control (a bare superlens). Secondly,
the term ‘convolved’ was chosen since the applied pass-
band function is physically convolved with the fields em-
anating from the object. For coherent illumination, this
passband function can be realized by a hyperbolic meta-
material (HMM) [33, 34]. While there is no Fourier plane
in the near-field configuration, the HMM can modify the
Fourier components of the incident evanescent waves by
its dispersion. In this case, the pupil function can then
simply be thought of as the coherent transfer function
of the cascaded HMM-superlens system and the SNR for
the large spatial frequencies is enhanced with respect to
the control.

Below, first a theory of ACI for incoherent light is
presented that shows how to improve the SNR for the
high spatial frequencies (i.e., low-SNR components) of
an image obtained from an object illuminated with in-
coherent light. The theory is implemented in numerical
simulations to predict the resolution enhancement, and
experimental images are collected using a low numerical
aperture imaging system to confirm the predictions. The
end result is an image with higher resolution and im-
proved contrast as compared to the control image. It is
also shown that ACI can help prevent pixel saturation for
longer exposures. The experimental work here confirms
that the theories of ACI are, in fact, both consistent with
real noisy optical signals, and can be extended to conven-
tional far-field imaging systems and potentially to com-
plex systems with different noise and distortion charac-
teristics. A detailed understanding of random processes
in the Fourier domain, crucial for the implementation of
the ACI, and the subsequent development of the auxil-
iary pattern (Fig. 1(b)) or the equivalent combined light
pattern for the object (Figs. 1(c) and 1(d)), immune to
such distorting effects, may in general open multiple av-
enues of research. It may lead to a generalized theory
of randomly distorted systems pervading a wide range
of disciplines from atmospheric sciences, seismology, fi-
nance, and biology to the mesoscopic physics of noisy
quantum systems.
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FIG. 1. Working principle of the active convolved illumination technique. (a) Most imaging systems suffer from loss of
information due to physical processes such as reflection, absorption, scattering, diffraction, and noise. This results in an image
with a poor resolution and contrast. (b) In the ACI technique, the light pattern forming the object (black line) is superimposed
with an auxiliary pattern (blue line), the purpose of which is to compensate the adversary photons that cause the information
leakage from the system. The auxiliary is correlated with the object and based on typically the underlying spectral noise
distribution. The result is a remarkable acquisition of data, hence high-fidelity image. (c, d) Equivalent to part (b) except
that the auxiliary and object patterns are implemented as an inherently single entity by utilizing (c) the object plane only or
(d) both the object and pupil planes simultaneously instead. The implementation in part (d) may lead to a greatly simplified
embedded auxiliary in the object plane, hence a simple physical construction.

II. THEORETICAL MODEL

Let us consider a uniform beam of spatially incoherent,
narrowband light with photon flux density (photons/m2 ·
s) striking a planar, transmissive object. After passing
through the object, the light has spatial variations and
the resulting transmitted photon flux density is given by
O(r), with r ∈ R2 denoting the position coordinate on
the plane. The process of mapping this light distribution
with an imaging system can be represented by a convo-
lution

I(r) = H(r) ∗O(r), (1)

where I(r) is the photon flux density on the image plane,
H(r) is the unshifted point spread function (PSF) of the
imaging system, and ∗ denotes the convolution. Here it
should be noted that I(r), O(r) ∈ R≥0 since they rep-
resent flux densities and not complex fields. Applying
the convolution theorem and using the normalized image
and object spectra, Ĩ(k) and Õ(k), respectively, Eq. (1)
gives

Ĩ(k) = H̃(k)Õ(k), (2)

where H̃(k) is the optical transfer function (OTF) of the

imaging system [1]. In general Ĩ(k), H̃(k), Õ(k) ∈ C.

For later use, we define |H̃(k)| as the modulation transfer
function (MTF).

Eqs. (1) and (2) assume continuous signals in position
and reciprocal space. To incorporate practical detection
of the deterministic signal I(r), let us consider the case
where we collect an image on the image plane using a
photoelectric detector with np pixels. The center of the
pth pixel (p ∈ Z+) is at rp = (xi, yj), and the pixels are
rectangular with side lengths ∆x and ∆y along the x
and y dimensions, respectively. Then, at the pth pixel,
the expected number of detected photons is given by

Īp = ηT

∫
Ap

I(r)d2r

= ηT

∫ yj+∆y/2

yj−∆y/2

∫ xi+∆x/2

xi−∆x/2

I(x, y)dxdy

≈ ηT∆x∆yI(xi, yj),

(3)

where η is the quantum efficiency of the pixel and T is the
exposure time or integration time. The approximation in
the third line of Eq. (3) assumes that the signal I(r) is
slowly varying across the area of the pixel, i.e. the signal
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is well sampled. Since Eq. (3) describes a sampling of a
spatial distribution of discrete particles (photons), there
will be an intrinsic randomness due to shot noise in the
photon signal Ip,γ . In this case, the probability mass
function (PMF) is

P
(
Ip,γ |Īp

)
=

(
Īp
)Ip,γ

Ip,γ !
e−Īp . (4)

This is of course coming from the fact that the counting
of discrete particles at a constant rate follows a Poisson
distribution, for which

Var(Ip,γ) = Īp. (5)

In most photoelectronic imaging detectors, such as
complementary metal-oxide-semiconductor (CMOS) or
charge-coupled device cameras, there are primarily two
sources of noise. The first is due to the statistics of Eq.
(4), the shot noise which is dependent on the photon sig-
nal. The second is noise from the readout electronics,
which is independent of the photon signal. We can then
write the detected signal as

Ip = Īp +Np,γ +Np,e, (6)

where Np,γ is a discrete random variable representing
the shot noise with PMF described by Eq. (4), and Np,e
is a discrete random variable representing the electronic
readout noise.

In order to show how the noise addition in Eq. (6)
affects the image spectrum, we compute the discrete
Fourier transform

Ĩq =
∑
p

Ipe
−i2πkq·rp

=
∑
p

(Īp +Np,γ +Np,e)e
−i2πkq·rp

=
∑
p

Īpe
−i2πkq·rp +

∑
p

Np,γe
−i2πkq·rp

+
∑
p

Np,ee
−i2πkq·rp

= ˜̄Iq + Ñq,γ + Ñq,e,

(7)

where q ∈ Z+ and {kq = (kx,l, ky,m) | 1 ≤ q ≤ np} ⊂
{k ∈ R2} is the Fourier space corresponding to the pixe-
lated position space {rp | 1 ≤ p ≤ np}. We then consider

the statistical properties of Ñq,γ and Ñq,e. Since the shot
noise variance is known from Eq. (5) (replacing Ip,γ with
Np,γ) and we can assume the pixels are statistically in-
dependent, we can write [2–4]

Var(Ñq,γ) = Var

(∑
p

Np,γe
−i2πkq·rp

)
=
∑
p

Var(Np,γ)|e−i2πkq·rp |2

=
∑
p

Īp = nγ ,

(8)

where nγ is the total expected number of photons in the
entire image. In words, Eq. (8) states that the variance in
Fourier space is constant, and is controlled by the total
expected number of photons collected on the detector.
We can write a similar equation for the readout noise [3],

Var(Ñq,e) = Var

(∑
p

Np,ee
−i2πkq·rp

)
=
∑
p

Var(Np,e)|e−i2πkq·rp |2 =
∑
p

σ2
p,e,

(9)

where σ2
p,e is the readout noise variance at pixel p and

again the assumption is made that the pixels are statis-
tically independent. Let us also assume that σ2

p,e = σ2
e ,

meaning every pixel has similar electrical performance in
terms of noise. Then Eq. (9) becomes

Var(Ñq,e) = npσ
2
e . (10)

Therefore, the spectral readout noise variance is also a
constant, and scales linearly with the number of pixels.
For modern cameras, the readout noise is usually mini-
mal such that it is neglected, though we keep it here for
completeness.

From imaging theory, we know that the OTF of an
incoherent imaging system is given by the normalized
autocorrelation [1] of the system’s pupil function P̃ (k),
or

H̃(k) =

∫
P̃ (κ)P̃ ∗(κ− k)d2κ∫
|P̃ (κ)|2d2κ

. (11)

In the discrete notation described above, we can write

H̃q =

∑
κ P̃κP̃

∗
κ−kq∑

κ |P̃κ,o|2
= αP̃q ? P̃q, (12)

where P̃κ,o is a reference pupil, α is the normalization

constant, and P̃q is the pupil function in the discrete no-
tation. To normalize Eq. (12), the reference pupil is
conventionally chosen as the pupil itself, making the DC
pixel of H̃0 = 1, similar to Eq. (11). However we define
a reference pupil in Eq. (12) in order to later directly
compare two different pupil functions. Consider an inco-
herent imaging system in air with maximum resolvable
spatial frequency kmax = 2NAk0, where NA is the nu-
merical aperture, k0 = 1/λ0, and λ0 is the center free
space wavelength of the illumination source. The pupil
function is assumed to have circular symmetry about the
optical axis (which is along z-direction) and we define it
as

P̃q =

{
1 if k− ≤ |kq| ≤ k+

0 otherwise,
(13)

where k− ≥ 0 and k− < k+ ≤ kmax/2. From Eq. (13) we
can see that setting k− = 0 and k+ = kmax/2 gives a typ-
ical diffraction-limited imaging system with open pupil.
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We choose this case as our reference pupil P̃q,o. How-
ever, if we make k− nonzero, we introduce an obstruction
in the central portion of the pupil, which has the effect
of lowering the overall transmission with respect to the
reference pupil, and also preferentially reinforcing larger
spatial frequencies with respect to the smaller ones in
comparison to the reference pupil.

An important metric for an imaging system is its abil-
ity to discern image spectrum content from noise, or its
spectral SNR. To relate the pupil function to the spectral
SNR, we first use Eqs. (2) and (12), without normaliza-
tion, to rewrite the expected image spectrum as

˜̄Iq =
[
βP̃q ? P̃q

]
Õq = H̃qÕq, (14)

where βP̃q ? P̃q = H̃q is the unnormalized OTF and β is
a new constant. Using a standard definition of SNR, we
then can write

SNRq =
| ˜̄Iq|√

nγ + npσ2
e

=

∣∣∣[βP̃q ? P̃q] Õq∣∣∣√
nγ + npσ2

e

=

∣∣∣H̃qÕq∣∣∣√
nγ + npσ2

e

(15)

as the image spectrum SNR. In Eq. (15), the numerator
is the expected image spectrum, which can be engineered
by manipulation of the pupil function, and the denomi-
nator is the total standard deviation of the signal from
the photonic and electronic noise terms in Eqs. (8) and
(9). An obvious consequence of Eq. (15) is that reduc-
ing nγ will decrease the constant noise floor in the image
spectrum. The signal in the numerator will also decrease
similarly, but can be engineered through P̃q to enhance
different portions of the spectrum. Conversely, increas-
ing nγ will increase the constant noise floor, but this will
also increase the signal. If the readout noise is neglected
in Eq. (15), SNRq will then theoretically increase with√
T (Eq. (3)). Interestingly, if one can additionally ma-

nipulate the pupil function to amplify certain spectral
regions, further improvement in SNRq becomes possible
in those regions beyond original shot noise limited signal.
Engineering the system to preferentially pass a certain
band or bands of the image spectrum, while keeping the
overall noise unchanged can also improve SNRq for the
selected regions. To put the latter scenario into analogy,
we are given a ‘photo-budget ’ (i.e., a constant number of
photons in the image plane) [52] nγ , and we can freely
decide how to spend that budget in the image spectrum
via P̃q so that we achieve an improved SNR for certain
spatial frequencies. Boosting SNR with such spectrum
manipulation scenarios above considering the underlying
noise statistics forms the essence of ACI and is the cen-
tral theme of this work. The relation of these processes
with the auxiliary pattern in Figs. 1(b) and 1(c) can be
explained as follows.

Let H̃q,o and H̃q,A be the unnormalized OTFs for the
imaging systems without (i.e., reference) and with ACI,

respectively. Then, the expected image spectrum ob-
tained by the auxiliary component becomes

˜̄Iq,aux = H̃q,AÕq − H̃q,oÕq = h̃qH̃q,oÕq − H̃q,oÕq
= H̃q,o(h̃q − 1)Õq,

(16)

where we define the virtual gain h̃q = H̃q,A/H̃q,o with

H̃q,o 6= 0. Therefore, the auxiliary pattern spectrum cor-
responding to Fig. 1(b) and the combined object spec-
trum and embedded auxiliary corresponding to Fig. 1(c)
can be, respectively, expressed as

Õq,aux = (h̃q − 1)Õq, (17)

Õq,A = h̃qÕq, (18)

which are both correlated with the object. H̃q,A in Eq.
(16) is also known as the ‘active transfer function’ (ATF)
[2] and proportional to the exposure time. If the ATF
leads to amplification at some spatial frequencies with
respect to the reference system, this implies virtual gain
in that spectral region.

Similarly, to express the embedded auxiliary spectrum
Õq,aux of Fig. 1(d), we start with the transformation
equation for the expected image spectrum

˜̄Iq = H̃q,a(Õq + Õq,aux) = H̃q,AÕq, (19)

where H̃q,a is the unnormalized OTF of the imaging sys-
tem in Fig. 1(d) when the exposure time is kept the same
as the reference (Fig. 1(a)). Then, we find

Õq,aux = (τ − 1)Õq (20)

where τ = H̃q,A/H̃q,a is the virtual gain for this system,
which simply turns out to be the factor of increase in ex-
posure time. Since both systems (Figs. 1(c) and 1(d)) are
designed to produce the same expected image spectrum
H̃q,AÕq, the spectral noise variance is also the same (Eq.
(8)). Therefore, both implementations equivalently ma-
nipulate the image spectrum using different auxiliaries.
It is needless to say that intensity has a similar role as
exposure time and we primarily consider the latter in our
analysis. As described in the upcoming section, the ACI
in this work (Fig. 1(d)) is experimentally realized with

the modified pupil (i.e., via H̃q,a in Eq. (19)) and the
simple embedded auxiliary in Eq. (20).

III. EXPERIMENT

In order to implement the above spectral SNR manip-
ulation into an experimental imaging system, we simply
need access to the Fourier space in order to manipulate
the pupil function. Therefore, we chose to construct a
typical 4f system with no magnification as shown in Fig.
2(a) in order to simplify the analysis and experiment.

The experimental setup in Fig. 2(a) images an ob-
ject (target) illuminated by a narrowband incoherent
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FIG. 2. Imaging experiment configuration, pupils used in the experiment, and the corresponding OTFs. (a) A diffused light
emitting diode (LED) source illuminates an imaging target, which is then processed by a 4f system consisting of two achromatic
doublet lenses and a transparency in the pupil plane with a focal length of f = 38.1 cm. The images are detected with a CMOS
camera. (b) Open (reference) and (c) annular pupils with (d) corresponding OTFs calculated from Eq. (12) as a function of
radial spatial frequency kr =

√
k2
x + k2

y. Both pupils have k+ = kmax/2. In part (b), k− = 0 and in part (c), k− = kmax/2
√

2.
In the actual experiment, we chose an outer pupil diameter of 5 mm for parts (b) and (c), making NA= 0.0066. In part (d)
the OTF for the annular pupil was normalized with respect to open pupil to illustrate their relative transfer characteristics.

light source (Thorlabs LIU525B) at 525 nm wavelength.
Before hitting the target, the light is focused onto a
diffuser in order to decrease the spatial coherence and
to avoid imaging the light source onto the pupil plane.
Then the light is roughly collimated by a second lens
before hitting the target. The light distribution exiting
the target is transferred through an achromatic-doublet
lens (Space Optics Research Labs) with a focal length of
f = 38.1 cm. On the pupil plane, a pupil transparency
is placed that has either a circular or annular opening,
as shown in Figs. 2(b) and 2(c). For all the images,
we chose an outer pupil diameter of d = 5 mm, making
NA= 0.0066 using the formula NA= d/2f . The trans-
parencies were printed with a photoplotter onto transpar-
ent plastic sheets, then cut out and mounted in standard
optical mounts. After passing through the pupil plane,
the light is again transferred through a second identical
achromatic-doublet which then focuses the resulting im-
age onto a CMOS camera (Thorlabs DCC1645C).

The goal of this experiment was to show directly an
enhancement in image resolution by modifying the pupil
and exposure time to improve SNRq for the largest spa-
tial frequencies in accordance with Eq. (15). This led to
an annular pupil configuration. The ACI here is then sim-
ply implemented with annular pupil and variable photon
exposure, and the reference system with open pupil, us-
ing incoherent light at 525 nm wavelength (Figs. 2(b) and
2(c)). The relative transfer characteristics of the open

and annular pupils are plotted in Fig. 2(d). However, it
should be emphasized that the concepts presented should
be generally applicable to any imaging system which is
linear and shift-invariant, provided there is a mechanism
with which to manipulate the Fourier content of the light.

To show quantitatively the improvement in the reso-
lution performance afforded by the annular pupil config-
uration with modified exposure over the open pupil, we
replaced the resolution target with a 10 µm diameter pin-
hole. Since this diameter is below the diffraction limit for
the chosen numerical aperture defined by k+ and f , the
resulting image of the pinhole gives the unshifted PSF
of the imaging system at an arbitrary scale. These PSF
images were taken with both the open and annular pupil
transparencies with varying exposure times. From these
images, the OTFs and corresponding SNRq can be com-
puted for each exposure. It should be emphasized that
in the present implementation, the annular pupil per-
forms the first iteration of image spectrum manipulation
by accentuating certain spatial frequencies, whereas the
exposure time controls the necessary level of signal am-
plification/attenuation to transfer a right amount of aux-
iliary contribution to the image plane. The annular pupil
with varied photon exposure, in effect, directly produces
the required auxiliary (Eq. (20)) of the object plane as
minted into the compound object-auxiliary pattern pro-
portional to the exposure time. The level of exposure
and the annular pupil dimensions are determined care-
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FIG. 3. Measured PSF and MTF for full, unobstructed pupil with NA= 0.0066 and exposure time of T = 2 s. (a) The
PSF collected from the setup in Fig. 2. (b) The MTF calculated by fast Fourier transformation of part (a) in log scale. (c)
Cross-sections of part (a) through the origin along x (red line) and y (blue line). The theoretical prediction is given by the
black line. (d) Cross-sections of part (b) through the origin along kx (red line) and ky (blue line). The theoretical prediction
is given by the solid black line. The dashed black line denotes the calculated shot noise standard deviation using Eq. (8).

fully from the limiting spatial frequency of the reference
system and the fact that shot noise variance is constant
and equal to the total expected number of photons (Eq.
(8)).

Examples of the experimentally measured PSFs and
MTFs, with the same scaling factor as the PSFs, are pre-
sented in Figs. 3 and 4 for the open and annular pupils,
respectively. Also shown are the theoretical PSFs and
MTFs determined from scalar diffraction theory. A good
agreement can be seen with both the PSF and MTF be-
tween theory (black lines) and experiment (red and blue
lines), indicating that the imaging system is well aligned
and not inducing any unwanted aberrations. Also, the
calculated standard deviation (black dashed line) seems
to accurately predict where the MTF signal is overcome
by the shot noise, providing evidence supporting the the-
oretical model for spectral noise. Since σe = 0 in this
calculation, it is apparent that the readout noise is in
fact likely negligible.

From the OTFs computed from the measured PSFs
in Figs. 3 and 4, it is then straightforward to compute
SNRq for each exposure using Eq. (15), assuming that
the experimental pixel values and the number of photons

at each pixel are about linearly related. These are plot-
ted in Fig. 5(a), where the solid lines indicate the open
pupil SNRq and the dashed lines indicate the annular
pupil SNRq. For a direct comparison of the SNRq for
the two pupil configurations, we define a spectral SNR
improvement metric

SNRiq =
SNRq,a,T

SNRq,o,T0

, (21)

where SNRq,a,T is the annular pupil spectral SNR for
exposure time T and SNRq,o,T0 is the open pupil spectral
SNR for exposure time T0. Plotted in Fig. 5(b) is the
SNRiq for T0 = 2 s and three different values of T . It
can be seen that a clear enhancement in the SNR for
spatial frequencies near 0.83kmax can be obtained using
an annular pupil provided a sufficient exposure.

To verify that the high spatial frequency improvement
in spectral SNR with sufficient exposure manifests as im-
proved image resolution, we imaged a USAF-1951 reso-
lution test target (Thorlabs R1DS1N) using the setup in
Fig. 2(a). The collected images for the open and annular
pupil are shown in Fig. 6 for different values of T . Also
shown are the corresponding reconstructions obtained by
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FIG. 4. Measured PSF and MTF for annular pupil with k− = kmax/2
√

2, NA= 0.0066, and exposure time of T = 4 s. The
subfigures are defined in the same manner as Fig. 3.

deconvolving the raw images with the Richardson-Lucy
algorithm [39, 40] after 30 iterations as implemented in
MATLAB. In Figs. 6(a)-(c), it can be seen that three-
bar target in element 5 is always blurred together by the
open pupil (red solid rectangles), however even for low ex-
posure (e.g. T = 10 ms), the bars become qualitatively
visible in the annular pupil case (yellow solid rectangles).
After reconstruction for 30 iterations, element 5 remains
unresolved in the open pupil images (red dashed rect-
angles), but the annular pupil images of element 5 are
further improved (yellow dashed rectangles).

When the exposure time T is increased, the spectral
SNR for the experimental MTF (Figs. 3 and 4) is scaled

by a factor of
√
T (Eqs. (3) and (15)) as long as no pixel

saturation takes place. Particularly, as shown in Fig. 5,
the annular pupil selectively amplifies the amplitudes of
the spatial frequencies within a specific range and im-
proves the spectral SNR in that region even beyond the
point which may not be otherwise possible due to the
pixel saturation with the open pupil (i.e., the reference
system). This enhancement may occur at the expense
of reduced spectral SNR at the other regions (e.g., lower
spatial frequencies). However, those regions may be re-
covered easily with deconvolution. Particularly for ele-
ments 2-4 in Figs. 6(a)-(c), the annular pupil image is

improved greatly by the reconstruction since those spa-
tial frequencies were originally attenuated with respect
to the open pupil. Importantly, since the spectral noise
variance is equal to the total expected number of photons
in the entire image (Eq. (8)), it is indeed advantageous
to suppress the energy-rich regions so that the selective
amplification successfully delivers power to the most de-
manding spectral band without (excessively) amplifying
the noise. As a result, such a noise behavior driven
spectrum manipulation, critical to the implementation
of the ACI, enables us to push the SNR limit for the
reference imaging system and significantly enhance the
overall image contrast and resolution as can be clearly
seen in Figs. 6(a)-(c). The improvement is prominent if,
for instance, element 5 (both the raw and deconvolved
images) obtained from the open pupil with T = 10 ms
is compared with that of the annular pupil with T = 50
ms. Conversely, if element 5 obtained from the open
pupil with T = 50 ms is compared with that of the an-
nular pupil with T = 10 ms, it is also observed that
the ACI can achieve higher resolution and contrast with
shorter exposure—a highly desirable feature for bioimag-
ing modalities to avoid photo-damage [42–44, 46, 47, 53]
to the sample or eye-safe operations.

Next, in Fig. 6(d), we delve into an extreme case
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FIG. 5. Improvement in spectral SNR. (a) Measured spectral SNR for open (solid lines) and annular (dashed lines) pupils for
different exposure times. The crossover by the black solid line over the red and blue lines is due to distortion of the PSF by
pixel saturation at T = 3 s for the open pupil. (b) Spectral SNR improvement SNRiq corresponding to the data in part (a)
with T0 = 2 s. The black dashed line indicates SNRiq = 1.

of photon exposure whereupon pixel saturation occurs.
Upon viewing the open pupil SNRq from Eqs. (3) and
(15), nonetheless, it would seem that simply increasing
T would lead to an improvement in SNRq itself, without
having to modify the pupil. However, the pixels in typical
digital cameras only have finite well depth and dynamic
range, meaning they can experience saturation for long
exposures and/or intense illumination. The saturation
causes a nonlinear response of the pixel as a function of
the input photon signal. Therefore, one cannot arbitrar-
ily increase T or illumination intensity to increase SNRq.
In terms of spatial resolution, saturation can manifest as
an effective blurring due to clipping of the pixel values
and blooming of photoelectrons to adjacent pixels.

Along with provided improved resolution and contrast,
the proposed spectrum manipulation method can also
provide resistance to pixel saturation in cases when long
exposure or intense illumination and high resolution is
required. To demonstrate this, we collected images in
which the pixels become saturated for the open pupil
system, and compared them to images in the annular
pupil system. They are shown in Fig. 6(d). Clearly,
the annular pupil has higher resistance to pixel satura-
tion than the open pupil, despite twice longer exposure
time. Element 5 can never be resolved with the open
pupil as the pixel saturation appears earlier. A larger
portion of the Fourier space is blocked by the annular
pupil. As evidenced by Fig. 2(d), the blocked photons
correspond to lower spatial frequencies which are more
likely to contribute to pixel saturation, since the trans-
mission for these portions of the object will be high due to
the larger local photon flux. Therefore, a cleverly tuned
selective amplification does not only improve the resolu-
tion and contrast, but also renders the imaging system
more immune to the pixel saturation.

IV. DISCUSSION AND CONCLUSIONS

In this work, it was demonstrated experimentally for
the first time that the active convolved illumination en-
hances the SNR, image resolution, and contrast. This
method utilizes manipulation of the Fourier space by em-
ploying an auxiliary, which both relies on the noise be-
haviour and correlates with the object pattern, in order
to tame the image spectrum SNR. Here, this is simply
achieved by an annular pupil and an embedded auxiliary
with a variable exposure time. Placing an annular pupil
transparency in the pupil plane while adjusting the pho-
ton exposure leads to improved SNR for larger spatial fre-
quencies, which gives improved resolution over an imag-
ing system with unobstructed pupil and the same numer-
ical aperture. Also, the annular pupil increases resistance
to pixel saturation, since a portion of the Fourier space is
blocked and the number of photons at the detector is de-
creased. The theory and simulation of the proposed loss
mitigation and resolution enhancement method for inco-
herent light, the experiment to verify and expand upon
the previous metamaterial implementations at near-field
[2, 27, 31–34], and how to manipulate the pupil or OTF
of an imaging system to achieve a desired high spatial
frequency SNR have been discussed. The choice for the
small NA in this proof-of-principle experiment was made
mostly for practical reasons dictated by our bar target
and achromatic doublet lenses. There is no theoretical
limitation to applying this concept to a high-NA system
like a microscope objective. As long as there is access to
the Fourier space, one can still modify the pupil function.

The spatial filtering properties of annular pupil is well-
known and commonly used in imaging systems [54]. How-
ever, the motivation in our work is different in that we
solely use the annular pupil to prove experimentally that
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FIG. 6. Experimental images of a USAF-1951 resolution test target collected from the setup in Fig. 2. (a) T = 10 ms, (b)
T = 30 ms, and (c) T = 50 ms exposure times. The individual images in each subfigure correspond to the following: i. Raw
image collected with open pupil in the pupil plane and NA=0.0066. ii. Raw image with annular pupil in the pupil plane and
same NA as i. iii. Image from subpart i deconvolved by the Richardson-Lucy algorithm after 30 iterations. iv. Image from
subpart ii deconvolved by the Richardson-Lucy algorithm after 30 iterations. Red rectangles highlight the raw (solid) and
deconvolved (dashed) images for element 5 using the open pupil. Similarly, the yellow rectangles do so for the annular pupil.
Clear improvement in image resolution and contrast is seen with the annular pupil. (d) Images demonstrating the resistance
of annular pupil to deleterious effects caused by detector saturation. Subparts i-iv and the rectangles are defined similar to
parts (a)-(c). For the open pupil, T = 150 ms, and for the annular pupil, T = 300 ms. It can be seen that even for twice as
long exposure time, the annular pupil image quality is mostly maintained compared to the open pupil image, which is severely
blurred due to pixel saturation. The ACI is implemented with annular pupil and varied photon exposure, and the reference
system with open pupil.

the ACI concept, which has only been proposed theoret-
ically so far, indeed works. To achieve that, we find one
specific implementation that is mathematically equiva-
lent to the previous theoretical implementations of the
ACI. We choose the annular pupil with a controlled ex-
posure time as a simple and convenient tool for this pur-
pose. It is not our intention here to find an optimal or a
unique implementation of the ACI as this would require
a sophisticated spectral engineering (e.g., using machine
learning and meta-optics) specifically optimized for the
imaging system of interest with specific noise or distor-
tion statistics. Instead, considering the implementation
with the annular pupil and controlled exposure time as a
simple example or case of ACI, our manuscript presents
the first experimental evidence that the ACI idea is in-
deed well-founded. This represents the novelty in our

manuscript.

Similarly, spatial filtering with a central obscuration to
block low spatial frequencies to achieve increased spec-
tral SNR at higher spatial frequencies of the diffracted
beam and avoid pixel saturation from the direct beam,
such as in X-ray coherent diffraction imaging (CDI) [53],
or for edge enhancement in different coherent imaging
modalities may be regarded as a simple and special case
of coherent ACI [2]. In general, more sophisticated use
of ACI with clever illumination structuring [55] driven
by the noise statistics [2] may deliver more favorable re-
sults in diverse imaging systems. For example, such a
structured illumination source immune to noise may im-
prove the X-ray CDI measurements and the performance
of reconstruction algorithms [56–58] by controlling the
coherence of the incident illumination [58–60].
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It is worth mentioning that the implementation of ACI
presented here should not be confused with incoherent
edge detection as the latter usually relies on bipolar inco-
herent image processing [61–63]. Also, although some of
our methodologies are inspired by the recent split-pupil-
optimization technique [4], the proposed technique here
is more general, does not contend with a constant pho-
ton budget, and is intimately connected with the virtual
gain phenomenon in an earlier theoretical proposal [27]
as illustrated schematically in Fig. 1(b). The ACI offers
new opportunities for not only conventional imaging sys-
tems and superlenses, but also various other linear sys-
tems. One can envision its potential generalization and
ubiquity to encompass imaging through random media
(e.g., turbulent and scattering atmosphere) [64–68], spec-
troscopy [69], PT -symmetry [28, 70, 71], photolithogra-
phy [10, 11], and quantum information and image pro-
cessing [72–74]. The virtual gain mechanism employed
in ACI can alleviate the stringent requirement of balance
between loss and gain in PT -symmetric systems [28]. It
is important to note that the systems with more intri-
cate noise/distortion characteristics (e.g., turbulent at-
mosphere) may necessitate more ingenious engineering of
the pupil function than here. Optimal and precise manip-
ulation of the pupil function, beyond conventional optics,
may be possible with the advent of amenable metasur-

faces [14–16]. More work on ACI and potential relevance
with SIM [3, 41–44], superoscillatory imaging [74–77],
and super-gain [78] can enrich further understanding of
imaging beyond the known boundaries. Computational
superresolution techniques [35–37, 49, 50] integrated with
ACI enabled systems can provide extended resolution
limits. Machine learning approaches [35] bolstered with
ACI may enable optical visualization of dynamic scenes
at previously inaccessible scales. An interesting direc-
tion of research could be utilizing the analytical continu-
ity principle [35–37] while enhancing the SNR with ACI
to achieve far-field super-resolution imaging. Since ACI
is fundamentally a physical process (i.e., physical pre-
processing) that enhances speed, over time-consuming
deconvolution, and data acquisition, it may benefit nu-
merous imaging scenarios. It may also be possible to use
cheap detectors and yet obtain the same imaging quality
as that of expensive ones not aided by ACI.
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“Review of near-field optics and superlenses for sub-
diffraction-limited nano-imaging,” AIP Advances 6,
100701 (2016).

[6] Joseph L. Ponsetto, Anna Bezryadina, Feifei Wei,
Keisuke Onishi, Hao Shen, Eric Huang, Lorenzo Ferrari,
Qian Ma, Yimin Zou, and Zhaowei Liu, “Experimental
demonstration of localized plasmonic structured illumi-
nation microscopy,” ACS Nano 11, 5344–5350 (2017).

[7] Qian Ma, Huan Hu, Eric Huang, and Zhaowei Liu,
“Super-resolution imaging by metamaterial-based com-
pressive spatial-to-spectral transformation,” Nanoscale
9, 18268–18274 (2017).

[8] Anna Bezryadina, Junxiang Zhao, Yang Xia, Xiang
Zhang, and Zhaowei Liu, “High spatiotemporal resolu-
tion imaging with localized plasmonic structured illumi-

nation microscopy,” ACS Nano 12, 8248–8254 (2018).
[9] Yeon Ui Lee, Junxiang Zhao, Qian Ma, Larousse Khos-

ravi Khorashad, Clara Posner, Guangru Li, G Bi-
mananda M Wisna, Zachary Burns, Jin Zhang,
and Zhaowei Liu, “Metamaterial assisted illumination
nanoscopy via random super-resolution speckles,” Nature
Communications 12, 1559 (2021).

[10] Ping Gao, Na Yao, Changtao Wang, Zeyu Zhao, Yunfei
Luo, Yanqin Wang, Guohan Gao, Kaipeng Liu, Chengwei
Zhao, and Xiangang Luo, “Enhancing aspect profile of
half-pitch 32 nm and 22 nm lithography with plasmonic
cavity lens,” Applied Physics Letters 106, 093110 (2015).

[11] Gaofeng Liang, Xi Chen, Qing Zhao, and L. Jay Guo,
“Achieving pattern uniformity in plasmonic lithography
by spatial frequency selection,” Nanophotonics 7, 277–
286 (2018).

[12] Liming Si, Haixin Jiang, Xin Lv, and Jun Ding, “Broad-
band extremely close-spaced 5G MIMO antenna with
mutual coupling reduction using metamaterial-inspired
superstrate,” Optics Express 27, 3472–3482 (2019).

[13] Wei Yang and Yu-Sheng Lin, “Tunable metamaterial fil-
ter for optical communication in the terahertz frequency
range,” Optics Express 28, 17620–17629 (2020).

[14] You Zhou, Ivan I. Kravchenko, Hao Wang, Hanyu
Zheng, Gong Gu, and Jason Valentine, “Multifunctional
metaoptics based on bilayer metasurfaces,” Light: Sci-
ence & Applications 8, 80 (2019).

[15] You Zhou, Hanyu Zheng, Ivan I. Kravchenko, and Jason
Valentine, “Flat optics for image differentiation,” Nature
Photonics 14, 316–323 (2020).



12

[16] Junsuk Rho, “Metasurfaces: Subwavelength nanostruc-
ture arrays for ultrathin flat optics and photonics,” MRS
Bulletin 45, 180–187 (2020).

[17] Sourangsu Banerji, Monjurul Meem, Apratim Ma-
jumder, Fernando Guevara Vasquez, Berardi Sensale-
Rodriguez, and Rajesh Menon, “Imaging with flat op-
tics: metalenses or diffractive lenses?” Optica 6, 805–810
(2019).

[18] Sergey Krasikov, Aaron Tranter, Andrey Bogdanov,
and Yuri Kivshar, “Intelligent metaphotonics empowered
by machine learning,” Opto-Electron. Adv. 5, 210147
(2022).
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