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This paper presents numerical and experimental investigation of negative refraction at the inter-
face between two mechanical rotator lattices, adding to the recent body of anomalous wave behavior
reported for such simple lattices. Each lattice implements easily-reconfigured inter-rotator coupling
which determines whether the lattice’s passband is acoustic (with positive group velocity) or optic
(with negative group velocity). Since the group velocities have opposite signs over the entirety of
both lattices’ Brillouin zones, the negative refraction at their interface is inherently broadband.
The numerical study constructs a large lattice structure for full-wave simulation and quantitatively
analyzes the linear and nonlinear negative refraction. The experimental study documents robust
negative refraction in a smaller-scale fabricated system and serves as validation for the numerical
findings. We observe frequency-dependent transmission in both simulations and experiments. A
linear analysis captures the observed phenomenon at low amplitude. At larger amplitudes, nu-
merical simulations are used to document amplitude-dependent transmission. This phenomenon is
explained by a nonlinear dispersion shift and transitional evanescent waves analyzed using a pertur-
bation method. A sensitivity test demonstrates the robustness of negative refraction in the proposed
rotator lattice structure.

I. INTRODUCTION

Negative refraction describes anomalous wave phe-
nomenon wherein the refraction of an oblique incident
wave occurs on the same side of the interface normal,
which can be compared to conventional materials wherein
refraction occurs on the opposite side. The concept
was first predicted by V. Veselago [1], who developed
a theory of left-handed optical materials with simulta-
neous negative permittivity and permeability. Later,
Pendry [2] showed that negative refractive index materi-
als improve the imaging resolution beyond the diffraction
limit. This extraordinary property motivated further ex-
ploration into sub-wavelength focusing [2–4], superlens
imaging [5–7], waveguiding [8–10] and fabrication of neg-
ative index materials [11, 12].

Negative refraction is not peculiar to electromagnetic
waves. Recent studies have demonstrated analogous phe-
nomena in acoustics (to include phononics) [13, 14]. Typ-
ically, an acoustic negative refractive index material re-
quires negative effective mass density and bulk modulus
at the operating frequency [15] or metamaterial designs
with the passband’s group velocity anti-parallel to the
wave vector. Such band structures can result from (i)
resonance-based periodic structures [16–19], (ii) hyper-
bolic metamaterials [20, 21], (iii) space coiling metamate-
rials [22–26], and perforated and pillared phononic crys-
tals [27–30]. Practical implementations of the resonating
mechanism usually consider Helmholtz resonators [16]
for fluid-borne sound and hollow microstructures [19] for
elastic waves. Due to the nature of resonance, these ma-
terials suffer from narrow operating ranges. Alternative

∗ michael.leamy@me.gatech.edu

designs consider folded acoustic channels [22, 24] or ex-
treme anisotropic structures [20] to generate negative re-
fractive index passbands. These designs broaden the op-
erating frequency range to some extent, but are restricted
by intricate unit cell designs or only allow for partial fo-
cusing. In addition, the analysis of acoustic and elastic
negative refraction remains largely devoted to the linear
regime. The nonlinear effect of negative refraction, such
as associated with amplitude-dependent dispersion, has
been formulated in optics [31], yet sparsely investigated
in acoustics.

In this study, we numerically and experimentally in-
vestigate negative refraction in a reconfigurable nonlin-
ear rotator lattice. Such rotator lattice structures sup-
port a number of anomalous wave behaviors, including
non-reciprocity [32] and dispersion morphing [33]. Differ-
ent from other metamaterials harnessing the gyroscopic
effects [34–37] and temporal modulation [38] of rotat-
ing units, the proposed 2D lattice structure leverages
the in-plane rotational geometry to determine the sign
of the refractive index and also yields geometric nonlin-
earity (Sec. II). At the interface between two lattices
with opposite-sign refractive indices, we observe robust
negative refraction in numerical simulations (Sec. III)
and experiments (Sec. IV). Linear dispersion analysis
and perturbation-based nonlinear analysis reveal the fre-
quency and amplitude dependence of the refraction trans-
mission, respectively, and predict an amplitude satura-
tion effect. The experiment demonstrates the predicted
negative refraction in a finite lattice. We also present a
sensitivity study to quantify the robustness of the phe-
nomenon in the experimental setup. These results im-
prove the understanding of negative refraction in the
presence of nonlinearity and suggest a promising design
for future wave-based devices.
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II. LATTICE DESIGN

Figure 1a and 1b depicts two monatomic rotator lat-
tices with alternate coupling arrangements. In both
configurations, the rotators are pinned at their centers
such that only angular oscillations occur. We define the
counter-clockwise rotation to be positive. In Fig. 1a, each
pair of adjacent rotators is connected by two linear elastic
linkages mounted on their side arms. As such, we term
this type of lattice the side-arm (SA) connected lattice.
In Fig. 1b, however, the adjacent rotators are linked from
their nearest arm by only one lightly pre-stretched elastic
linkage, and this type of lattice is termed the nearest-arm
(NA) connected lattice.

Figure 1c and 1d provide detailed views of the SA and
NA connections, respectively. To describe the dynamics,
we introduce system parameters: rotator radius r, lat-
tice constant a, gap distance D = a− 2r, spring stiffness
kSA and kNA, and undeformed length LSA0 and LNA0 .
When the lattice is perturbed, the elastic linkages be-
tween two adjacent rotators are deformed and produce
restoring torques. In Fig. 1c, the restoring torque at the
rotator of interest (the left rotator) is the sum of the
torques from the top and bottom elastic linkages con-
necting to its neighbor (the right rotator),

TSA = rSAtop × (kSAδLtop) + rSAbot × (kSAδLbot), (1)

where the radius vectors (parallel to the connecting arm),
rSAtop, rSAbot , and the deformation vectors (parallel to the
elastic linkage), Ltop and Lbot, are derived from the ro-
tational geometry,

rSAtop=

[
rcos(θi + π

2 )
rsin(θi + π

2 )

]
,

rSAbot=

[
rcos(θi − π

2 )
rsin(θi − π

2 )

]
,

δLtop= (|Ltop| − LSA0 )
Ltop
|Ltop|

,

δLbot= (|Lbot| − LSA0 )
Lbot
|Lbot|

,

Ltop=

[
a+ rcos(θj + π

2 )− rcos(θi + π
2 )

rsin(θj + π
2 )− rsin(θi + π

2 )

]
,

Lbot=

[
a+ rcos(θj − π

2 )− rcos(θi − π
2 )

rsin(θj − π
2 )− rsin(θi − π

2 )

]
, (2)

For the NA lattice, the restoring torque arises from the
spring connecting the nearest arms of a pair of neighbor-
ing rotators,

TNA = rNA × (kNAδLmid), (3)

where the radius and deformation vectors are provided
by,

rNA=

[
rcos(θi)
rsin(θi)

]
,

δLmid= (|Lmid| − LNA0 )
Lmid
|Lmid|

,

Lmid=

[
a− rcos(θj)− rcos(θi)
−rsin(θj)− rsin(θi)

]
. (4)

Accordingly, we derive the equation of motion govern-
ing the dynamics in both SA and NA lattices. The ex-
act equations are, however, cumbersome due to the rota-
tional geometry. In this study, we confine our attention
to small angle (wave amplitude) motions, and Taylor-
expand the equations of motion around the equilibrium
position of the rotators. As such, we present the equa-
tions of motions for the SA and NA lattice, respectively,
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FIG. 1. Schematics of SA type (a) and NA type (b) rotator
lattice structures. The blue square identifies the unit cell.
(c) The detailed view of the SA inter-rotator connection. (d)
The detailed view of the NA inter-rotator connection. (e)
SA lattice linear dispersion relation. (f) NA lattice linear
dispersion relation.
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Parameter ISA(kgm2) INA k1(Nm) k2 kg

Value 1.95E-5 4.05E-5 0.070 0.097 0.042

Parameter γSA+ (Nm) γSA− γSAg

Value 5.1E-3 -6.6E-3 -0.0406

Parameter γNA+ (Nm) γNA− γNAg

Value 2.407 -0.011 1.1815

TABLE I. Experimentally measured system parameters

ISAθ̈m,n + ε
∑
p,q

k1(θm,n − θp,q)

+ε3
∑
p,q

(γSA+ (θm,n + θp,q)
3+γSA− (θm,n − θp,q)3

+γSAg θ3m,n) +O(ε5) = 0, (5)

INAθ̈m,n + ε
∑
p,q

(k2(θm,n − θp,q)+kgθm,n)

+ε3
∑
p,q

(γNA+ (θm,n + θp,q)
3+γNA− (θm,n − θp,q)3

+γNAg θ3m,n) +O(ε5) = 0, (6)

where I and θ denote rotational inertia and angular dis-
placement, respectively. Subscripts [m,n] define the co-
ordinates of the rotator of interest in the 2D lattice, and
[p, q] ∈ {[m−1, n], [m+1, n], [m,n−1], [m,n+1]} defines
the neighbors of the [m,n] rotator. The linear stiffnesses
k1, k2, kg and nonlinear stiffness γ+, γ−, γg are functions
of physical springs’ stiffnesses kSA and kNA, as well as
the rotational geometry defined by rotator radius r and
lattice constant a. We provide the explicit expressions of
these equivalent stiffness functions in the Appendix I. In
both equations, the small parameter ε serves as a book-
keeping device in the series expansion and can be set to
1 in numerical evaluations. We present a set of experi-
mentally measured parameters in Table I.

Next, we investigate linear and weakly nonlinear wave
propagation. In both scenarios, the linear dispersion
serves as important guidance for direct analysis and non-
linear corrections. With all nonlinear terms omitted, we
present the linearized equations of motion and derive the
linear dispersion relations [39],

ISAθ̈m,n +
∑
p,q

k1(θm,n − θp,q)= 0, (7)

ω =

√
k1(4− 2 cos(µx)− 2 cos(µy))

ISA
, (8)

INAθ̈m,n +
∑
p,q

(k2(θm,n − θp,q)+kgθm,n) = 0, (9)

ω =

√
4kg + k2(4 + 2 cos(µx) + 2 cos(µy))

INA
, (10)

where µx, µy and ω represent the wavenumber compo-
nents along lattice directions, and the angular frequency,
respectively.

For the SA lattice, Eq. (7) describes lattice dynamics
identical to a conventional rectilinear 2D monatomic lat-
tice, and Eq. (8) suggests an acoustic branch, depicted in
Fig. 1e. The NA lattice, on the other hand, contains an
anomalous stiffness term in Eq. (9) – the sum of adjacent
rotators’ displacement in contrast to the difference com-
monly seen in rectilinear lattices. This nuance gives rise
to optical dispersion captured by Eq. (10) and depicted
in Fig. 1f. The difference in group velocity sign, over the
entire Brillouin zone of each lattice, leads to broadband
negative refraction at the interface joining the two lattice
types.

To investigate the negative refraction, we layer the SA
and NA lattices as shown in Fig. 2a, and consider an
oblique incident wave for the interface problem. We pur-
posefully choose a small frequency range over which the
incident and receiving media exhibit spatial beaming be-
havior such that visual inspection leads to clear evidence
of negative refraction in a finite-sized lattice.

III. ANALYSIS AND SIMULATION

We next present linear and nonlinear analysis of the
negative refraction and its transmission. The numeri-
cal study considers a 90-by-90 rotator lattice split into
two domains: the incident SA lattice and receiving NA
lattice. The simulations are conducted in MATLAB by
directly integrating the governing equations of motion,
Eq. (5) and Eq. (6), via the MATLAB function ode45.
We assume the lattice is sufficiently large such that the
reflections from boundaries do not interfere with the re-
fraction pattern near the interface in the considered sim-
ulation time window.

A. Linear Analysis and Simulation

As shown in Fig. 2a, a 45-degree incident wave with
frequency f = 17 Hz and small amplitude A = 0.01 rad
transmits through the interface and refracts on the same
side of the normal. At this small wave amplitude, the
nonlinear effects are negligible. Since both media are
anisotropic and dispersive, a powerful tool to investigate
the refraction is the isofrequency contours plot derived
from the linear dispersion, Eq. (8) and Eq. (10).

Fig. 2b displays the isofrequency contours, where the
blue and red solid curve indicate the isofrequency con-
tour at the signal frequency for the SA lattice (incident
media) and the NA lattice (receiving media), respec-
tively. Two lower frequency contours are also displayed
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FIG. 2. Linear analysis and simulation of interfacing lattice structures. (a) Numerical demonstration of negative refraction at
signal frequency f = 17 Hz, and amplitude A = 0.01 rad. Each pixel denotes the normalized energy at an individual rotator. (b)
The isofrequency contours of the SA-type (blue) and NA-type (red) lattices. The contours at signal frequency (f = 17 Hz) are
highlighted using solid lines. Dashed contours denote lower frequencies. (c) Numerically measured wave vectors at highlighted
region in (a). The averaged wavenumber in each media is numerically evaluated and presented in the form of (µx, µy). (d) The
analytical and numerical energy transmission. The schematic of a control volume model to study transmission is embedded in
the center. Rotators 1, 2, 3, 4 belong to the incident media, and 5, 6, 7, 8 the receiving media.

as dashed curves, suggesting outward group velocity (gra-
dient of the frequency contour) for the incident media
(SA) and inward group velocity for the receiving media
(NA). The green arrow depicts the incident wave vector.
At the interface, the tangential wavenumber (µy) remains
unchanged due to momentum conservation, and the re-
fracted wave vector is thus constrained to fall along the
black dashed line. The black dashed line intersects the
receiving media’s isofrequency contour at two points, A
and B. To enable positive energy inlet for the receiving
media, the refracted wave vector (purple arrow) directs
from the origin to point A since the group velocity (red
arrow) has a positive component in the horizontal direc-
tion. We note that the group velocity and wave vector
at this point assume roughly opposite directions in the
receiving media. This counter-intuitive result is numer-
ically verified in Fig. 2c. The green and purple arrows
depict incident and refracted wave vectors measured at
each rotator (blue dot). The wavenumbers are computed

via the phase-difference method [40] using adjacent rota-
tors’ responses. Note that this method assumes periodic-
ity around the considered rotator, which does not apply
to the rotators at the center two columns.

Due to the dispersive nature of the media, the trans-
mission is frequency-dependent. We quantitatively derive
this frequency-dependence by matching two plane wave
solutions at the interface. A control volume straddling
the interface is illustrated in Fig. 2d, where four rotators
are displayed on each side of the interface. The steady-
state solutions for the rotators are informed by the dis-
persion relations in either media and the force balance at
the interface. With the dispersion relation established in
Eqs. (8) and (10), we provide the force-balance equations
at rotator 3 and 6 straddling the interface,

−ω2ISAθ3 + k1(θ3 − θ1) + k1(θ3 − θ2)

+k1(θ3 − θ4) + k1(θ3 − θ6) = 0, (11)
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−ω2INAθ6 + k1(θ6 − θ3) + (kgθ6 + k2(θ6 + θ5))

(kgθ6 + k2(θ6 + θ7)) + (kgθ6 + k2(θ6 + θ8)) = 0. (12)

By introducing the wave amplitude A, complex trans-
mission T and reflection coefficient R, we can describe the
steady-state response of each rotator θi in Table II. Sub-
stituting these assumed wave solutions back into Eq. (11)
and Eq. (12), we obtain two algebraic equations with two
unknowns, T and R. Note that the wave vectors for the
incident and receiving media, [µSAx , µSAy ] and [µNAx , µNAy ],
can be derived from the dispersion analysis presented in
Fig. 2b, given incident wave angle and frequency. In
Fig. 2d, we illustrate the frequency-dependent transmis-
sion from an energy perspective, ET = 1 − |R|2. The
dome-shaped transmission peaks at approximately f =
16.75 Hz, indicating an impedance matching between two
lattices. Similar to the specific acoustic impedance, the
specific elastic impedance in a discrete lattice can be
formulated as pressure (torque) over particle (rotator)
velocity P

v (or T
ω ). We note that the torque T is pro-

vided by either the horizontal or vertical elastic linkages.
Thus the impedance in each direction needs to be con-
sidered individually. Assuming plane wave propagation
ei(ωt−µxx−µyy), with angle φ = atan(

µy

µx
), we derive the

specific elastic impedance z for the SA and NA lattices
in each lattice direction respectively,

zSA.x(ω, φ) = −k1(1− eiµSA
x (ω,φ))

iω
,

zSA.y(ω, φ) = −k1(1− eiµ
SA
y (ω,φ))

iω
, (13)

zNA.x(ω, φ) = −kg + k2(1 + eiµ
NA
x (ω,φ))

iω
,

zNA.y(ω, φ) = −kg + k2(1 + eiµ
NA
y (ω,φ))

iω
, (14)

where [µSAx , µSAy ] and [µNAx , µNAy ] are dimensionless
wavenumber functions of frequency ω and wave angle
φ. Since the interface is vertically placed (two media
connected horizontally), a full transmission implies hori-
zontal impedance matching,

|zSA.x(ω, φi)|= |zNA.x(ω, φr)|,
|k1(1− eiµ

SA
x (ω,φi))|= |kg + k2(1 + eiµ

NA
x (ω,φr))|, (15)

where φi and φr denote the incident wave angle and
refracted wave angle respectively. For the considered
45-degrees incident wwave, this equation yields ω =
16.75Hz × 2π as the impedance matching frequency,
agreeing with the observation in Fig. 2d.

The gray regions in Fig. 2d (f < 16Hz and f > 21Hz)
indicate complex wavenumbers in the receiving media,
and trivial transmission in the far-field. From the isofre-
quency contour perspective, it suggests no intersection
between the black dashed line and the red contours in
Fig. 2b. This operation range is narrower than the

Rotator Expression

θ1 Ae−iωte−iµ
SA
x +R ·Ae−iωteiµ

SA
x

θ2 Ae−iωteiµ
SA
y +R ·Ae−iωteiµ

SA
y

θ3 Ae−iωt +R ·Ae−iωt

θ4 Ae−iωte−iµ
SA
y +R ·Ae−iωte−iµ

SA
y

θ5 T ·Ae−iωteiµ
NA
y

θ6 T ·Ae−iωt

θ7 T ·Ae−iωte−iµ
NA
y

θ8 T ·Ae−iωteiµ
NA
x

TABLE II. Assumed Solutions in Interface ROM

common passband range of the incident and receiving
media, as indicated in Fig. 1e and 1f (approximately
10Hz-24Hz). We note that the common passband in
Fig. 1e and 1f accounts for wave propagation in all pos-
sible directions, while the narrower common passband in
Fig. 2d corresponds to a 45-degree incident wave only.
As this specific angle, the operation range is naturally
narrower, as also indicated in the isofrequency contours
in Fig. 2b. Finally, analytical transmission curve quan-
titatively agrees with the observation in numerical simu-
lation.

B. Nonlinear Transmission

We next explore the refraction at higher amplitudes
where nonlinear effects emerge. Figures 3a and 3b de-
pict such a scenario – at incident wave amplitudes A =
0.08 rad and A = 0.16 rad, the increasing wave ampli-
tude decreases the transmission. Figure 3c compares the
time responses at the same rotator in the receiving field
under different incident amplitudes. The results indicate
the receiving amplitudes are approximately equal though
their incident amplitudes differ by a factor of two.

Tracing the time responses of rotators along the trans-
mission path, we plot the spatial evolution of the wave
amplitude in Fig. 3d under different incident amplitudes.
At low amplitudes, the transmitted waves maintain their
amplitudes along the transmission line, agreeing with the
linear theory. However, at higher amplitudes, an attenu-
ation envelope emerges after the interface. Noteworthy,
different from the attenuation envelope resultant from
the linear bandgap effect, this attenuation envelope does
not vanish in the far-field, but rather saturates the am-
plitude. This non-conventional behavior together with
amplitude-dependent transmission can be explained via
a perturbation analysis.

We use the Method of Multiple Scales (MMS) to quan-
titatively describe the observed nonlinear effect [41, 42].
Adhering to the MMS procedure [43], we introduce a
small parameter ε as a bookkeeping device to define mul-
tiple time scales,

T0 = t, T1 = εt, Tn = εnt. (16)
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Accordingly, time derivatives now become,

˙( ) = D0( ) + εD1( ) +O(ε2),

(̈ ) = D2
0( ) + 2εD0D1( ) +O(ε2), (17)

where Dn corresponds to the partial time derivative with
respect to Tn. Similarly, we expand the wave response as
an asymptotic series,

θm,n = θ(0)m,n + εθ(1)m,n +O(ε2). (18)

In Table I we notice the SA lattice has considerably
smaller nonlinearity compared to the NA lattice. Hence,
we deduce the observed nonlinear effects mostly arise
from the NA lattice nonlinearity. For simplicity, we treat
the SA lattice linear, and conduct MMS on the NA lat-
tice.

Substituting Eq. (17) and Eq. (18) into the NA lattice
equation of motion Eq. (6), we collect terms at the first

two orders,

O(ε0) :

INAD
2
0θ

(0)
m,n +

∑
p,q

[kgθ
(0)
m,n + k2(θ(0)m,n + θ(0)p,q)] = 0,

(19)

O(ε1) :

INAD
2
0θ

(1)
m,n +

∑
p,q

[kgθ
(1)
m,n + k2(θ(1)m,n + θ(1)p,q)] =

−2ID0D1θ
(0)
m,n −

∑
p,q

[γNA+ (θ(0)m,n + θ(0)p,q)
3

+γNA− (θ(0)m,n − θ(0)p,q)3 + γNAg (θ(0)m,n)3]. (20)

The solution to Eq. (19) assumes the form of a 2D
plane wave,

θ(0)m,n =
1

2
Ceiω0T0e−iµxe−iµy + c.c , (21)

where amplitude C is a complex quantity, and c.c denotes
the complex conjugate of the preceding terms. The dis-
persion relation of this 0th-order solution adopts the same
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form as in Eq. (10). In the implementation of MMS, we
typically express the complex conjugate in its polar form
to decouple the nonlinear effects on amplitude and phase
at slower time scales,

α= α(T1, T2, ...),

β= β(T1, T2, ...),

C = αeiβ . (22)

Substituting the 0th-order solution Eq. (21) and
Eq. (22) into the 1st-order expansion Eq. (20), we ob-
tain a lengthy expression on the right-hand side (omitted
here). This expression contains information to construct
the 1st-order solution, yet needs to be modified due to
the secular terms containing eiωT0e−iµxe−iµy and their
complex conjugates. Secular terms need to be removed
to avoid unbounded growth violating the asymptotic ex-
pansion in Eq. (18). By separating and removing secular
terms for the real and imaginary parts, we obtain two
ordinary differential equations governing slow evolution
of α and β,

D1α = 0, (23)

D1β =
α2

INAω0
[
3

2
γNAg +

9

2
(γNA− + γNA+ )

−3(γNA− − γNA+ )(cosµx + cosµy)

+
3

4
(γNA− + γNA+ )(cos 2µx + cos 2µy)] = δα2.

(24)

These results suggest that the wave amplitude α is not
a function of the slow time T1, and phase β contributes
to a frequency correction at the 1st-order [41],

ω = ω0 + εδα2. (25)

We present the nonlinear dispersion curves as isofre-
quency contours in Fig. 3e at a variety of wave ampli-
tudes. Similar to Fig. 2b, the blue contour at the center
corresponds to the incident media. It does not deform as
the wave amplitude increases. The isofrequency contours
for the receiving media, however, migrate away towards
the corners as the wave amplitude increases. Consider an
incident signal denoted by the green arrow in Fig. 3e. The
refracted wave maintains the tangential wave vector µy,
indicated by the black dashed line, which intersects the
amplitude-dependent dispersion of the receiving media at
a nonlinear-shifted µx. As the amplitude increases, the
black dashed line intersects the receiving media’s isofre-
quency contour at a distant point, resulting in a larger
difference in the phase velocity between the two media.
From an impedance perspective, given unchanged iner-
tia/density, the enlarging phase velocity difference leads
to an enhanced impedance mismatch, reducing the effec-
tive transmission.

If the amplitude is sufficiently large (e.g., the purple
curve at A = 0.06 rad in Fig. 3), the black dashed line
no longer intersects the isofrequency contour. As a result,

the wavenumber along the normal, µx, becomes complex.
In contrast to the linear theory, the nonlinear evanescent
wave does not decay to zero, but rather saturates the
amplitude below a threshold value, as observed in Fig. 3d.

This behavior of nonlinear evanescent waves is theoret-
ically analyzed in [44]. Typically, the nonlinear disper-
sion shift enables nonlinear passband extension (NPE)
and/or nonlinear stopband extension (NSE), in which
a propagating signal becomes a transitional evanescent
wave featuring the saturation effect. In the NA-type lat-
tice, the considered signal falls in the passband of the re-
ceiving media at low amplitudes (black dashed line inter-
sects with the isofrequency contour), but falls in the stop-
band at high amplitudes (no intersection between black
dashed line and the isofrequency contour), which meets
the definition of a NSE. Just past the interface, the trans-
mitted wave has high amplitude, which shifts the disper-
sion curves and the signal falls in the stopband. As the
amplitude decreases in transmission due to the bandgap
effect, the nonlinear effect also mitigates. As pertains
to the isofrequency contours, the shift lessens and the
contour tends to migrate from the largest-amplitude po-
sition (purple) back to a lower-amplitude position (e.g.,
yellow). Upon a threshold amplitude wherein the black
dashed line intersects the isofrequency contour, the am-
plitude attenuation ends, and the wave may propagate
at a lower amplitude. As such, the lattice serves as an
effective amplitude saturator. The saturation threshold
can be determined from Eq. (25),

Asat(ω, µy) =

√
ω − ω0(µx = π, µy)

δ(µx = π, µy)
. (26)

This quantity is a function of frequency ω, and incident
wavenumber µy. It has a numerical value of 0.058 rad in
this study. Noteworthy, the saturation profile in Fig. 3d
does not fully flatten in the far field due to a wavenumber
clipping effect [44, 45].

IV. EXPERIMENT

This section presents an experimental study of the neg-
ative refraction at the interface of two fabricated rotator
lattices. Due to the presence of dissipation and finite size,
this study focuses on verifying linear negative refraction.

Figure 4a depicts the schematic of the experimental
system – a matrix of 10x10 rotators (0.66m × 0.66m)
with the left five columns forming a SA lattice and the
right five an NA lattice. In each lattice, 3D-printed ro-
tators sit on low-friction bearings that are press-fit on
fixed shafts. The distance between adjacent shafts are
identical, a = 0.068m. The rotators adopt a multi-layer
structure, allowing spring connections in both lattice di-
rections. As depicted in the 3D illustrations in Fig. 4a,
the long springs (k1) in the SA lattice rotator (light blue
rotator on the left) are pinned at different layers of the
rotator such that the spring coils do not interfere. For
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FIG. 4. (a) Schematic of the lattice interface system. The left five columns represent the SA-type connected rotator lattice
(blue), where the right five columns the NA-type rotator lattice (red). The red star at the bottom left denotes the excitation
position. The scale bar on the top-left marks the size of the experimental unit cell, and the top-right the depth of each media.
(b) The dispersion relation of two lattices. Blue denotes the SA-type and red the NA-type. (c) The isofrequency contours of
the SA-type (blue) and NA-type (red) rotator lattices near the excitation frequency 18.5 Hz, highlighted in thick solid curves.
A pair of incident and refracted wave vectors are illustrated. (d) The schematic of the experimental setup with an elevated
camera. (e) A frame of an individual rotator with red crosses marking the feature (reflection tape). (f) The illustration of the
tracking point (blue) and the rotator center (red).

the NA lattice rotator (light red rotator on the right), the
short springs (k2) are all pinned at the same height. The
rotator design also supports the installation of additional
weights (screws and nuts) on the circular plate to tune
the moment of inertia. In the experiment, we consider 5
pairs of screws and nuts for each SA lattice rotator and 12
screws and 48 nuts for the each NA lattice rotator. This
procedure enables a common passband between the two
lattices, given a limited variety of extension springs, and
minimizes the damping effect on the wave propagation.

We use a single shaker (Brüel & Kjær 4810) to excite a
continuous incident wave by prescribing the motion of the
rotator at the bottom left corner, highlighted by the red
star in Fig. 4. At a frequency of approximately 18.5 Hz
(indicated as the dashed line in Fig. 4b), the isofrequency
contour admits a rounded parallelogram shape (blue solid
contour in Fig. 4c). Since the group velocity is always
perpendicular to the isofrequency contour, the point ex-
citation at the frequency induces a strong wave-beaming
effect along 45 degrees towards the interface [39]. Due to
the nature of the single point source, the incident wave
contains a mixture of wave vectors despite its highly di-
rected energy flow. The mixed wave vectors affect the
refraction transmission, yet do not alter the negative re-
fraction pattern.

Upon excitation, the wave travels to the interface and

splits into refracted and reflected components. This pro-
cess is recorded by a high-speed camera positioned 1.22m
above the lattice, as shown in Fig. 4d. At such a height,
we ensure the error from the perspective geometry is
sufficiently small. The camera records at 60fps with
3840x2160 pixel resolution covering the entire 100-rotator
matrix.

The data extraction involves two steps: (i) tracking
the feature points and (ii) converting it into angular dis-
placement and velocity. Fig. 4e presents a rotator image
cropped from a single frame of the recording. The fea-
ture points are covered by reflection tape and marked by
red crosses. We use a Kanade-Lucas-Tomasi algorithm-
based MATLAB function, PointTracker, to track the
movement of the reflection tape for each individual rota-
tor. By relating the position of the reflection tape (blue
dot) to the center of the rotator (red dot), as illustrated
in Fig. 4f, we compute the angular displacement for each
rotator and collectively monitor the global dynamics of
the lattice. To remove small offsets on the angular dis-
placement measurements, we present the results in terms
of its time derivative (angular velocity) in Fig. 5.

Fig. 5a depicts a video frame of the global dynamics,
where the size of each blue dot is shown in proportion
to the rotator’s angular velocity. In the receiving me-
dia, we observe most of the energy is refracted into the
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FIG. 5. (a) Single Video frame from the experiment. The blue dot depicts the angular velocity of each rotator at the current
frame. The orange line denotes the interface. (b) The experimental time response of the bottom right (blue) and the top right
rotator (red). (c) The numerical time response of the same two rotators as in (b). (d) The experimental average kinetic energy
at each rotator. (e) The experimental frequency-transmission relation for the negative refraction receiver and the positive
refraction receiver.

bottom right quarter, demonstrating negative refraction.
Beyond this frame, we capture the full time history of
the dynamics at the top right corner (positive refraction
receiver), and bottom right corner (negative refraction
receiver), and present them in Fig. 5b. The response
at the negative refraction receiver is approximately three
times higher than that of the positive refraction receiver,
providing quantitative evidence for negative refraction.
We note that the positive refraction receiver has nontriv-
ial readings due to the vibration of the finite structure,
which is not seen in the Sec. III study. Accordingly, we
numerically simulate the 10x10 experiment lattice with
a point source placed at the left-bottom corner and dis-
sipation modeled as uniform viscous damping. The sim-
ulation result is illustrated in Fig. 5c, which reaches a
high-degree of agreement with the experiment.

From an energy perspective, the time-averaged kinetic

energy in Fig. 5d reveals a more distinct pattern for the
negative refraction. We identify the negatively refracted
energy and positively refracted energy in the green and
red square box, respectively. By comparing them to the
source energy, which can be recognized from the black
contour at bottom left, we quantify the energy transmis-
sion in Fig. 5e. At the specified frequency range where
directivity permits beaming incident waves, the nega-
tive refraction energy transmission is consistently higher
than the positive refraction transmission. The frequency-
dependent pattern deviates from the numerical predic-
tion in Fig. 2d primarily due to the point source excita-
tion and finite size of the lattice. The experimental trans-
mission is lower than the theory due to dissipation and
imperfect periodicity. We further evaluate the robustness
of the observed negative refraction via a sensitivity study
documented in Appendix II.
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V. CONCLUDING REMARKS

We observe robust negative refraction between two
simple rotator lattices in numerical simulations and ex-
periments. The two proposed rotator lattices share a
similar structure but have a subtle difference of spring
attaching location. This variance configures the dis-
persion relation of the lattice to be either acoustic
with positive group velocity or optic with negative
group velocity. Since the group velocities have oppo-
site signs over the entirety of both lattices’ Brillouin
zones, the negative refraction is inherently broadband.
At low amplitude, a linear dispersion analysis illustrates
the negative refraction mechanism, and demonstrates
frequency-dependent transmission. The experimental re-
sults quantitatively agree with the numerical simula-
tions. At higher amplitudes, perturbation analysis re-
veals amplitude-dependent transmission and a nonlinear
saturation effect, verified in numerical simulations. A
parameter sensitivity test indicates robust negative re-
fraction in the rotator lattices with the presence of small
imperfections.
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VI. APPENDIX I

This appendix presents the explicit expressions for lin-
ear and nonlinear stiffnesses as well as a brief introduc-
tion of the experimental parameter identification process.

Both SA and NA lattices have the same lattice con-
stant a, and rotator radius r. Rotators in the SA lattice
are connected via elastic linkages with stiffness kSA, and
undeformed length LSA0 . The associated linear and non-
linear stiffnesses are given as,

k1= 2kSAr2, (27)

γSA+ =
kSAr2LSA0

6a
, (28)

γSA− =
kSAr2(LSA0 − 2a)

6a
, (29)

γSAg = −4kSAr2LSA0
3a

. (30)

Rotators in the NA lattice are connected via elastic
linkages with stiffness kNA, and undeformed length LNA0 .
We introduce an edge-to-edge distance between two NA-
connected rotators in the equilibrium position, D = a−

Parameter kSA(N/m) kNA LSA0 (m) LNA0

Value 39 820 0.0312 0.0012

Parameter r(m) a(m)

Value 0.03 0.068

TABLE III. Experimentally identified system parameters

2r, such that the stiffnesses are given as,

k2=
kNAr

2(D − LNA0 )

D
, (31)

kg= kNAr(D − LNA0 ), (32)

γNA+ =
kNAr

2LNA0

2D

(
r2

D2
+

5r

6D
+

1

6

)
, (33)

γNA− =
kNAr

2

6

(
1− rLNA0

2D
− LNA0

2D

)
, (34)

γNAg =
kNAr

2

3

(
2r2LNA0

D2
− r +

LNA0

D
− D − LNA0

2

)
.

(35)

The parameter identification process for NA and SA
lattices is similar to the approach taken in our previous
work [32]. By isolating each unit cell from the lattice,
we experimentally measure its free oscillation response
at different moments of inertia (controlled by adjusting
the number of bolts and nuts) and energy levels. The
collected results are fit to our analytical model, Eq. (5)
and Eq. (6), via MATLAB’s function patternsearch. In
Table III, we also provide the average stiffnesses and un-
deformed lengths of the physical springs used in the ex-
periments for reference.

VII. APPENDIX II

To evaluate the robustness of the results, we assess
the sensitivity of the negative refraction pattern subject
to imperfect periodicity. In the numerical model of the
10x10 lattice, we introduce spatial randomness to the fol-
lowing parameters individually: rotator inertia (ISA and
INA), radius (r), spring spacing (D0), short spring un-
deformed length (L0), and spring stiffnesses (k1 and k2).
The randomness is sampled from normal distributions
with standard deviation equaling 2.5% of a parameter’s
expected value,

{P}N×1 ← {N (P ; (2.5%P )2)}, (36)

where {P} represents the vector of an arbitrary param-
eter, and N denotes the number of elements contain-
ing such parameter in the 10x10 lattice structure. For
example, if the parameter of interest is the SA lattice
rotator inertia, we have P = ISA, and expected value
P = 1.95E-5 kgm2. There are 50 SA rotators in the
system, so N = 50.
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FIG. 6. (a) The sensitivity test for system parameters, shown as a boxplot. 20 numerical simulations at small signal frequency
f = 18.5 Hz are used for each parameter study. (b) The experimental results of the system excited from the top-left corner
instead of the bottom left. The average kinematic energy is plotted.

For each parameter sensitivity test, we consider 20 sets
of spatial randomness sampled from Eq. (36), and con-
duct simulations individually. We analyze the amplitude
ratio between the negative refraction receiver and posi-
tive refraction receiver. The results are illustrated in the
boxplot in Fig. 6a. We observe that at the considered
randomness level, the amplitude ratio is strictly larger
than 1, implying a robust negative refraction. Addition-
ally, the amplitude ratio is most sensitive to the geomet-
ric parameters r, D0 and L0. The variance resulting from

spatial fluctuations on inertia and stiffness is small. The
results connect the negative refraction performance to in-
dividual system parameters and suggest the significance
of geometry resolution for designs and fabrications.

In addition to the parameter fluctuations, we provide
an experimental result with varied excitation location
(top left corner). Fig. 6b depicts the results in terms
of time-averaged kinetic energy. We observe a negative
refraction pattern with refracted energy directed towards
the top right, as expected.
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