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Quantum systems must be prepared, controlled, and measured with high fidelity in order to perform complex
quantum algorithms. Control fidelities have greatly improved in silicon spin qubits, but state preparation and
readout fidelities have generally been poor. By operating with low electron temperatures and employing high-
bandwidth cryogenic amplifiers, we demonstrate single qubit readout visibilities >99%, exceeding the threshold
for quantum error correction. In the same device, we achieve average single qubit control fidelities >99.95%.
Our results show that silicon spin qubits can be operated with high overall operation fidelity.

I. INTRODUCTION

Backed by the highly successful semiconductor indus-
try, the silicon spin qubit platform provides the potential to
scale to large system sizes and integrate the classical control
circuitry necessary for advanced operation protocols [1–4].
Since the earliest demonstrations of spin-qubit logic in GaAs
[5, 6], a migration to isotopically enriched silicon [7] com-
bined with improvements in Si/SiGe heterostructure growth
and device designs [8, 9] have led to a recent surge of demon-
strations of single- and two-qubit gates with fidelities above
99% [10–13].

In order for a qubit platform to be a serious contender for
quantum information processing it must be able to demon-
strate all of the DiVincenzo criteria for quantum computing
with high fidelity. While single- and two-qubit gates imple-
mented in Si have made steady progress, state preparation and
measurement (SPAM) fidelities have generally been well be-
low 90%, with a few recent exceptions [13–16]. To imple-
ment quantum error correction and realize fault tolerant oper-
ation the total logical error rate, which includes SPAM, must
be kept low . 2% [17].

Depending on the qubit encoding, there are various proto-
cols for initializing and reading out spin qubits [15, 18], and
a combination of techniques will likely be required for larger
spin qubit systems. Currently, readout in singlet-triplet and
exchange-only qubits is performed using Pauli spin block-
ade [5, 19], whereas single-spin qubits typically use Elzer-
man readout. The Elzerman approach utilizes state dependent
tunneling to prepare and measure spin qubits [20]. Protocols
taking advantage of enhanced spin-charge relaxation in dou-
ble quantum dots (DQDs) can be used to accelerate spin ini-
tialization or implement spin initialization in isolated DQDs
that are not strongly tunnel coupled to leads [21, 22]. Finally,
there are a variety of schemes to improve the signal-to-noise-
ratio (SNR) and measurement bandwidth through the use of

∗ Department of Electrical and Systems Engineering, University of Pennsyl-
vania, Philadelphia, Pennsylvania 19104, USA

cryogenic amplifiers [23], RF reflectometry [24], and latched
charge and spin readout techniques [25–27].

In this Article, we demonstrate a readout visibility greater
than 99% and average single qubit gate fidelities above
99.95% in a single spin Loss-DiVincenzo (LD) qubit. Cryo-
genic amplifiers and circuit optimization allow for low noise,
high bandwidth (1 MHz) charge sensing with a charge detec-
tion SNR > 12. This high SNR, when combined with opti-
mized spin readout parameters, enables high visibility Elzer-
man spin state readout [20]. High fidelity single spin rotations
in the same spin qubit are achieved using electric dipole spin
resonance [28], as verified by interleaved randomized bench-
marking (IRB) [29]. These results show that overall operation
fidelities in Si spin qubits can exceed important thresholds for
fault-tolerant operation.

The device consists of a Si/SiGe heterostructure with an
isotopically purified 28Si (800 ppm residual 29Si) quantum
well. Lithographically defined overlapping aluminum gate
electrodes are used to define a linear array of six quantum
dots with two proximal charge sensors [9]. High fidelity state
preparation, control, and measurement are demonstrated in a
single LD qubit formed under gate P2 and a proximal charge
detector S1 is used to read out the charge state of the quantum
dot [Fig. 1(a)]. Microwaves are applied to the center MW gate
to perform single qubit rotations using electric dipole spin res-
onance in the field gradient of a Co micromagnet [28]. Dot 1
is kept empty (N1 = 0) for these experiments and dot 2 is cou-
pled to the reservoir via an accumulated channel on the right
side of the device [9].

Spins are selectively prepared and measured using spin-to-
charge conversion [20]. To obtain a 99% readout visibility
both electrical detection and spin-to-charge conversion have
to function with high fidelity. For high fidelity electrical de-
tection, the measurement noise needs to be much lower than
the charge sensing signal associated with the spin-dependent
tunneling events. As we will demonstrate, robust charge sens-
ing is feasible in Si spin qubit devices and is generally not the
limiting factor in the overall readout visibility. On the other
hand, the tunnel rates, magnetic field, readout bias point, and
signal sampling rate must be carefully optimized. The require-
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FIG. 1. High fidelity charge state determination. (a) False-color scanning electron microscope image of the device showing the two quantum
dots and the charge sensor “S1” utilized for spin-to-charge conversion. The illustration to the left shows the charge sensing circuit. An ac
signal Vexc is highly attenuated before being ac-coupled to the sensor dot. Two HEMT amplifiers measure the voltage drop across a 20 kΩ

resistor that is mounted to the sample holder. Parasitic capacitance before the first stage amplifier is indicated alongside the surface mounted
resistor. The signal is further amplified at room temperature before demodulation and digitization (DAQ). (b) A large shift of the sensor dot
Coulomb blockade peak is evident when the occupancy of dot 2 changes from N2 = 0 to N2 = 1. The sensor bias point is indicated with a
dashed line. (c) Time-series of the charge sensor conductance gS1 sampled at 1 MS/s and with Vexc = 85 µVpp showing real-time tunneling
events between N2 = 0 to N2 = 1 (left). Histogram of the time-series data used to extract the charge readout SNR (right). (d) Charge readout
SNR and electron temperature Te for dot 2 measured as a function of Vexc.

ments for spin-to-charge conversion with visibility exceeding
99% are reviewed thoroughly by Keith et al. [30]. For each
condition, the minimum requirement for achieving 99% vis-
ibility is: 1) a large Zeeman splitting EZ relative to the elec-
tron temperature Te, EZ & 13kBTe, 2) a fast tunnel out time
t↑out for a spin-up electron relative to the spin relaxation time
T1, T1 & 100t↑out , and 3) a fast sampling rate Γs relative to the
reload rate 1/t↓in, Γs & 12/t↓in. If any of these requirements are
not met, 99% visibility Elzerman spin readout is not possible
[30]. However, just barely meeting all of these requirements
will also result in < 99% visibility. In practice, these three
conditions must be budgeted such that the combined infideli-
ties are < 1% as discussed below.

II. OPTIMIZING MEASUREMENT FIDELITY

We first optimize charge state readout using the circuit
shown in Fig. 1(a). A 1 MHz sine wave is applied to S1 and
the drain current flows to ground through a 20 kΩ resistor.
The voltage drop across the 20 kΩ resistor is amplified at the
1 Kelvin still plate (+15 dB gain) and 4 Kelvin plate (+45
dB gain) before reaching a room temperature amplifier [15].
The signal is then demodulated and digitized. Before the first
stage amplifier there is ∼8 pF of parasitic capacitance which
limits the circuit bandwidth to ∼1 MHz. Figure 1(b) shows a

Coulomb blockade peak in the charge sensor conductance gS1
as the sensor dot plunger gate voltage, VPS1, is swept. Chang-
ing the electron number in dot 2 from N2 = 0 to N2 = 1 shifts
the Coulomb blockade peak by approximately its full width at
half maximum. When biased on the side of a Coulomb block-
ade peak the sensor dot can easily detect real-time tunneling
events, as we now demonstrate.

High bandwidth charge detection is illustrated in Fig. 1(c),
where we show a time-series of gS1 sampled at 1 MS/s with
the chemical potential of dot 2 tuned close to the Fermi level
of the reservoir. Real-time tunneling events between the N2
= 0 and N2 = 1 charge states are visible. The switching rate
between these charge states is set by the tunnel coupling Γ

between the dot and the reservoir, tuned here to be slower than
our measurement bandwidth. A histogram of these data are
fit by a double-Gaussian curve with center positions µn and
standard deviations σn. The charge readout SNR is set by the
separation of the two Gaussians relative to their spread: SNR
= (µ2−µ1)/(σ̄) where we use σ̄ = (σ1+σ2)/2 to account for
slightly different standard deviations in the double-Gaussian.

Heating from the charge sensor is explored in Fig. 1(d),
where we plot the SNR and electron temperature Te as a func-
tion of the peak-to-peak excitation voltage Vexc at the sensor.
The SNR increases with Vexc as expected, but for Vexc > 85
µVpp a steady increase of Te with Vexc is observed. We there-
fore operate with Vexc = 85 µVpp, where the SNR ≈ 12.5 and
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FIG. 2. Optimization of the physical readout parameters. (a) Quan-
tum dot energy levels tunnel coupled to a thermally broadened Fermi
reservoir. (b) Time-series of a typical spin-up detection event show-
ing the measured tunneling times t↓in(t

↑
out) that are used to estimate

the rates Γ
↓
in(Γ

↑
out). (c) Measurement visibility V as a function of

Fermi offset ∆. The offset ∆∗ that maximizes V is then used in sub-
sequent measurements.

Te ≈ 45 mK. This SNR corresponds to a lower bound esti-
mate of the charge state infidelity 1−Fc ≥ 3× 10−10, which
implies that our overall readout performance will be limited
by the spin-to-charge conversion process [15]. We now ex-
plore the parameters that must be optimized for high-fidelity
spin-to-charge conversion.

Figure 2(a) illustrates the process of spin-to-charge conver-
sion for a spin-up electron. During the readout phase of an
experiment, the energy of the spin-up and spin-down states of
the quantum dot electron are set to straddle the Fermi level
of the reservoir. The spin-up electron tunnels off the dot on a
time-scale set by 1/Γ↑out and is then replaced by a spin-down
electron that tunnels into the dot on a time-scale set by 1/Γ↓in
[20]. This sequence of events creates a detectable ‘spin bump’
in the charge sensing signal, Fig. 2(b). Γ

↑
out should be fast

compared with the spin relaxation rate 1/T1, but the reload
rate Γ

↓
in must be slow enough to allow the short change in elec-

tron occupancy to be detectable given the finite bandwidth of
the measurement circuit. The overall tunnel rate Γ to the reser-
voir accumulated to the right of dot 2 is set by the barrier gate
voltage VB3, while the ratio of the tunnel rates Γ

↑
out/Γ

↓
in can

be tuned by adjusting the parameter ∆, which is the energy
difference between the spin-down state and the Fermi level of
the reservoir.

Thermally activated tunneling events can significantly im-
pact the performance of energy dependent state preparation
and measurement. For example, the probability of a spin-
down electron tunneling into an unoccupied state of the Fermi
sea can be non-negligible. Moreover, state preparation errors
can occur when spin-up states tunnel onto the dot during the
reloading period. To achieve high-fidelity spin-to-charge con-
version, the Zeeman splitting EZ must be much larger than Te.
Increasing the Zeeman splitting can suppress thermal errors,
but EZ is constrained by enhanced excited state relaxation at
higher magnetic fields [31] and also by practical constraints

on microwave signal generation and delivery to the device.
Here we operate at Bext = 410 mT, with EZ = 19.105 GHz (79
µeV) and T1 = 31.5 ms.

In addition to optimizing the ratio Ez/kBTe, the parameter ∆

must also be carefully tuned to limit thermally activated tun-
neling events. Thermal excitation of a spin-down electron can
be suppressed by increasing ∆, but the tradeoff is that Γ

↑
out de-

creases and Γ
↓
in increases. The decrease in Γ

↑
out slows down

the spin-to-charge conversion process resulting in T1 relax-
ation errors, while the increase in Γ

↓
in makes the charge hop-

ping events shorter and harder to detect with our 1 MHz mea-
surement bandwidth. Therefore, the optimal ∆ is large enough
to suppress thermal errors and small enough to maximize the
ratio Γ

↑
out/Γ

↓
in. The rates Γ

↑(↓)
out(in) are extracted by binning the

tunneling times from many single shot traces [one is shown
in Fig. 2(b)] into a histogram and fitting to an exponential de-
cay. To optimize ∆ we perform 10,000 measurements inter-
leaving spin-up and spin-down prepared states and measure
the visibility V = F↑+F↓−1. Figure 2(c) shows the measure-
ment visibility V as a function of ∆, with the optimal value
∆∗ ≈ 30 µeV resulting in Γ

↑
out ≈ Γ

↓
in ≈ 20 kHz. To counter-

act slow drift in the device during long quantum control se-
quences we periodically recalibrate to maintain the optimal
∆∗.

With the physical parameters optimized, we now turn to the
optimization of data acquisition parameters, namely the con-
ductance threshold gthr and duration of the readout window tR.
A spin-up state is registered whenever gS1 exceeds gthr within
the analysis time-window tR [Fig. 3(a)]. If gthr is set too low,
then background noise can lead to false positives and reduce
the spin-down fidelity F↓. On the other hand, if gthr is set too
high then we begin to miss the short, near bandwidth-limited
hopping events that may not reach full amplitude, resulting
in a reduced spin-up fidelity F↑. The time tR should be long
enough to catch all hopping events from spin-to-charge con-
version. However, if tR greatly exceeds the characteristic tun-
neling time t↑out then more thermal errors will occur, limiting
F↓. In larger arrays with sequential readout steps, the readout
time will also need to be balanced against T1 decay in the sub-
sequent qubits adding an additional constraint on tR and the
tunneling rates [13].

To optimize these parameters, we perform 10,000 measure-
ments interleaving spin-up and spin-down prepared states us-
ing the optimized ∆∗ from above. In Fig. 3(b), the measure-
ment fidelities F↑(↓) and visibility V = F↑+F↓−1 are plotted
as a function of gthr showing the optimum g∗thr = 0.22 e2/h.
The slight negative slope at the top of the visibility curve in-
dicates we are near bandwidth limitations as the very short
hopping events are effectively low-pass filtered and unable to
reach full amplitude. Figure 3(c) shows the measurement in-
fidelities 1−F as a function of tR. The highest readout vis-
ibility is obtained with t∗R = 670 µs. Sampling beyond this
time slowly increases 1−F↓ due to thermal tunneling events,
which reduces the overall visibility. The step features in the
10−4 regime of the 1−F↓ curve are due to finite sampling.
These fidelity estimates inherently include errors from both
state preparation and measurement.
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FIG. 3. Optimization of the software readout parameters. (a) Typical
time-series with the conductance threshold gthr and end-of-read win-
dow tR indicated. (b) Measurement fidelity for spin-up(spin-down)
states F↑(F↓) and the overall measurement visibility V as a function
of gthr. The optimum threshold g∗thr is indicated in the inset with a
vertical dashed line. (c) Measurement infidelities plotted on a loga-
rithmic scale as a function of tR. The optimum end of read window
t∗R is indicated with a vertical dashed line. With both parameters op-
timized we achieve F↓ = 99.86%, F↑ = 99.26%, and V = 99.12%.

With all of the parameters optimized we are able to achieve
detection fidelities >99%, with F↓ = 99.86%± 0.05% and
F↑ = 99.26%± 0.12% yielding an average measurement fi-
delity FM = 99.56%. Statistical error is estimated as one
standard deviation from binomial sampling. The spin-up fi-
delity levels off at 99.26% due to a loss of spin information
from T1 relaxation (∼ 0.2%) and missed spin bumps caused
by bandwidth limitations in the amplification chain (∼ 0.5%).
Relaxation errors are calculated using the characteristic tun-
neling time t↑out = 50 µs plus a 10 µs readout settling time,
and T1. The probability of missing a spin bump is P↑miss =

1− (1− e(R
↑
s−R↓s )/2)R↑s

(1− eR↑s /2)(R↑s −R↓s )
, where R↑s = ts/t↑out , R↓s = ts/t↓in, and

ts = 1 µs is the sampling time [30]. We estimate an addi-
tional P↓out = 0.06% error due to thermal excitations using
P↓out = e−t↓out/tR , where t↓out is estimated from t↓out = t↓ineEz/2kBTe

[30]. Tunneling out of the spin-down state reduces the spin-
down fidelity and the remaining ∼ 0.1% of error is likely due
to slow drift of ∆ during measurement.

As limited measurement bandwidth is the biggest contribu-
tor to infidelity and a technically challenging issue to address
it is important to discuss its influence on device tuning and
SPAM errors. The probability of missing an event P↑miss is
dependent on the ratio of the sampling rate to the tunneling
rates such that we can increase both one-to-one and achieve
the same SPAM error. Similarly, increasing the sampling rate
while holding all other parameters constant would reduce P↑miss
proportionally. While T1 here is long relative to the measure-
ment time of the qubit, for readout schemes involving serial
measurements of multiple qubits it will be important to oper-

ate with faster tunneling rates. For instance, sequential read-
out of two qubits with T1 and Te comparable to our device,
and with a fidelity exceeding 99%, will require approximately
a 10× increase in both the bandwidth and tunnel rates.

To minimize SPAM errors, we begin by estimating a de-
sired tunneling rate based on the bandwidth constraints de-
fined above. The Fermi offset, ∆, is set to halfway between
the spin-↓ and spin-↑ states. The tunnel rates are tuned near
their optimal values by analyzing charge hopping data simi-
lar to Fig. 1(c) or single shot data similar to Fig. 2(b). The
analysis parameters gthr and tR can be estimated from single
shot data with the guidance being that gthr needs to be just
above the noise floor and tR should be over-estimated since
the infidelity is less sensitive to tr past the optimal stopping
time. With these estimates in place, we first tune ∆ to find ∆∗

as this parameter is primarily influenced by Te. Finally, while
holding ∆∗ constant, we adjust the tunnel rates to minimize
the infidelities shown in Fig. 3.

III. HIGH FIDELITY SPIN CONTROL

Past experiments demonstrating high fidelity control of LD
spin qubits were generally limited to V ≈ 70–80% [10, 22,
32]. Recent experiments on a six qubit device achieved V =
93.5 – 98% [16]. Here we demonstrate the integrated high
performance of our device. Figure 4(a) shows the spin-up
probability P↑ plotted as a function of the frequency detun-
ing ∆ f from resonance (19.105 GHz) and the microwave burst
length τR. Rabi oscillations are obtained when driving on res-
onance [Fig. 4(b)]. We rigorously verify high gate and SPAM
fidelities using gate set tomography (GST) protocols for single
qubit gates (I,X ,Y ) [33] where an X(Y ) gate is a π/2 rotation
performed about the X(Y ) axis and I is performed by idling
the qubit for the same amount of time as the X(Y ) rotations.
GST yields a state preparation fidelity ρ0 = 99.76%±0.04%
and a measurement fidelity M = 99.35%± 0.1%, which is
consistent with Fig. 3. The average single qubit gate fideli-
ties extracted from GST are 99.956% ±0.002%. The gate fi-
delity is primarily limited by incoherent noise caused by qubit
dephasing (T ∗2 = 3.2 µs, T H

2 = 139 µs measured using Ram-
sey and Hahn echo pulse sequences). Due to the modest T ∗2 ,
the idling fidelity FI = 99.43%±0.036% is significantly lower
than fidelities obtained during driven evolution. The error bars
are 95% confidence intervals calculated in the GST analysis.

Finally, we perform IRB to estimate fidelities for the in-
terleaved gates (X ,X2,−X ,Y,Y 2,−Y ) [34], where a X2(Y 2)
gate is a full π-rotation about the respective axis. To obtain
reliable results we utilize k = 200 unique sequences per point,
with 100 averages. We chose k = 200 to obtain a rigorous gate
error estimate as 1/ f -noise dominated systems see diminish-
ing returns on the accuracy of this estimate when increasing
k beyond ∼100 [35]. Sequence lengths of up to NC1 = 4096
Clifford operations are employed to achieve full saturation of
the sequence fidelity curves [Fig. 4(c)]. The average Clifford
operation is composed of 1.875 single qubit gates. The error
bars on each point are the standard deviation of the fidelities
for the 200 unique sequences at each point. The average gate
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fidelities are shown in Table 1 with error bars determined us-
ing bootstrapping, a technique to randomly resample within
the full data set to build statistics [36]. Retuning routines are
implemented at ∼ 30 min. intervals during these long mea-
surements (∼ 14 hrs.) to correct for readout and qubit fre-
quency drift. Moreover, to reduce heating at the device, the
charge sensor excitation is turned off during qubit manipula-
tion.

IRB Fidelities GST Fidelities
Gate Fidelity Operation Fidelity

X 99.969% ±0.004% ρ0 99.76% ±0.04%
X2 99.964% ±0.003% M 99.35% ±0.1%
−X 99.949% ±0.005% I 99.43% ±0.036%

Y 99.973% ±0.004% X 99.958% ±0.002%
Y 2 99.961% ±0.004% Y 99.954% ±0.002%
−Y 99.937% ±0.005%

TABLE I. Interleaved randomized benchmarking gate fidelities. The
average Clifford fidelity is 99.92% corresponding to an average gate
fidelity of about 99.96%, in agreement with extracted gate fidelities.
On the right, GST results for SPAM, identity, and gate operations X
and Y with average gate operation fidelity 99.956%.

IV. CONCLUSION

In conclusion, our measurements show that Si spin qubits
can be operated reliably with all-around high performance
metrics. Optimal state preparation and measurement requires
careful balancing of physical constraints with hardware con-
straints to minimize the loss of spin information due to spin
relaxation and a finite 1 MHz measurement bandwidth. We
are able to achieve measurement fidelities exceeding 99%,
as verified through the analysis of single-shot readout traces
and GST. GST and IRB are implemented to demonstrate av-
erage single qubit gate fidelities exceeding 99.95% under the

same operating conditions. Looking ahead, Elzerman readout
of larger LD spin qubit arrays [13, 16, 37, 38] will require
a reduction of the measurement time relative to the spin re-
laxation time. Furthermore, faster readout protocols, such as
those based on Pauli spin blockade, will be necessary to fully
unlock the potential of feedback-based error correction proto-
cols and could be implemented with the measurement circuit
described here [39].
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Appendix A: Readout Circuit

The readout circuit described in Fig. 1(a) achieves high
SNR charge sensing with ∼1 MHz of bandwidth by sinking
the charge sensor current through a 20 kOhm resistor on the
sample PCB. The voltage drop across the resistor is amplified
with two-stages of cryogenic HEMT amplifiers (Avago ATF-
38133), with the first stage HEMT at the still plate and the
second stage HEMT at the 4K plate. Details on the ampli-
fier are given elsewhere [15]. Thermal isolation between the
sample and the first stage HEMT, as well as between the two
amplification stages, is achieved with thin stainless steel con-
nections. The distance between the sample and first stage am-
plifier is reduced by using a coldfinger to mount the amplifier
near the sample. The output of the second stage is returned to
room temperature on BeCu/SS coax with no attenuators on the
lines. The input (drive) side of the circuit is delivered through
stainless steel coax with -60 dB total attenuation. At room
temperature, the output of the cryoamplifiers is further ampli-
fied by a FEMTO HVA-10M-60-B voltage amplifier before
homodyne detection with a ZAD-3H+ Minicircuits mixer.

Appendix B: Fidelity Error Bar Estimation

Error bar estimates for the interleaved gate fidelities are es-
timated using a resampling technique known as bootstrapping
[40] which is a common method for estimating RB errors
[36, 41–43]. Bootstrapping is a statistical procedure that al-
lows you to reliably calculate standard errors and construct
confidence intervals by generating many simulated datasets
from an initial dataset. Here, the main dataset is a collec-
tion of randomized benchmarking decay curves for the refer-
ence and each of the interleaved gates. To collect the data,
we averaged 100 shots for 200 unique RB sequences at each
Clifford gate length NC1 for each of the 7 curves shown in
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Fig. 4(c). The probability of returning to P↑ at the end of
the Clifford sequence is the estimated sequence fidelity and
is plotted as a function of NC1. Each of the individual unique
sequences k approximate the sequence fidelity for the corre-
sponding NC1. The data points in Fig. 4(c) are the average of
these 200 sequence fidelities and their standard deviation is
plotted as the error bar. To perform the bootstrapping analy-
sis on these data, we construct simulated data points by ran-
domly choosing K = 200 of the unique sequences from the
corresponding population. In randomly choosing these new
populations we can allow for replacement, meaning a k can be
picked more than once. From these reconstructed data points
we extract a fidelity estimate by fitting the RB decay curve.
We perform this for 10,000 simulated samples and bin the ex-
tracted fidelities into histograms, as shown in Fig. 5. These
histograms approximate a normal distribution and we use the
standard deviation to define the error estimate. The RB error
bars are 1 standard deviation of the gate fidelities from boot-
strapping and represent the distribution of fidelity estimates
that we would expect to see when repeating the RB experi-
ments.

X2X

c
o
u
n
ts

0.9996 0.9997 0.9998 0.9996 0.9997

Y

c
o

u
n

ts

0.9996 0.9997 0.9998

Y2

0.9995 0.9996 0.9997

F F

-Y

0.9993 0.9995

-X

0.9994 0.9996

c
o
u
n
ts

300

200

100

0

300

200

100

0

300

200

100

0

300

200

100

0

300

200

100

0

300

200

100

0

FIG. 5. Bootstrap fidelity estimates. Distributions of the 10,000 ran-
domly resampled subsets for each of the interleaved gates. The dis-
tributions are approximately normal and the error bars reported are
defined as 1 standard deviation.
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