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Fast, sensitive, and compact devices that implement nonlinear activation functions are needed to
form fully-connected photonic neural networks (PNNs). However, even in highly nonlinear media,
optical nonlinearities are relatively weak. We propose here a scheme for implementing nonlinear
activation functions that relies on bandstructure-engineered nanostructures. This scheme realizes the
smallest possible hybrid optoelectronic approach, relying on fast electronic processes to implement
nonlinearity instead of a true optical nonlinearity. Using well-established simplified density matrix
models, we demonstrate architectures that exhibit a low-intensity threshold of 3.5 µW along with a
fast optical response of 10 ps in a relatively small linear footprint of 4 µm. We also show that PNN
training performance is improved in handwritten pattern recognition when applying our simulated
nonlinear activation function, indicating potential for creating deep fully-connected PNNs.

I. INTRODUCTION

Deep learning algorithms have had a remarkable im-
pact on many technologies [1]. One of the essential tools
for deep learning, artificial neural networks, allow for
any function to be learned given a sufficiently large net-
work and training on a sufficiently large data set. Their
power lies in parallel computations of two aspects: linear
matrix-vector operations and nonlinear activation func-
tions. Recent developments have greatly improved the
performance of each, such as the use of graphical pro-
cessing units for faster linear matrix multiplication [2]
and the introduction of rectified linear units for nonlin-
ear processing [3].

While traditional artificial neural networks use elec-
tronics as the information processing medium, photonic
neural networks (PNNs) use photons to perform calcula-
tions [4]. PNNs could potentially be appealing for highly
dense processing platforms due to their high power effi-
ciency, low latency, and ultrawide bandwidths [5, 6]. The
linear computations of PNNs can be constructed with
fairly simple optical elements, such as programmable
Mach-Zehnder interferometers [7, 8], wavelength divi-
sion multiplexers [9], and diffractive optical elements
[10, 11]. Moreover, convolutional accelerators can in prin-
ciple achieve speeds of 1 petaflops [12], and power ef-
ficiency of MZI-based passive nanophotonic circuits are
reported at least five orders of magnitude better than
conventional GPUs even for deep neural networks [7]. As
more mature and systematic PNN models and fabrication
processes may decrease the cost of large-scale photonic
circuit integration [13–16], PNNs could become more
comparable to electronic processors. However, PNNs
still have several bottlenecks that have made them less
competitive than electronic neural networks, particularly
with respect to the nonlinear activation function. One of
the main reasons for this is that optical nonlinearities
[17, 18] are intrinsically weak, making low-power opera-
tion challenging. Although it is possible to address this
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issue by enhancing nonlinearity in a resonant cavity or
long waveguide, implementing high-intensity inputs, or
other all-optical approaches such as relying on free-carrier
dispersion [19, 20], phase change materials [21], or pho-
tonic lattices [22], the requirements on device footprint
and energy consumption creates a severe speed-power-
size tradeoff. This limits the prospects for information
processing and large-scale integration.

An alternative strategy relies on hybrid electronic-
photonic approaches [23–27], which bypass this issue by
relying on electronics to implement a nonlinearity. There
are multiple ways of accomplishing this, but the most
general implementation converts an optical signal into an
electrical one, amplifies the electrical signal, and uses the
amplified signal to drive a modulator of some kind. Pro-
vided the modulator response is nonlinear in the field,
this can provoke a nonlinear response. One could also
add additional nonlinearity through the use of conven-
tional electronics. While these optical-to-electrical-to-
optical approaches can in principle be compact and sen-
sitive, they sacrifice most of the large bandwidth avail-
able to photons. In addition, they require sophisticated
microwave engineering to properly extract and amplify
the signal at high speeds. Meanwhile, their speeds are
typically limited by the same mechanisms limiting con-
ventional CMOS, which is already very developed.

From a fundamental standpoint, how small and fast
can hybrid devices be made? Each of the core elements
can be implemented using a two-level quantum system—
detection by absorption, amplification by resonant tun-
neling, and modulation by the quantum-confined Stark
effect (see Fig. 1a and 1b)—and so it stands to reason
that only a few levels are needed to implement hybrid
nonlinearity. In this work, we show that bandstructure-
engineered devices can act as integrated hybrid nonlinear
activation functions, potentially acting as scalable drop-
in elements for photonic neural networks.

The approach we consider here relies on intersubband
(ISB) nanostructures and leverages the nanostructure’s
nonlinear electrical properties to modify its linear opti-
cal properties. As these devices do not require extrac-
tion of any electrical signal, they can in principle achieve
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FIG. 1. (a) Simplest schematic representation of a hybrid electronic-photonic nonlinear activation function. (b) Three-level
microscopic schematic for a nanostructure that implements the same functionality. (c) Vertical layout of an intersubband
nanostructure implementing nonlinearity, showing the optoelectronic active region and waveguiding layers. The length of the
device is on the order of micrometers. (d) Current-voltage relation of the active region under different illumination conditions.
When biased, the current and voltage of active region are selected by the intersection with a finite impedance load line. At low
illumination, the active region selects a high voltage. At high illumination, it selects a lower voltage.

operation speeds that are on par with the fastest elec-
trical devices while achieving excellent sensitivity (µW-
thresholds), fast speeds (ps-level), and in small foot-
prints (µm2-level). Based on numerical simulations of the
ISB nanostructures using on a periodic Density Matrix-
Schrödinger Poisson (DM-SP) model, we demonstrate
that such a nonlinear activation function has potential for
creating deep fully-connected PNNs. A large transmis-
sion contrast between light on-off states is found, while
a low activation threshold and a relatively fast response
time is achieved. Based on these results, a neural network
is implemented that shows the capabilities of the ISB de-
vice as an element-wise nonlinear classifier. While the
approach considered here relies on intersubband devices
in established platforms and is therefore limited to oper-
ation in the mid-infrared (analogous to quantum cascade
lasers), similar principles can be used to make interband
devices (analgous to interband cascade lasers) or inter-
subband devices based on high-barrier quantum wells.

II. BASIC PRINCIPLE

To illustrate the principle of how optoelectronic non-
linearity can arise in ISB nanostructures, we consider
the simplest system that demonstrates this behavior: a
three-level system. A schematic is shown in Fig. 1b. The
entire multiple quantum well system within one mod-
ule is divided into a low-doped active region and a high-
doped injector. The active region mainly involves in-
tersubband transitions and consists of two aspects: an
absorption transition where photons are absorbed and a
resonant tunneling transition where electrons can tun-
nel. Because electronic transport is a function of photon
absorption, this portion acts as a photodetector. In ad-
dition, if the main optical transition is diagonal, this por-
tion of the structure will be sensitive to the field across
it. In this sense, it acts as a modulator. Finally, the

presence of a resonant tunneling stage acts to provide
electrical gain. When it is properly biased, the current
passing through the structure reaches a maximum; be-
yond this point it exhibits negative differential resistance
(NDR). This structure can be repeated and inserted into
a typical dielectric waveguide (see Fig. 1c).

To see how this structure gives rise to hybrid nonlin-
earity, assume that the injector region is heavily-doped,
so that its current-voltage relationship is approximately
linear. The entire structure can then be treated as the
active region (which exhibits NDR) and a load resistor
connected in series (see Fig. 1d). If the bias across the
whole structure is chosen so that the load line just misses
the peak of the off-state curve, the system will behave
very differently depending on the incident intensity. At
low illuminations, the active region is overbiased (point
B), the optical transition is detuned, and the net absorp-
tion of the structure is low. When illumination exceeds
the intensity threshold, the active region is properly bi-
ased (point A), electrons tunnel robustly and the absorp-
tion becomes high. Consequently, the transmission of the
ISB nanostructure varies with the illumination’s inten-
sity, leading to a thresholding behavior and a nonlinear
optical response of output intensity. Note that for dif-
ferent designs, the nanostructures could exhibit different
activation behavior. For instance, the more detailed sim-
ulations in this work use a short injector with mini-band
resonant tunneling, which itself exhibits NDR. Thus, the
absorption rate would reach a high level at low illumina-
tion while deceasing at high intensity. This hybrid ap-
proach achieves an effective nonlinear response without
relying on nonlinear optics. Instead, it derives its nonlin-
ear properties from an electrical nonlinearity present in
an optical system.

The proposed ISB devices for PNN nonlinear activa-
tion have several unique features, chief among them be-
ing compactness. The detection comes from intersub-
band absorption, gain comes from resonant tunneling,
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and modulation comes from potential-tuned absorption.
All of the elements in traditional hybrid approaches are
still present, but within a few nanometers of each other.
Another key feature of this approach is that its optical
nonlinearity is induced by resonant tunneling, which is
essentially the fastest known electrical process. The pres-
ence of NDR in resonant tunneling diodes can provide
gain and nonlinearity up to terahertz frequencies [28],
which is comparable with most PNNs using photodetec-
tion. Therefore, compared with optical-to-electrical-to-
optical approaches [23, 24, 26, 29], ISB nanostructures
can work as highly integrated nonlinear activation cir-
cuits for ultra-fast PNNs without separated photonics
devices. This scheme provides more benefits over dis-
crete optoelectronics since the signal is never extracted
from the device, eliminating the sophisticated microwave
engineering that would be required for high-speed op-
eration. Our design also presents a convenient way for
probing and in situ monitoring. Since this nanostructure
is effectively a modified quantum well infrared photode-
tector, one could probe each neuron state in the system
by simply measuring the current. One could similarly
read the output of the system directly without any addi-
tional detectors, which is critical for efficiently training
the network [30]. The nanostructures are reminiscent of
quantum cascade laser (QCL) gain media and are highly
compatible with QCL gain media. By growing gain me-
dia above or below the neuronal layers, regenerative gain
could be added, which would be beneficial for deep PNNs
[31].

These intersubband neuron devices have some de-
sign features in common with both mid-infrared QCLs
[32] and quantum well infrared photodetectors (QWIPs).
Intersubband systems have very fast (∼ps) scattering
times, which is beneficial for making fast detectors [33]
and frequency combs [34]. The waveguides and active
region are on InP substrates and have periodic mod-
ules composed of ternary InGaAs/InAlAs, one of the
most well-established material systems available for in-
tersubband photonics, with simulated waveguide losses
of ∼1 cm−1. To implement a nonlinear optical trans-
fer function, bias is added on the top of the device for
threshold tuning and hysteresis reset (the highly-doped
substrate provides the ground). An incident photon gen-
erated by compact lasers such as QCLs is then shined
into one side of the device, and the output is the light
that has been modulated by the nonlinear absorption re-
sponse. Of course, the major limitation of the structure
considered here is that ternary InGaAs/InAlAs can only
be effectively designed in the mid-infrared, as the barrier
height is too low for the near-infrared telecommunication
wavelength (1550 nm). We consider this system because
it is the most well-established and most well-understood
for bandstructure engineering—to address this limita-
tion, advances in material growth are needed (particular
tall-barrier systems like the III-Nitrides).

III. THEORY

To demonstrate the efficacy of this approach, we use
the well-established simplified density matrix approach,
which treats each subband as a single state and relies
on effective scattering rates [35–38]. This allows us to
calculate both the nonlinearity of our structure as well as
its transient response. We use a nearest-neighbor tight-
binding model, which allows states in adjacent modules
to couple [39]. Each module contains N basis states that
are calculated from one-dimensional Schrödinger-Poisson
equation:

−~2

2

∂

∂x

1

m∗
∂ψ

∂x
+ V ψ = Hψ = Eψ, x ∈ (0, L) , (1)

−εrε0
∂2V

∂x2
= e2(n− nD), (2a)

V (0) = 0, V (L) = −eU, (2b)

where ψ is the wavefunction, L indicates module length,
~ is reduced Planck constant, m∗ is the effective mass of
an electron, U is the potential drop within one module,
nD is average doping density, εr is relative permittivity
and ε0 is the permittivity of vacuum.

In order to statistically describe the interactions of
these quantum states ψ, a simplified density matrix
model, which has been widely used in QCL simulations,
is introduced. A general density matrix ρ is defined by:
ρ =

∑
i ωi |ψi〉 〈ψi|, where ωi is the probability of the

ith state. In a nearest-neighbor three-period system, the
block matrix ρ and Hamiltonians can be expressed as

ρ =

 ρ0 ρ−1 ρ1

ρ1 ρ0 ρ−1

ρ−1 ρ1 ρ0

 (3)

and

H =

H0 + eU H−1 H1

H1 H0 H−1

H−1 H1 H0 − eU

 (4)

where ρ0 represents the density matrix in the center mod-

ule and ρ1 = ρ†−1 represent the coherence of the center

module with its neighbor. Each block contains N2 ma-
trix elements, as

ρ0 =

 (ρ0)11 · · · (ρ0)1N
...

. . .
...

(ρ0)N1 · · · (ρ0)NN

 . (5)

The time evolution of the density matrix is given by
the quantum Liouville equation:

∂ρ

∂t
=

1

i~
[H, ρ] +

1

i~
[H ′, ρ] + Γρ, (6)

where the first term describes the coherent transport of
the system (corrected to account for the energy shift per
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module), the second term represents coherent interac-
tion with the incident photon, and the third includes de-
coherence and scattering, obtained using the thermally-
averaged Fermi’s golden rule. It has a block matrix form
of

Γρ =

 Γρ0 Γ||ρ−1 Γ||ρ1

Γ||ρ1 Γρ0 Γ||ρ−1

Γ||ρ−1 Γ||ρ1 Γρ0

 . (7)

In the above expression, Γ||ρ contains only dephasing
between the states of different periods, while Γρ contains
both intraperiod scattering and dephasing [40, 41].

Each block can be described by

(Γρ)nm = −1

~
Γ||nmρnm, n 6= m, (8a)

(Γρ)nn =
1

~

∑
n 6=m

Γmnρmm − Γnρnn

 , (8b)

where Γmn is the scattering between the mth state and
nth state, Γn represents the total intersubband scattering
rate, and Γ||nm represents the dephasing rate between the
nth state and mth state, which has the following form:

Γn =
∑
n 6=m

Γnm, (9a)

Γ||nm =
1

2
(Γintra + Γm + Γn) +

~
T ∗2

. (9b)

Here, Γintra is the intrasubband scattering rate (which
includes interface roughness and LO phonon scattering)
and T ∗2 is the pure dephasing that randomizes phase.

For simplification, the Liouville equation (6) can also
be written in a linear system form with superoperators:

dρ

dt
= (LC + LS + LD + LOD) ρ. (10)

This linearized equation (10) involves the coherent su-
peroperator LC , the scattering superoperator LS , the de-
phasing superoperator LD, and the optical drive super-
operator LOD.

To find steady-state solutions of the Liouville equa-
tion (10), the rotating-wave approximation is adopted.
Diagonal elements of the density matrix indicate popu-
lations in different states, while off-diagonal elements de-
note coherence between states. After solving equation (1)
numerically, a steady-state density matrix ρ is attained,
and a new electron density can be founding using

n(x) = nDρ(x, x), (11)

where ρ(0) is the self-consistent steady-state density
matrix under the initial environment. In this tran-
sient simulation algorithm illustrated as Fig. 2, the fast-
changing density matrix would affect the slowly evolved

Solve Schrodinger Poisson-Density Matrix equation:

Stop

No

Yes

Self-consistent Schrodinger Poisson solution:

FIG. 2. Flow chart of self-consistent transient DM-SP algo-
rithm, where q is the iteration number.

electron density in Eq. (11). The potential distribution
is then altered by equation Eq. (2a). Subsequently, a dis-
torted band leads to varied wavefunctions by Eq. (1), gen-
erating a new Hamiltonian and coherent superoperator.
This in turn changes the density matrix, and these effects
continue until a new balance is reached. Similarly, when
the bias is varied in time the boundary condition of the
Poisson equation can be allowed to be time-dependent;
the absorption value is calculated at each time step and
the entire response can be attained.

To implement the entire DM-SP process, the potential
is initialized to be linear under a constant bias. Iterations
between Eq. (1), Eq. (2a), Eq. (10), and Eq. (11) would
yield a self-consistent steady-state DM-SP solution. Al-
though this calculation is fully quantum, to improve our
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mination (c,e) and without illumination (b,d). The gray shaded regions represents the injector, and the red shaded regions
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3.7 × 1018 cm−3, while other layers are n-doped with a doping level of 5 × 1017 cm−3. Results are calculated self-consistently
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understanding of device operation we also compute the
semiclassical absorption rate using:

α = Γ̄
∆Ne2fn→mγ(ν)

4m∗cnrε0L
, (12a)

fn→m =
2m∗(Em − En)

~2
|zn→m|2 , (12b)

∆N = nD(ρnn − ρmm), (12c)

zn→m = 〈ψn |ẑ|ψm〉 , (12d)

where Γ̄ is the mode confinement factor, fn→m is the
dimensionless oscillator strength, zn→m is the dipole mo-
ment matrix element, Em is the energy level of mth state,
nr is the refractive index, c is the speed of light, ν0 is
transition center frequency and γ(ν) is the normalized
lineshape, found from (9b).

For transient simulations under time-varied illumina-
tion, we start by computing the self-consistent DM-SP
steady-state solution with an initial optical drive su-
peroperator LOD. When the interaction superoperator
changes from LOD to L′OD at t0 = 0, all variables related
to the density matrix reach a new equilibrium. The evo-
lution of the density matrix can then be formally written
in terms of matrix exponentiation as

ρ(t0 + ∆t) = ρ(0)e(LC+LS+LD+L′
OD)∆t, (13)

IV. DESIGN AND SIMULATION

To investigate the performance of hypotheti-
cal intersubband neurons, we designed and sim-
ulated a device. We designed a lattice-matched

In0.53Ga0.47As/In0.52Al0.48As ISB nanostructure with
a device length Ldev = 1 µm and a modal area of
2.3 × 5.2 µm2. The ISB device with 57 modules was
embedded in In0.52Al0.48As waveguide grown on n-doped
InP substrate for planar optical confinement. For such a
waveguide, a simulation result shows a loss of 1.06 cm−1

and a fundamental mode confinement factor of 0.67
(see Fig. 3a). The incident light has energy of 0.185 eV
(wavelength of 6.7 µm) and interacts with the structure
at optical powers ranging from 10−8 W to 10−3 W. The
pure dephasing rate assumed for optical calculations
and transport is 0.2 ps, while the device temperature is
300 K. In the device absorption simulation, we assume
unity mode confinement factor for consistency. The
position grid is 0.7 Angstroms and the time step for
transient simulations is 0.1 ps to ensure the convergence
of the numerical results.

The periodic energy band profile under a constant bias
of 2.3 V/µm is calculated in Fig. 3 from steady state
solution of self-consistent DM-SP model. The entire
doping of the nanostruture is at a relatively high level
(5× 1017 cm−3 for active region and 3.7× 1018 cm−3 for
multi-well injector), which ensures that enough carriers
are available to make absorption efficient, keeping the
device footprint small and the impedance low. Due to
mini-band resonant tunneling (states in red shaded re-
gion), the structure possesses an NDR regime in the ab-
sence of light (see Fig. 4a). In order to create appropriate
NDR, barriers in the active region and multi-well injec-
tor should be carefully chosen. Too thick, and electrons
do not efficiently tunnel into next states and relax back
down to the tunnel barriers, making the efficiency of the
device low. Too thin, and the current-field relation will
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FIG. 4. (a) Simulated current-field relation without illumi-
nation. (b) Absorption (in the modules) and (c) potential
distribution (of three modules) comparison between ISB light-
on state and light-off state under constant applied field. (d)
Transmission as a function of input optical power and struc-
ture bias. The transmission is effectively a step function,
whose threshold can be tuned by choice of structure bias. The
device length is Ldev = 1 µm, the modal area is 2.3×5.2 µm2,
and the temperature is 300 K except when stated otherwise.
All data is taken from steady-state simulations.

be less nonlinear, as for a two-level system current density
is a Lorentzian function of the energy separation, with a
linewidth proportional to the anticrossing strength [42].
In the absence of optical interaction, resonant tunneling
within the active region is not sufficient. The absorption
of the structure, mainly involving states |1〉 and |2〉, is
tuned onto the laser frequency. As a result, the net ab-
sorption of the structure is high. When sufficient light
is present (> 3.5 µW), a portion of electrons shared by
main absorption states moves from left to right within the
active region, causing population decrease and band dis-
tortion. The altered energy band thus aligns states that
are responsible for resonant tunneling (especially states
|1〉 and |4〉), creating a better channel for transport. In
addition, the flow of electron density in the active region
leads to a change of the wavefunction shape of state |2〉
and |3〉, and the oscillator strength between the main ab-
sorption states decreases, making the ISB nanostructure
more diagonal. Furthermore, the change of space charge
would also detune the optical transition by varying the
energy difference in the main absorption states. In sum-
mary, the combination of a diagonal structure, reduced
population within the main absorption states, and fre-
quency detuning can all suppress the absorption as light
impinges on the structure [43], as shown in Fig. 4b.

Figure 4c shows the potential distribution of three
modules under different illumination conditions, show-

ing that the potential distribution can change drastically
between the light-off and light-on (5 µW) states. In the
design, substantial difference of the doping level between
the active region and the injector is adopted to enhance
the effect. Even though the extra current is small, it
causes the structure to lose electrical stability, abruptly
changing the internal space charge. Within one module,
this causes the bias to decrease in the active region while
increasing the bias in the injector within one module.
This potential drop redistribution results in insufficient
bias on the active region, making the absorption decrease
with higher optical power.
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The absorption optical sensitivity of the ISB nanos-
tructure under fixed bias is shown in Fig. 4d. It ex-
hibits behavior reminiscent of saturable absorption—
transmitting high intensities while blocking low inten-
sities, with a large transmission modulation of ∼ 0.6
(corresponding to 4.8 dB/µm). Moreover, the absorption
value remains nearly the same when the optical power
is below or above the threshold; thus, it also acts as a
step transmission function. In this ISB nanostructure
design, a relatively small threshold at 3.5 µW is achieved
due to the competing effects of the two different NDRs.
In addition, the optical threshold can be tuned by se-
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lecting different constant biases, providing a degree of
freedom for determining its nonlinear response and allow-
ing for in situ optimization of the activation. As shown
in the figure, the sensitivity at 310 K could be tuned to
nearly the same one as 300 K by selecting different biases.
Therefore, optimization of the bias would help the ISB
device tolerate temperature changes, or other variations
like doping and well width fluctuations.

The transient evolution of the transmission is shown in
Fig. 5. When the system is in a high-transmission state
and the optical intensity of 0.1 mW turns off, the sys-
tem responds by transiting to a low-transmission state.
This occurs in just 10 ps, which would be difficult to ac-
complish with pure electronics. However, we found that
this design also exhibits a hysteresis, caused by the space
charge becoming trapped on one side of the injection
barrier. Conceptually, this is similar to what occurs in
high-sensitivity photodetectors, which usually need to be
quenched once they have fired. While such hysteresis ef-
fects could be used to store information [44] and to make
recurrent neural networks, it is not ideal for the imple-
mentation of straightforward networks. To bypass this
issue, we reset the device from light-off state to light-on
state by applying a 40 ps ramp to the applied bias to
re-arm it. (Note that this scheme does not require in-
formation processing: re-arming could be performed at
very high speeds and at a constant rate, such as by a sin-
gle global clock. In addition, the entire neuron network
could be re-armed at the same time by only a single volt-
age modulator.) Once the device has been reset, it is
free to fire once again. Note also that fast transmission
change also occurs when the light turns on (without hys-
teresis), although the contrast is reduced.

V. HANDWRITTEN DIGIT RECOGNITION

Next, we demonstrate the efficacy of our devices as
a nonlinear classifier in a simulated network. In the
ISB nanostructure, transmission as a function of input
power resembles a step function, creating the nonlinear-
ity needed for PNNs. Our simulation results demonstrate
that these devices can have small footprints, low optical
thresholds, and relatively short latencies. Therefore, ISB
devices represent a promising direction for nonlinear acti-
vation function in PNNs operated at high speeds and low
power. The activation function according to the simu-
lated transmission optical sensitivity, which describes the
normalized output signal intensity as a function of nor-
malized input signal intensity, is shown in Fig. 6c. The
nonlinear activation behaves like a modified Parametric
Rectified Linear Unit, with a suppressed transmission for
inputs with low intensity and a large transmission for in-
puts with intensity above threshold [23]. It is also an
odd function since the difference between signals with
positive and negative intensity is only reflected by their
phases [45]. In addition, the ISB nanostructure is basi-
cally a square law device and does not need to be phase

coherent.

For the demonstration of the PNN-based handwritten
digit recognition task, a feed-forward two-layer shallow
network is configured using handwritten digits obtained
from the Modified National Institute of Standards and
Technology (MNIST) database, which is one of the most
commonly used datasets in machine learning [46]. It con-
tains 60, 000 training images and 10, 000 testing images
with 28×28 grayscale pixels, labeled by number 0–9. The
grayscale value of each pixel is normalized into the range
of [0, 1] for fitting the normalized input intensity.

The structure of a fully connected feed-forward optical
neuron network in this application is depicted in Fig. 6a.
The entire PNN architecture consists of 784 inputs, cor-
responding to 282 real pixel value, and 10 final outputs,
corresponding to 10 digits. There are Nn = 40 neurons
in the hidden layer and 10 neurons in the output layer.
In each layer, the information vector is multiplied by a
weight matrix and then processed by an element-wise ac-
tivation function to generate outputs. In the demonstra-
tion, 4 µm long device is chosen since it has the largest
amplitude modulation depth, which could offer the best
activation nonlinearity (see Fig. 6b). We also assume
that the large number of optical inputs are achieved by
high-power laser with power splitters [47] or array of
QCLs [48], and the PNN operates under optical pulse
width larger than optical response time of the device to
reach the light-on steady state. A comparison between
a linear classifier and a nonlinear classifier based on ISB
nanostructures (ISB nonlinear activation function) was
carried out in a hidden layer. The loss function was com-
puted by softmax, which is commonly used for multi-class
image classification [49]. It normalizes the intensity out-
puts of the PNN into a probability distribution over pre-
dicted classes, and the corresponding performance func-
tion is cross-entropy loss. After adequate data feeding
and prediction error optimization by backpropagation,
trained PNN could perform image recognition tasks.

During each training epoch, training data was divided
randomly into training and validation subsets with a ra-
tio of 4 : 1. After feeding the network with the train-
ing set, the remaining testing images were used to com-
pute the accuracy and confusion matrices. The training
performance comparison is shown in Fig. 6d. It can be
observed that compared with a linear classifier, the non-
linear activation function improves PNN performance by
increasing training speed and decreasing errors. The con-
fusion matrix is also shown in Fig. 6e. The final accu-
racy of PNN with the ISB nonlinear activation function is
92 % for 200 epochs of training (the linear one is 90.8 %).
Moreover, other evaluations of the nanostructure’s per-
formance were also carried out to show the practicality
of ISB activation in PNNs.

To evaluate the performance of this network, we fol-
low the convention in [23] and ignore electrical con-
trol lines and coupling waveguides. The estimated
footprint of the nanostructures in the PNN is A =
LNnLdevWdev, where L = 1 is the number of lay-
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FIG. 6. Overview of the ISB nanostructure applied in a machine learning task. (a) General two-layer PNN architecture for
image recognition. (b) Modulation depth as a function of device length. (c) Nonlinear activation function based on the ISB
nanostructure (blue lines) and linear activation function (dashed lines). (d) Cross-entropy loss performance with and without
activation function. (e) Confusion matrix for trained PNN with activation functions. The number of observations and the
corresponding percentages are shown in each cell.

ers and Wdev is the device width. The estimated en-
ergy consumption for the nonlinear activation can be
expressed as Pn = LNnJV LdevWdevHdev, where J is
the current density, V is the bias applied on the de-
vice, and Hdev is the height of the device. The energy
consumption during re-arming process could be express

as: Pre = (
∫ t2
t1
LNnJ(t)V (t)LdevWdevHdevdt)/(t2 − t1),

where t2 − t1 is the time for re-arming process. By tak-
ing same duration for both nonlinear activation and re-
arming process, the average overall power consumption
is (Pn + Pre)/2 + Pac, where Pac is the optical thresh-
old power needed for the PNN. For a device dimension of
4 µm×5.2 µm×2.3 µm, the single activation performance
with comparisons of other optoelectronic methods is also
shown in Table I. It is noted that the physical footprint
of the activation function with 40 neurons in the demon-
stration is only 8.3× 10−4 mm2 per layer with an average
total power consumption of approximately 22.48 mW un-

der operation, which is superior to other optoelectronic
methods. Moreover, the efficiency of the ISB nanostruc-
tures could be greatly improved. For instance, one could
add wells that suppress leakage using shorter modules or
rely on higher-barrier material systems. Similar nanos-
tructures could be the scalable elements that allow for
deep photonic neural networks with even millions of neu-
rons.

VI. DISCUSSION

It is important to emphasize that the origin of the ap-
parent nonlinearity in these devices is not due to optical
nonlinearity, it is due to band bending arising from coher-
ent population transfer. Because this effect is ultimately
electronic, this allows a substantial transmission change
at micron-scale lengths, much higher than similar-sized
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TABLE I. Comparison between the ISB device approach and optoelectronic approaches in PNN nonlinearity. The activation
functions are compared in terms of main figures of merit: Transmission modulation (dB/µm), activation threshold (µW),
latency, linear footprint (µm), working wavelength (µm), and energy consumption (µW).

Approach Transmission modulation Activation threshold Latency Linear footprint Wavelength Energy consumption
This work 4.8 dB/µm 3.5 µW 10 ps 4 µm 6.7 µm 562 µW
Ref. [23] > 0.2 dB/µm 100 µW 120 ps < 60 µm N/A > 10 000 µW
Ref. [24] > 1 dB/µm N/A 160 ps 11.5 µm 1.545 µm > 1000 µW
Ref. [26] 0.1 dB/µm > 30 µW 50 ps > 25 µm N/A N/A
Ref. [50] 0.132 dB/µm > 40 µW 1000 ps 15 µm 1.55 µm > 1000 µW
Ref. [51] 1 dB/µm > 10 µW 40 ps 5 µm 1.55 µm 1500 µW
Ref. [52] 1.2 dB/µm N/A 300 s 5 µm 1.55 µm > 0.2 µW
Ref. [53] N/A N/A 10 ms > 2 µm 1.55 µm > 0.15 µW

devices relying on giant intersubband χ(3) nonlinearities
at the same power. For example, though it is possible to
achieve Kerr nonlinearities of n2 ∼ 105 − 106 nm2/W in
intersubband structures [54, 55], at powers of 5 µW, if the
Kerr effect was used in conjunction with an interferom-
eter to create a modulator, such a device would require
that the path be LISB = 4.59 m long (assuming a Kerr
nonlinearity of 1× 106 nm2/W). In this regard, the non-
linearity can be considered an ultrafast electronic non-
linearity like that present in resonant tunneling diodes
[56]. In these devices, the ultimate speed is limited by
the sub-picosecond phonon scattering relaxation times;
similarly, the ISB devices could also respond to changes
in incident light on picosecond time scales. Moreover,
the nonlinear activation has a hysteresis, which means
the device could be exploited to behave similar to op-
toelectronic memristors [57–59]. In principle, the same
band structure could be used to act as nonlinear activa-
tion functions, as optical detectors or amplifiers, and as
optical memory storage units, which would be beneficial
for large-scale integration.

As for the activation threshold, its origin is more com-
plicated. As this device combines features of the three
most-common intersubband devices, the design space is
complex and has significant room for improvement. For
example, realistic designs typically have NDR in both
the active region and the injector, which must be ac-
counted for. Moreover, by shifting the absorption fre-
quency, the structure can be made to act in the reverse
mode of nonlinear operation, transmitting low intensi-
ties while blocking high intensities. Therefore, most fig-
ures of merit of ISB devices could be further improved or
modified by ISB structure parameter optimization with
different injection schemes. In addition, compared with
electro-optic nonlinear activation functions where light is
tapped, detected, and used to drive an intensity modula-
tor, all these elements of our ISB device—photon detec-
tion, high-speed gain, and electroabsorption—are effec-
tively contained within a single nanostructure. Thus the
main challenge for ISB activation in deep PNNs would
not be the device themselves, but rather the large diam-
eters of the waveguides and the larger optical losses. In
our structure, due to the high leakage currents there is an

estimated DC power consumption of 384 µW for a single
activation function in PNN, which could be further re-
duced by managing the leakage mechanism of the system
[60].

Although we have only considered ISB nonlinear acti-
vation functions operating in the mid-infrared using In-
GaAs/InAlAs system, one could extend the same prin-
ciples to the near-infrared by using GaN/AlN system,
where essentially every metric—device size, power con-
sumption, nonlinear threshold, response time, etc.—
improve drastically, due to the increased photon energy.
For example, the QWIP-like transport mechanism expe-
riences electron leakage similar to thermionic emission
[61]. At room temperature and a wavelength of 6.7 µm,
this leakage mechanism dominates, resulting in an un-
avoidable dark current that scales with exp(−~ω0/kT ).
Therefore, higher optical frequency in ISB activation de-
vices would not only reduce the power dissipation ex-
ponentially, but it would also decrease the dark current
noise (related to the square root of the leakage current
[62]). The noise improvement could further lead to a
smaller activation threshold in practical PNN applica-
tions of ISB devices. In addition, GaN/AlN-based de-
vices are attractive for terahertz modulation frequen-
cies due to their extremely short absorption recovery
times [63]. Other advantages of the GaN/AlN system
for ISB nonlinear activation functions include the fea-
sibility of low-loss integrated photonic circuits at near-
infrared wavelengths and improved thermal robustness
of devices. However, the GaN/AlN system is not as well-
understood due to its less-mature growth technology (for
example, the effect of built-in fields and the ultimate in-
terface roughness that can be achieved). Given the re-
cent development of room temperature high-frequency
GaN/AlN resonant tunneling diodes [64, 65], quantum
cascade detectors [66], and QWIPs [67], the realization of
near-infrared intersubband nonlinear activation devices
in the future could potentially revolutionize deep pho-
tonic neural networks.
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VII. CONCLUSION

In conclusion, we have introduced a strategy for achiev-
ing nonlinear optical activation functions based on band-
structure engineered nanostructures. Our simulations re-
vealed that the designed ISB nanostructures are capable
of high-speed nonlinear processing in deep PNNs. In con-
trast to standard optoelectronic approaches, this ISB ar-
chitecture leverages the nanostructure’s nonlinear elec-
trical properties to modify its linear optical properties.
Therefore, this approach could achieve a low activation
threshold around 3.5 µW with fast response of 10 ps while
maintaining a single linear footprint of 4 µm, which is
much smaller than previously proposed schemes. Finally,
based on numerical simulations of the ISB nanostruc-

tures, we demonstrated such a nonlinear activation func-
tion enhances PNNs performance on the benchmark task
of hand-written numbers recognition from the MNIST
dataset. This approach has significant potential for the
creation of deep fully-connected PNNs.
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