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Collective decision-making is vital for recent information and communications technologies. In
our previous research, we mathematically derived conflict-free joint decision-making that optimally
satisfies players’ probabilistic preference profiles. However, two problems exist regarding the optimal
joint decision-making method. First, as the number of choices increases, the computational cost of
calculating the optimal joint selection probability matrix explodes. Second, to derive the optimal
joint selection probability matrix, all players must disclose their probabilistic preferences. Now, it
is noteworthy that explicit calculation of the joint probability distribution is not necessarily needed;
what is necessary for collective decisions is sampling. This study examines several sampling methods
that converge to heuristic joint selection probability matrices that satisfy players’ preferences. We
show that they can significantly reduce the above problems of computational cost and confidentiality.
We analyze the probability distribution each of the sampling methods converges to, as well as the
computational cost required and the confidentiality secured. In particular, we introduce two conflict-
free joint sampling methods through quantum interference of photons. The first system allows the
players to hide their choices while satisfying the players’ preferences almost perfectly when they have
the same preferences. The second system, where the physical nature of light replaces the expensive
computational cost, also conceals their choices under the assumption that they have a trusted third
party.

I. INTRODUCTION

The problem of allocating indivisible commodities,
that is, resources that cannot be divided into multiple
parts, such as houses and people, has been studied for a
long time [1–4]. One of the most well-known studies is
the Top Trading Cycle (TTC) proposed by Shapley and
Scarf [1]. TTC is a deterministic allocation method that
deals with situations in which players have deterministic
preference rankings over their options. From a game-
theoretic perspective, TTC achieves what is called core,
namely, a situation in which exchanging options among
arbitrary players does not lead to a more preference-
satisfying allocation.

In the previous study, we extended the preference from
a deterministic to a probabilistic one and mathemati-
cally discussed how a joint selection that satisfies players’
probabilistic preferences should be made [5]. In uncertain
situations, people in the real world or agents in reinforce-
ment learning are often torn between the desire to choose
the best current option and the desire to explore other
options [6]. In such situations, they will not be satis-
fied with obtaining only the top preference option all the
time. Instead, they will be satisfied if the proportion of
options obtained through multiple allocations matches
their probabilistic preferences.

Specifically, let pi,j be the joint probability of assigning
the i-th choice to the first player A and the j-th choice
to the second player B, and let the matrix of these joint

∗ gokukyukyoku555@g.ecc.u-tokyo.ac.jp

probabilities be called the joint selection probability ma-
trix. By definition, the probability of the first player
choosing each option i as a result of the joint selection
probability matrix can be calculated by

πA(i) =

N∑
j=1

pi,j , (1)

where N is the number of options. For the allocation
to satisfy player A’s preference, the list of πA(i) should
coincide with his/her probabilistic preference.

In Ref. [5], a joint selection probability matrix that
maximizes the satisfaction of the probabilistic preferences
of two players is mathematically derived. However, as
we will confirm later, two concerns exist. First, the com-
putational cost of obtaining the optimal joint selection
probability matrix is O(N2) in the worst case if we fol-
low the algorithm presented in the paper, which implies
that computing the matrix becomes more difficult as the
number of options becomes huge. The second problem
is that of confidentiality. Since the construction of the
optimal joint selection probability matrix requires infor-
mation on the preferences of both players, each player
must disclose their preference to the other or third par-
ties.

Now, when we encounter situations of collective deci-
sions without choice conflict, it is not always necessary to
explicitly calculate the values of the joint selection prob-
ability matrix. Instead, employing a sampling method
that converges to those values over many repetitions is
often sufficient. Although an efficient sampling method
that is based on the optimal joint selection probability
matrix has not been established yet, this paper proposes
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several sampling methods each of which converges to
a heuristic joint selection probability matrix over many
repetitions. In particular, we demonstrate that the ap-
plication of quantum systems can significantly reduce the
two problems mentioned above, that is, the explosion of
computational cost and the lack of confidentiality.

Optical computing, which flourished around the 1980s
[7], smoldered somewhat due to the rapid advances in
electronic technology, but is now drawing attention again
due to the increasing demand for computational re-
sources caused by AI and so on in recent years [8–10].
It is now being considered for a wide range of applica-
tions, including deep learning and computational science,
taking advantage of not only the high-speed and broad-
band nature of light but also its quantum nature [11–13].
For example, a lot of combinatorial optimization prob-
lems are regarded as NP-hard, and thus it is difficult for
a digital computer to solve them as the size of the prob-
lem increases. However, for some types of problems, even
huge combinatorial optimization problems can be solved
within short time by mapping them to corresponding
Ising models [14, 15] and solving the models using Ising
machines, for example, with networks of optical para-
metric oscillators [16, 17]. Optically implemented Ising
machines have their advantages over other types of Ising
machines, including their ability to work at room temper-
ature [18], high efficiency due to light’s broad bandwidth
[19], and so on. While Ising models are often used to
solve combinatorial problems such as the Max-Cut prob-
lem and the traveling salesman problem, other photonic
implementations can be considered for different types of
problems. Among them, recent attempts have been made
to utilize the quantum nature of light to solve a decision-
making problem called the multi-armed bandit problem
[20].

The multi-armed bandit problem is one of the simplest
reinforcement learning problems, and it is a question of
how decisions should be made in uncertain situations.
Specifically, given multiple slot machines, each with its
own probability of generating a reward, the question is
how to maximize the cumulative rewards by drawing one
of these machines at each time step. Since the player does
not know the hit probabilities a priori, one of the efficient
algorithms is to make decisions based on a probabilistic
preference so that he/she can both exploit the current
best option and explore other options.

The problem is further complicated when multiple
players participate in the bandit problem [21–23]. In the
competitive bandit problem, when multiple players draw
the same machine and that machine generates a reward,
the reward is split and distributed among them. In such
a situation, if we consider the expected value of the total
reward, we can see that it is always better if the players’
choices do not overlap.

What typically happens in the competitive bandit
problem is that if each player draws a machine accord-
ing to only his/her own selection probability, selection
conflicts will occur frequently and the final cumulative

rewards will be reduced. However, the quantum nature
of light can be used to link individual reward maximiza-
tion with total reward maximization. Chauvet et al. de-
vised a system that uses entanglement of polarization to
prevent selection conflicts without direct communication
between the players, and experimentally demonstrated
the effectiveness of this system to tackle the competitive
multi-armed bandit problem [24, 25].

The advantage of utilizing the quantum nature of light
here is twofold. The first is that it enables the players to
conduct probabilistic decision-making through the obser-
vation of polarized light. Specifically, the stochasticity
associated with the observation of polarization can be
linked to probabilistic decision-making by mapping the
choice of the machine to the polarization observed in a
way that if the photon is detected by an avalanche photo-
diode corresponding to the horizontally polarized light,
the player will select the first machine and vice versa
[26]. The second advantage of using the quantum nature
is that entanglement guarantees that the players’ choices
never overlap. The team reward will not be diminished
thanks to the non-conflict decisions by the players [24].
Furthermore, Amakasu et al. theoretically showed that
conflict-free collective decision-making is possible over an
arbitrary number of choices by employing orbital angu-
lar momentum of light to overcome the limitations of
the number of choices in the case of polarization-based
approaches [27]. Orbital angular momentum is another
degree-of-freedom associated with photons. It carries
theoretically infinite numbers of states, and is widely
utilized in applications such as optical communications
[28, 29].

Those previous studies aimed to maximize total cu-
mulative rewards by making conflict-free decisions. Con-
versely, the present research, as well as the related for-
mer work [5], exclude external factors such as rewards.
Instead, the focus is on how to accomplish the maxi-
mization of preference satisfaction; that is, how well the
player’s preference is reflected in the joint decision.

In this study, we demonstrate that quantum systems
can be utilized in the preference satisfaction problem. In
Sec. II A, we first review the problem settings of prob-
abilistic preference satisfaction. In the subsequent Sec.
II B, we review theorems about the optimal joint selection
matrix and clarify the issues related to the construction
of the optimal joint selection matrix. After that, we pro-
pose and demonstrate sampling methods that converge
to heuristic joint selection probability matrices. In par-
ticular, Sec. III covers two sampling methods through
quantum interference, each of which is analyzed in detail
in terms of implementation, computational cost, confi-
dentiality, and the joint selection probability matrix it
converges to. In Sec. IV, we compare the losses (defined
in Sec. II) of the joint selection probability matrices to
which the sampling methods converge through numerical
calculations. Finally, Sec. V provides a summary of this
research and future perspectives.
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II. PREFERENCE SATISFACTION BY
CONFLICT-FREE JOINT DECISIONS

A. Problem settings

In this section, we review the problem settings of
the conflict-free probabilistic preference satisfaction pro-
posed in Ref. [5]. Suppose that two players, player A and
B, have probabilistic preferences over N options (N ≥ 2).
Let Ai be player A’s preference for option i and Bi be
player B’s preference for option i. Since Ai and Bi are
probabilities, the following constraints are satisfied:

A1 +A2 + · · ·+AN = B1 +B2 + · · ·+BN = 1, (2)

Ai ≥ 0, Bi ≥ 0 (i = 1, 2, · · · , N). (3)

Let pi,j be the probability of player A choosing option
i and player B choosing option j as a result of collective
decision-making. pi,j must satisfy the following condi-
tions: ∑

i,j

pi,j = 1, pi,j ≥ 0. (4)

Then, we define the joint selection probability matrix P
such that the element (i, j) of P is pi,j :

P =


0 p1,2 · · · p1,N
p2,1 0 · · ·

...
...

...
. . .

...
pN,1 · · · · · · 0

 . (5)

The diagonal elements are all zero because we deal with
collective decision-making without choice conflict.

The property we demand for P is the following. The
probability that player A can choose option i as a result
of P is obtained by summing over columns j:

πA(i) =
∑
j

pi,j . (6)

We call πA(i) the satisfied preference, and if this value is
consistent with player A’s original preferenceAi, it means
that the preference is satisfied for option i. Similarly,
we can obtain the satisfied preference for player B by
summing over rows i:

πB(j) =
∑
i

pi,j . (7)

Our goal is to determine pi,j that make the satisfied pref-
erence as close as possible to the original preferences of
both players for all options. In other words, our objective
is to find pi,j so that they realize

πA(i) ≈ Ai, πB(j) ≈ Bj (8)

for all i = 1, 2, . . . , N and j = 1, 2, . . . , N .

Figure 1 schematically illustrates the problem settings.
Players A and B have probabilistic preferences over op-
tions when N = 4, where in this case,

A1 = 0.1, A2 = 0.2, A3 = 0.3, A4 = 0.4, (9)

B1 = 0.3, B2 = 0.2, B3 = 0.2, B4 = 0.3. (10)

Then, an algorithm calculates a joint selection probabil-
ity matrix P . A decent algorithm should output a matrix
in such a way that the satisfied preferences match the
players’ preferences. For example, if we take the sum of
the second row of the joint selection probability matrix in
the red shaded area, we should get a value close to player
A’s preference towards the second option. Similarly, if
we take the sum of the third column in the green shaded
area, we should get a value close to player B’s preference
towards the third option. An example of a joint selection
probability matrix that satisfies the players’ preferences
perfectly is

P =

 0 0 0 0.1
0 0 0.1 0.1
0 0.2 0 0.1

0.3 0 0.1 0

 . (11)

Finally, to quantify the degree of preference satisfac-
tion, we define the degree of deviation between the satis-
fied preferences and the original preferences as the loss.
The loss L is defined in a manner analogous to the L2-
norm as follows:

L =
∑
i

(πA(i)−Ai)2 +
∑
j

(πB(j)−Bj)2 , (12)

which is composed of the sum of squares of the gap be-
tween the satisfied preference and the original preference.
The smaller the loss is, the more successfully the prefer-
ences are satisfied, and when the loss is zero, the player’s
preferences are perfectly satisfied.

B. Optimal joint selection probability matrix

In this section, we review principal theorems on the
optimal joint selection probability matrix from [5] and
clarify two problems associated with them. We define a
score called the popularity, which represents how much
each option is favored by the players.

Definition II.1 The popularity Si is defined as the sum
of the preferences of player A and player B for option i.

Si := Ai +Bi (i = 1, 2, . . . , N). (13)

Since the preferences Ai and Bi are probabilities, it holds
that ∑

i

Si =
∑
i

Ai +
∑
i

Bi = 2. (14)

Two theorems have been found regarding the popularity
Si.
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Player A Player B

I want 
option 1 with 10%,
option 2 with 20%,
option 3 with 30%,
option 4 with 40%.

I want 
option 1 with 30%,
option 2 with 20%,
option 3 with 20%,
option 4 with 30%.

Preference Preference 

Option 1 Option 2 Option 3 Option 4

Joint selection probability matrix

Algorithm
Output 

FIG. 1. Problem settings. Two players have probabilistic preferences and an algorithm calculates a joint selection probability
matrix that satisfies their preferences. The sum of each row should be close to the corresponding preference of player A, and
the sum of each column should be close to the corresponding preference of player B.

Theorem II.1 Assume that all the popularities Si are
smaller than or equal to 1. Then, it is possible to con-
struct a joint selection probability matrix that makes the
loss L equal to zero.

∀i;Si ≤ 1⇒ Lmin = 0. (15)

Theorem II.2 If any value of Si is greater than 1, it is
not possible to make the loss L equal to zero.
In a case when the N th option is the most popular, that
is, max {Si} = SN > 1, the minimum loss is

Lmin =
N

2(N − 1)
· (SN − 1)2. (16)

The following joint selection probability matrix is one of

the matrices that minimize the loss.

P̃ =


0 0 · · · 0 A1 + ε
0 0 · · · 0 A2 + ε
...

...
. . .

...
...

0 0 · · · 0 AN−1 + ε
B1 + ε B2 + ε · · · BN−1 + ε 0

 ,

(17)

ε =
SN − 1

2(N − 1)
. (18)

The existence of the optimal joint selection probability
matrices and their specific construction methods were
presented for both cases where the maximum popular-
ity is less than or equal to one, and where it is greater
than one.

However, there are two concerns that need to be re-
solved. The first is the computational cost of construct-
ing the optimal joint selection probability matrix in The-
orem II.1. To fill in one row and column of the matrix,
we need to:

1. Determine the maximum and minimum values of
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the popularities.

2. Fill in at most N − 1 elements.

Determining the maximum and minimum values requires
a computational cost of O(N) each, and filling in at most
N − 1 elements requires a computational cost of O(N)
because every time each element is filled we need one sub-
traction. Therefore, it requires O(N2) to fill all the rows
and columns in the joint selection probability matrix.
Thus, when N becomes huge, it is difficult to compute
the optimal joint selection probability matrix.

The second concern, common to the construction of the
optimal joint selection probability matrix in both Theo-
rems II.1 and II.2, is the lack of confidentiality. In both
cases, constructing the optimal joint selection probability
matrix requires the players’ preferences Ai and Bi. This
means that the players must disclose their preferences to
each other or a third party. In the real world, the neces-
sity of preference disclosure is undesirable if the players
do not know each other or have no means of commu-
nication. For example, few people feel like telling their
preferences over sensitive matter to someone they do not
know. Even if they do, they may not have a way to
connect.

Here, we consider how to deal with these two prob-
lems. Practically, if we consider conflict-free collective
decision-making, we do not necessarily need to calculate
the values of the joint selection probability matrix ex-
plicitly. Instead, it will be enough if there is a sam-
pling method that converges to that matrix over repeated
draws. In this study, we demonstrate two quantum sam-
pling methods that converge to heuristic joint selection
probability matrices with relatively small losses and an-
alyze how each of them deals with the above problems.
In particular, we show how quantum interference effects
can realize conflict-free joint sampling while highly sat-
isfying individual preference profiles and resolving the
confidentiality issue. It should be emphasized that the
physical processes, not computers, play the role of estab-
lishing conflict-free joint sampling while taking account
of individual preferences. The computing cost is replaced
by the physical nature of light. We have not yet de-
vised a sampling algorithm that always converges to the
optimal joint selection probability matrix. However, as
demonstrated later in Sec. IV, one of the proposed quan-
tum samplings realizes almost comparable performances
to the optimal cases under certain conditions.

III. JOINT SAMPLING METHODS THROUGH
QUANTUM INTERFERENCE

In this section, we propose the following two sampling
methods, each of which converges to a joint selection
probability matrix with relatively small loss L:

A. Pure Hong-Ou-Mandel (Pure HOM)

B. Orbital Angular Momentum Attenuation
(OAM Attenuation)

Both of them employ orbital angular momentum (OAM)
of light, which is a degree-of-freedom that consists of a
theoretically infinite number of states, and they are rel-
atively easy to implement using basic equipment such as
spatial light modulators and beam splitters [27].

As introduced in Sec. II, there were two problems in
constructing the optimal joint selection probability ma-
trix: high computational cost and low confidentiality. For
each of the above sample methods, we analyze the follow-
ing four features:

1. Implementation

2. Computational cost

3. Confidentiality

4. Joint selection probability matrix that it converges
to

A. Pure Hong-Ou-Mandel

1. Implementation

The method we call “Pure Hong-Ou-Mandel (Pure
HOM)” employs a system based on the Hong-Ou-Mandel
effect involving quantum interference of orbital angular
momentum of photons [30, 31]. Figure 2 schematically
illustrates the quantum system we use to make conflict-
free joint decisions.

LASER

TPG BS

SLM2

SLM1
B

TPG : Two-photon generator 
SLM : Spatial light modulator 
BS : Beam splitter 
APD : Avalanche photodiode

A

APD
Player A's
preference

Player B's
preference 

FIG. 2. Implementation of Pure HOM. Each player adjusts
one of the SLMs using only their own preference profile. Pho-
todetectors are placed immediately after the output of the
HOM effect. The detected OAM number is mapped to the
index of the option.

First, a photon pair is created by a two-photon gener-
ator, and split into two paths by a beam splitter. At this
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point, each photon does not carry orbital angular mo-
mentum. Orbital angular momentum states can be in-
duced by a spatial light modulator (SLM), which displays
computer-generated holograms on its surface [32, 33].

In the proposed system, player A controls SLM1 to en-
code his/her probabilistic preference to a photon. Since,
SLMs can manipulate both amplitude and phase terms
of OAM states, the resulting photon can be described by

|Φ〉 =

K∑
k=1

ake
iφk |+ k〉,

∑
k

a2k = 1. (19)

Similarly, player B controls SLM2 to encode his/her pref-
erence to the other photon:

|Ψ〉 =

K∑
k=1

bke
iψk | − k〉,

∑
k

b2k = 1. (20)

Then, the photon pair is simultaneously injected into
a beam splitter, where the Hong-Ou-Mandel effect hap-
pens. The output OAM states are the tensor product of
the OAM states of the two injected photons:

|Φ,Ψ〉 =

K∑
k=1

i

2
akbke

i(φk+ψk)|+ k〉2AA

+
∑
k1<k2

i

2

(
ak1bk2e

i(φk1
+ψk2)

+ak2bk1e
i(ψk1

+φk2)
)
|+k1,+k2〉AA

+
1

2

K∑
k1=1

K∑
k2=1

(
ak1bk2e

i(φk1
+ψk2)

−ak2bk1ei(ψk1
+φk2)

)
|+k1,−k2〉AB

+

K∑
k=1

i

2
akbke

i(φk+ψk)| − k〉2BB

+
∑
k1<k2

i

2

(
ak1bk2e

i(φk1
+ψk2)

+ak2bk1e
i(ψk1

+φk2)
)
|−k1,−k2〉BB .

(21)

As shown in Fig. 2, photodetectors are placed immedi-
ately after the beam splitter. The probability of detecting
|+ i〉 on side A and | − j〉 on side B is

ri,j =

∣∣∣∣12 (aibjei(φi+ψj) − ajbiei(ψi+φj)
)∣∣∣∣2

=
1

4

(
a2i b

2
j + a2jb

2
i − 2aiajbibj cos (θi − θj)

)
,

(22)

θk =
φk − ψk

2
. (23)

Substituting i = j verifies that the same absolute values
of the OAM number will never be observed on sides A

and B, whatever parameters ak, bk, φk, ψk the players use
for the input states.

Now, in order to realize joint sampling, the observed
OAM number is mapped to the index of choice. For
example, if the OAM of +1 is observed on side A, player
A will select the first option, and if | − 2〉 is observed on
side B, player B will select the second option. Selection
conflicts between the two players will never happen under
this rule, because the absolute values of the observed
OAM number on sides A and B always differ thanks to
the Hong-Ou-Mandel effect. Therefore, with Pure HOM
realized by Fig. 2, collective decision-making without
selection conflicts can be achieved.

Note that there are cases where two photons come out
on the same side. For example, according to Eq. (21),
the probability of both photons, whose OAM states are
respectively |+ k1〉 and |+ k2〉, coming out on side A is∣∣∣∣ i2 (ak1bk2ei(φk1

+ψk2) + ak2bk1e
i(ψk1

+φk2)
)∣∣∣∣2 > 0. (24)

In such cases, we discard the photon pair and regenerate
a new one.

2. Computational cost

As confirmed in Eq. (22), the output OAM states of
the Hong-Ou-Mandel effect depend on the input param-
eters ak, bk, φk, and ψk. Since the players control these
parameters, the computational cost depends on how this
control is done. How exactly they should be controlled is
discussed in Sec. III A 4.

3. Confidentiality

In this study, we assume a situation where each player
adjusts the SLM using only their own preference; that
is, player A cannot take Bi into account to determine ak
and φk, and vice versa. Under this assumption, neither
player is required to disclose their probabilistic preference
to the other or to a third party. Even though player A
does not know player B’s preference, he/she must make
an assumption to determine the input parameter ai. For
now, we let player A assume that player B has the same
preference and amplitude terms. This is a reasonable
assumption when preferences are similar, but does not
hold in general. Specifically, using the amplitude term ai,
he/she can compute the joint selection probability matrix
from which the output OAM states are sampled from, so
he/she can optimize ai numerically by viewing the loss of
the joint selection probability matrix as a function of ai.
The optimization of the amplitude terms are conducted
numerically using the SLSQP optimizer.

Moreover, the Hong-Ou-Mandel effect allows them to
avoid conflicts without having to inform the other party
of which option they have selected. Therefore, with
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Pure HOM, the players’ preferences and their choices are
highly secure. Also, there is no need to trust a third
party since the whole procedures can be carried out be-
tween the two players. As we will see later, this property
is unique to Pure HOM and cannot be achieved by the
other quantum sampling method we propose in this pa-
per.

4. Joint selection probability matrix

By using Eq. (22), we can calculate the probability of
player A selecting option i and player B selecting option
j as

pi,j =
ri,j∑
ri,j

, (25)

ri,j =
1

4

(
a2i b

2
j + a2jb

2
i − 2aiajbibj cos (θi − θj)

)
. (26)

This joint probability depends on the input parameters,
and this section analyzes the characteristics of the joint
selection probability matrix that consists of pi,j and dis-
cusses what parameters the players should use. Note that
we assume that each player controls the SLM using only
his/her own preference.

We can confirm from Eqs. (25), (26) that the joint
selection probability matrix is symmetric for any input
parameters ak, bk, φk, and ψk. This means that the sat-
isfied preferences of players A and B on option i, that is,
πA(i) and πB(i), are always equal. Thus, when players
A and B have similar preferences, Pure HOM is likely to
result in a low loss, but it is expected to work very poorly
when they have reversed preferences.

Regarding situations where the players have the same
preferences, the following theorem holds.

Theorem III.1 When there are three options, if the
players have the same preferences and all the populari-
ties Si are less than 1, by setting the amplitude terms
ak, bk as follows:

a21 : a22 : a23 = b21 : b22 : b23 =

sin2 θ2−θ3
2

1− 2A1
:
sin2 θ3−θ1

2

1− 2A2
:

sin2 θ1−θ2
2

1− 2A3
,

(27)

the resulting joint selection probability matrix achieves
the theoretical minimum loss.

Proof III.1 When a2i = b2i , Eq. (26) can be rewritten
as

ri,j = a2i a
2
j sin2 θi − θj

2
. (28)

Now, let π̂A(i) be the “unnormalized satisfied prefer-
ence,” which is defined by

π̂A(i) =

N∑
j=1

ri,j . (29)

Also, the unnormalized satisfied preference for player B
is defined by

π̂B(j) =

N∑
i=1

ri,j . (30)

With the relation Eq. (25), it follows that

πA(i) =
π̂A(i)∑N
i=1 π̂A(i)

, πB(j) =
π̂B(j)∑N
i=1 π̂B(j)

. (31)

Using the amplitude terms described in Eq. (27), we get

π̂A(1) = a21a
2
2 sin2 θ1 − θ2

2
+ a21a

2
3 sin2 θ1 − θ3

2
(32)

= T (1− 2A3)a21a
2
2a

2
3 + T (1− 2A2)a21a

2
2a

2
3 (33)

= 2Ta21a
2
2a

2
3(1−A2 −A3) (34)

= 2Ta21a
2
2a

2
3 ×A1. (35)

Here,

T =
sin2 θ2−θ3

2

1− 2A1
+

sin2 θ3−θ1
2

1− 2A2
+

sin2 θ1−θ2
2

1− 2A3
. (36)

Similarly, it follows that

π̂A(2) = 2Ta21a
2
2a

2
3 ×A2, π̂A(3) = 2Ta21a

2
2a

2
3 ×A3.

(37)

Normalizing π̂A(i) leads to

πA(i) = Ai. (38)

Therefore, the loss for player A is zero, and the same
argument can apply to player B, which results in

L = 0. (39)

�

This property cannot be realized by OAM Attenuation,
that will be explained in the subsequent Sec. III B and
other simple sampling methods shown in Sec. IV, high-
lighting the importance of Pure HOM. Furthermore, in
Sec. IV, we present the results of numerical simulations
that show the near-optimality of Pure HOM under less
restricted conditions, including when the number of op-
tions is more than three and when one of the popularities
Si is greater than 1. There, Pure HOM is found to be
quite effective as long as the players have the same pref-
erences.

B. Orbital Angular Momentum Attenuation

1. Implementation

This method, which we call “Orbital Angular Mo-
mentum Attenuation (OAM Attenuation),” also utilizes



8

quantum interference of orbital angular momentum, and
the quantum system to be considered is proposed by
Amakasu et al. [27], but for a different purpose. As
with the case in Pure HOM, we perform probabilistic
decision-making by mapping the observed OAM number
to the index of choice. We use a system described in Fig.
3, and the whole system works in the following way.

After a photon pair is generated by a two-photon gen-
erator, it is split into two paths by a beam splitter, and
OAM states of the photons are adjusted by SLMs as fol-
lows:

|Φ〉 =
1√
K

K∑
k=1

eiφk |+ k〉, |Ψ〉 =
1√
K

K∑
k=1

eiψk | − k〉.

(40)
In [27], only phase modulations are applied, and we follow
this setup in OAM Attenuation. This corresponds with
the situation where we set

ak = bk =
1√
K

(41)

in Eqs. (19) and (20). As a result, the probability of
detecting |+ i〉 on side A and | − j〉 on side B is

ri,j =
1

K2
sin2 (θi − θj) , (42)

θk =
φk − ψk

2
. (43)

Here again, we can confirm that the observation proba-
bility is always zero when i = j. Also, there are cases
where two photons come to the same side. Then, we
discard the photon pair and regenerate a new one.

After the Hong-Ou-Mandel effect, each photon is sent
to an attenuation system owned by each player, as shown
in Fig. 3. There, the photon is divided into N paths
by beam splitters, and in each path, a phase factor of
eilHGθ is added to the state | + l〉, which changes the
state to |+l+lHG〉, by a hologram. Then, the probability
amplitude is reduced by an attenuator, and only an l = 0
photon is filtered through by a single-mode optical fiber.
If the photon is detected by a photodetector placed in the
same line as the hologram with the phase factor eilHGθ,
the OAM of the incoming photon is revealed to be l =
−lHG.

If there are N options, holograms whose phase factors
are respectively −1,−2, . . . ,−N , are used. For example,
when the number of options N is three, three holograms
that transform |l〉 to |l−1〉, |l−2〉 and |l−3〉, respectively,
are placed.

Now, in the i-th path, an attenuator with the attenua-
tion rate

√
di (0 ≤ di ≤ 1) is placed after the hologram

and before the single-mode optical fiber. In the end, if
the input photon of the attenuation system carries the
same probability amplitude for each OAM, the detection
rate of each OAM is denoted by

di
N2

. (44)

The sum over all i is not equal to unity because some
photons are lost by the attenuators and the fibers.

The detected OAM number is mapped to the index of
the option. As a result, the selection probability of the
i-th machine is di as a result of the attenuation system.

In this study, the part of the system that generates
photon pairs using the Hong-Ou-Mandel effect is consid-
ered as the “source,” and we assume that this is con-
trolled by a neutral third party with no knowledge of
the players’ preferences. If only one of the players had
the authority to manipulate the source, they would be
able to adjust |Φ〉 and |Ψ〉 so that some selection pair
could happen more at the source than other pairs. The
generated pair of photons are then injected into the sys-
tem shown in Fig. 3, each controlled by player A and B,
respectively.

Each player embeds information about his/her own
probabilistic preference in the attenuators in his/her sys-
tem. Specifically, player A adjusts the attenuation rates
of the attenuators in his/her system to√

dAi =
√
Ai. (45)

Similarly, player B sets√
dBi =

√
Bi. (46)

Each player chooses the option whose index is equal to
the OAM number they have observed.

2. Computational cost

One remarkable aspect of this system is that it requires
zero computational cost since the player only needs to set
the attenuation rates. As we will see later, the computa-
tional cost of independently computing the effective joint
selection probability matrix that this sampling method
naturally converges to would be O(N2). However, we
need no computational cost if we need only to sample
from it with the quantum system. Note that, even though
the players do not need to calculate anything, they some-
times have to repeat the observation process because the
photon pairs are lost probabilistically due to two reasons.
The first reason is the loss at the source level. We ignore
cases where two photons come out on the same side of
the beam splitter at the source. The second reason is the
absorption by the attenuators and the filtering through
the optical fiber. The players can detect only photons
that pass through the attenuators and the single-mode
optical fiber.

3. Confidentiality

Since each player sets only his/her own attenuators,
there is no need to disclose their preferences. In addi-
tion, thanks to the HOM effect, selection conflicts do not
occur in principle, and thus conflict avoidance is achieved
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TPG : Two-photon generator 
SLM : Spatial light modulator 
BS : Beam splitter 
ATT : Attenuator 
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preference 

Option 1
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FIG. 3. Implementation of OAM Attenuation. Each player embeds their probabilistic preference to the attenuators. The
detected OAM number is mapped to the index of the option.

without each party having to communicate their own se-
lection to the other. However, they need to have a way to
make sure that both of them detected a photon because
each of them alone cannot discriminate the following two
situations.

• Both players detected a photon, which means that
the joint selection is valid.

• One of the players detected a photon, but the other
photon is absorbed by the attenuator, which means
that the joint selection is invalid.

If they have a direct connection, they can just ignore the
cases where one of them does not detect a photon. If they
do not have a direct connection, a third person or system
that executes the joint decision only when both players
send their choices is needed. Another pitfall is that the
final value of the joint selection probability matrix to
which this sampling method converges to depends not
only on the players’ preferences, but also on the phase
settings of the source part, as we will examine in the
next section. Thus, the player has to trust that the third
party managing the source determines the phase from a
fair distribution.

4. Joint selection probability matrix

When there are N options and the input states of the
source are set as in Eq. (40), the general formula of the

elements pi,j in the joint selection probability matrix is
denoted by

pi,j =
ri,j∑
ri,j

, (47)

ri,j =
1

K2
sin2 (θi − θj)×Ai ×Bj , (48)

θk =
φk − ψk

2
. (49)

Although the values of the element in the joint selection
probability matrix depend on the source’s phase settings
θi as described above, this sampling method converges to
the following joint selection probabilities over many rep-
etitions, assuming that the source determines the value
of sin2(θi − θj) uniformly at random:

pi,j =
r̃i,j∑
r̃i,j

, (50)

r̃i,j = Ai ×Bj . (51)

This is actually the same joint probability matrix that
is introduced as “Simultaneous Renormalization” in [5].
If this joint selection probability matrix were to be com-
puted on a computer, it would require a computational
cost of O(N2). However, if the sampling is carried out
by the quantum system described in Fig. 3, as explained
in Sec. III B 2, the cost is 0. Although the quantum
system guarantees low computational cost and high con-
fidentiality, OAM Attenuation generally cannot achieve
the optimal loss, as will be discussed in the following
section.
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IV. PERFORMANCE COMPARISON

A. Objectives

In this section, we compare the losses under various
preference settings to clarify the extent to which the joint
selection probability matrices of the proposed methods
approximate the optimal joint selection probability ma-
trix. A total of five models were compared. The first two
models were introduced in Sec. III, that is, Pure HOM
and OAM Attenuation. The other models are Random
Order, Uniform Random and the optimal joint selection
probability matrix. Details of Random Order are ex-
plained in the subsequent Sec. IV B. Uniform Random is
a method that samples cases with no selection conflicts
with equal probabilities. As Eqs. (50), (51) imply, the
joint selection probability matrix that OAM Attenuation
converges to is the same as the one introduced as “Si-
multaneous Renormalization” in Ref. [5], albeit without
considering the properties of a physical implementation,
such as the absorption of photons. Since we have already
compared Uniform Random, Random Order, Simulta-
neous Renormalization, and the optimal joint selection
probability matrix in the previous study, this section fo-
cuses primarily on the performance of Pure HOM. To be
clear about the contribution of this paper to OAM Atten-
uation, it is the analysis of the implementation method,
computational cost, confidentiality, and properties of the
joint selection probability matrix it converges to, as pre-
sented in Sec. III B, and this section uses it to compare
with Pure HOM.

B. Random Order

One straight-forward and classical method to realize
conflict-free decision-making is what we call “Random
Order.” It is similar to the random priority mechanism
proposed by Abdulkadiroğlu et al. [34], except that it
takes into account probabilistic preferences. A big ad-
vantage of it is its simplicity. First, players decide uni-
formly at random in which order they choose options.
Then, based on the order, the first player makes a prob-
abilistic decision according to his/her preference. For
there to be no choice conflict, the first player notifies
the second player which option has already been chosen.
The second player then configures the preference of the
already-selected option to zero, and normalizes his/her
preference so that the sum of the remaining probabili-
ties becomes 1. After that, the second player executes
a probabilistic choice based on his/her preference. Note
that this method can sometimes fail when there is a zero
preference. For example, in an extreme case, when the
number of options N is two, and the players’ preferences
are A1 = A2 = 0.5, B1 = 1, and B2 = 0. If they de-
cide player A to be the first and he/she chooses option 1,
player B will have no options with a positive preference
to select, and the algorithm stops.

This simple algorithm can also reduce the problems
with the optimal matrix. Regarding the first problem,
that is, the computational cost, the first player does not
need to make any calculations. However, the second
player needs to normalize his/her preference after set-
ting the preference of the already selected option to 0,
which requires the computational cost of O(N).

As for the second problem, neither player is required
to directly disclose their probabilistic preference to the
other, but the first player has to tell the second player
which option he or she has chosen to avoid decision con-
flict. This will indirectly expose their preference profiles
over many trials. In addition, it is an undesirable prop-
erty if the two players do not trust each other or have
limited means of communication.

Finally, iterating this sampling method leads to con-
vergence to a certain joint selection probability matrix,
and the general formula of its elements pi,j can be ex-
pressed as follows:

pi,j =
1

2

(
Ai ×

Bj
1−Bi

+Bj ×
Ai

1−Aj

)
. (52)

The first term corresponds to the probability of player
A selecting option i and player B selecting option j un-
der the condition that player A draws first, and the sec-
ond term corresponds to the same probability under the
condition that player B draws first. We can easily con-
firm that these joint probabilities give the optimal loss
when the number of options N is two. However, in more
general cases where N ≥ 3, the joint selection probabil-
ity matrix of Random Order cannot achieve the optimal
loss, except in special circumstances, such as when all the
preferences are equal.

C. Comparison of the heuristics

The preference settings used in this section are the
same as the ones used in Ref. [5]. Considering 2-player
N -option (N = 3, 4, . . . , 50) situations, we compare the
loss L of Uniform Random, OAM Attenuation, Random
Order, Pure HOM, together with the optimal joint selec-
tion probability matrix under the following four prefer-
ence settings.

(i) Arithmetic progression and same preference.

A1 : A2 : · · · : AN = B1 : B2 : · · · : BN

= (1 : 2 : · · · : N)/c1, c1 =
(N + 1)N

2
.

(53)

(ii) Modified geometric progression with common ratio
2 and same preference.

A1 : A2 : · · · : AN = B1 : B2 : · · · : BN
= (1 : 1 : 2 : · · · : 2N−2)/c2, c2 = 2N−1.

(54)
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FIG. 4. Loss comparison. Y axes are log scale for cases (i), (ii) and (iii). Lines for the optimal satisfaction matrix overlap
with X axes for these cases to show the loss is zero. (i) arithmetic progression + same preference, (ii) geometric progression
with common ratio 2 + same preference, (iii) geometric progression with common ratio 2 + reversed preference, (iv) geometric
progression with common ratio 3 + same preference. For cases (i)–(iii), the minimum loss is zero, while for case (iv), it is
greater than zero.

(iii) Modified geometric progression with common ratio
2 and reversed preference.

A1 : A2 : · · · : AN = BN : BN−1 : · · · : B1

= (1 : 1 : 2 : · · · : 2N−2)/c3, c3 = 2N−1.
(55)

(iv) Geometric progression with common ratio 3 and
same preference.

A1 : A2 : · · · : AN = B1 : B2 : · · · : BN

= (1 : 3 : · · · : 3N−1)/c4, c4 =
3N − 1

2
.

(56)

Note that in cases (i)–(iii), the optimal satisfaction ma-
trix achieves L = 0 since ∀i;Si ≤ 1, whereas in case (iv),
it is not possible to achieve L = 0 since SN > 1.

Figure 4 shows how the loss L for each of the five mod-
els changes as the number of options N increases. First,
as expected, Uniform Random (blue line in Fig. 4) per-
forms poorly under all of the conditions, as it does not
take preferences into account.

Next, as mentioned in the previous study, OAM At-
tenuation performs slightly worse than Random Order
in all of the cases (orange and green lines in Fig. 4).
This results in a trade-off between preference satisfac-
tion and confidentiality. While OAM Attenuation has
larger losses, Random Order requires the first player to
inform the other player of his/her choice.

Next, it is remarkable that Pure HOM has a very small
loss compared to other heuristics in cases when both play-
ers have the same preferences (red line in Fig. 4 cases

(i), (ii) and (iv)). In particular, for N = 3, it can be
mathematically proven that the loss is strictly zero when
the maximum popularity Smax is less than 1, as Theorem
III.1 suggests, but numerical calculations show that there
is some residual loss. This is due to the numerical errors
which happen in the optimization of the amplitudes.

Over all, both quantum based sampling methods show
promising performance. These methods do not require
the direct calculation of a joint preference matrix or the
disclosure of player’s preferences, yet they can achieve
very small losses.

Remarkably, although case (iv) breaks ∀i;Si ≤ 1, the
loss by Pure HOM is very close to the optimal loss. This
implies that Pure HOM can work well in much less re-
stricted conditions than those assumed in Theorem III.1,
as long as the players have the same preferences. In the
subsequent section, we examine the optimality of Pure
HOM in more general preference settings.

On the other hand, in case (iii), where the players have
reversed preferences, Pure HOM performs worse than
Uniform Random. The reason is twofold. First, in Pure
HOM, we let player A assume that player B has the same
preference and amplitude terms, but this assumption is
strongly broken in case (iii). Second, even if player A
could take player B’s preference into account, the joint
selection probability matrix would always be symmetric
in Pure HOM, so trying to satisfy the preference of one
player will always lead to deviation from the preference
of the other player.
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D. Optimality of Pure HOM

In Theorem III.1, we proved that when the players have
the same preferences over three options and the popular-
ities Si are all less than 1, Pure HOM can make the loss
zero. Moreover, case (iii) of Sec. IV C implies the possi-
bility of Pure HOM being close to the optimal in more
general settings. This section further examines the loss
L of Pure HOM under other less restricted settings.

We are also interested in the efficiency of the physical
sampling process. Therefore, we define the usage rate

U =
∑
i,j

ri,j (57)

to measure the rate of photon pairs successfully used to
make conflict-free decisions. In other words, (1 − U) of
photon pairs are discarded in Pure HOM because the col-
lective decision-making via Pure HOM works only when
one photon is observed on side A and the other on side
B in Fig. 2. Thus, bigger U means that we are utilizing
photon pairs efficiently.

Going beyond the cases studied in Sec. IV C, we con-
sider more general cases where the players have the same
preferences and all the popularities Si are less than 1,
but the number of options N is 3–50. For each number
of options N , 1000 preferences are randomly chosen so
that the maximum popularity is less than 1. Then, for
each preference setting, the loss L and the usage rate U
are calculated as a result of Pure HOM. Finally, the av-
erage loss L and the average usage rate U are calculated
over 1000 results. Figure 5(a) shows how the average loss
L changes as the number of options increases, and Fig.
5(b) shows the change in the average usage rate U . The
average losses for OAM Attenuation and Random Order
are also presented in Fig. 5(a) as references.

The average loss stays small for all numbers of options.
The losses for a smaller number of options become rela-
tively bigger because

1. The scale of each preference is bigger compared to
the cases where N is large, and so is the loss.

2. There is more chance of the biggest preference be-
ing close to 0.5, which destabilizes the numerical
optimization.

Also, if we look at how the usage rate U changes, it re-
mains above about 0.35 and for bigger number of options,
it approaches 0.5, meaning that about half of the photon
pairs generated can be utilized.

Finally, we examine cases where the players have the
same preferences, but the maximum popularity is greater
than 1, meaning even the optimal satisfaction matrix can-
not achieve 0-loss. However, we must be careful about
what metric to use in this case. The average loss is not an
appropriate metric to measure the near-optimality when
the maximum popularity Smax is greater than 1. This
is because the value of the optimal loss varies depend-
ing on Smax (refer to Eq. (16) for the detailed formula).

(a) Average loss L
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(b) Average usage rate U

FIG. 5. The performance of the three sampling methods
for general cases. (a) The average loss and (b) photon usage
rate of Pure HOM calculated from 1000 randomly generated
symmetric preference profiles with maximum popularity less
than 1. From (a), the loss by Pure HOM is quite close to
zero, which is the theoretical minimum loss. Moreover, from
(b), the usage rate is near 0.5, meaning that photon pairs are
used efficiently.

Even if the average loss of Pure HOM over 1000 profiles
is close to the average of the optimal losses, the value at
each point can significantly deviate. For example, sup-
pose there is a preference profile with the optimal loss
of 10−7, and the loss of Pure HOM for the same prefer-
ence profile is 3× 10−7. Although there is a three-times
gap between them, if another preference profile with the
optimal loss of 0.1 exists, the error in the first profile is
almost completely ignored when averaging the two. In-
deed, when N = 50 and Smax = 1.0, the optimal loss is
0, but when Smax = 2.0, it is about 0.51, indicating that
the scale problem is a critical one.

Accordingly, we use a new metric that reflects the rel-
ative error between the Pure HOM loss and the optimal
loss rather than the average of the losses when the max-
imum popularity Smax is greater than 1. The most intu-
itive one is the mean absolute percentage error (MAPE)
shown below, but MAPE cannot be used in this case be-
cause it becomes infinitely large when the optimal loss is
close to 0.

MAPE =
1

T

T∑
i=1

∣∣∣∣∣ L̃i − LiL̃i

∣∣∣∣∣ . (58)
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FIG. 6. The performance of the three sampling methods
for general cases. (a) MAAPE between the optimal loss and
(b) photon usage rate of Pure HOM calculated from 1000
randomly generated symmetric preference profiles with max-
imum popularity greater than 1. From (a), it is remarkable
that MAAPE of Pure HOM is much closer to zero especially
with small N . However, from (b), the usage rate is quite
small, meaning that many photon pairs are needed to accom-
plish a collective decision.

Here, T is the number of samples, and L̃i and Li re-
spectively denote the optimal loss and the loss of a given
sampling method (any one of Pure HOM, OAM Attenu-
ation, or Random Order) for the i-th preference profile.
Instead, we quantify the closeness of the two losses over
multiple points using the mean arctangent absolute per-
centage error (MAAPE), which is proposed by Kim et
al. to overcome the weakness of MAPE [35]. This metric
takes the arctangent of the relative error so that the value
of the metric does not diverge when the ground truth is
close to 0. The value can take the range 0–π/2, with the
smaller value indicating that the losses are closer.

MAAPE =
1

T

T∑
i=1

arctan

∣∣∣∣∣ L̃i − LiL̃i

∣∣∣∣∣ . (59)

Figure 6(a) shows MAAPE between the optimal loss
and the three sampling methods: OAM Attenuation,
Random Order and Pure HOM, and Fig. 6(b) is the

change in the average usage rate U . The reason why the
results appear noisy is due to the insufficient number of
samples. Nevertheless, we do not believe it is necessary
to increase the number of samples to smooth the lines,
since our focus here is to compare the optimality of each
sampling method, not to estimate individual MAAPE
for every N accurately. We set the number of samples
to 1000 in this experiment due to the limitation of com-
putation time. The graph shows that MAAPE of Pure
HOM is much smaller than that of OAM Attenuation or
Random Order especially with small N , although it grad-
ually deviates from zero when the number of options N
is large. This is because optimization becomes difficult
as the number of parameters becomes larger. Together
with the result shown in Fig. 5(a), for both cases where
the maximum popularity is greater than or less than 1,
Pure HOM can achieve losses that are much closer to the
theoretical minimum than the other two sampling meth-
ods.

However, when the maximum popularity is greater
than 1, the usage rates are significantly lower, on the
order of 10−3, as demonstrated in Fig. 6(b), meaning
that we have to discard a lot of pairs of photons.

V. CONCLUSION

In this paper, we deal with a situation in which mul-
tiple players have probabilistic preferences and consider
the problem of satisfying their preferences. The previ-
ous study explicitly computed the joint selection proba-
bility matrix that maximized players’ satisfaction. How-
ever, there were two concerns with the previous approach:
high computational cost and low confidentiality. This
paper proposes two sampling methods that are imple-
mented in quantum ways, each of which converges to a
particular joint selection probability matrix accomplish-
ing a relatively low loss. We examined the implementa-
tion method, computational cost, confidentiality, and the
joint selection probability they converge to. Specifically,
OAM Attenuation allows sampling with zero computa-
tional cost and also guarantees a high degree of confiden-
tiality, as players do not need to disclose their preferences
or choices. We also showed that Pure HOM can exclude
the necessity to trust a third party while reducing losses
to near-optimal values in situations where players have
the same preferences. The property of favoring similar
preferences is useful in many real situations. For ex-
ample, in the competitive multi-armed bandit problem,
since the machines have fixed reward probabilities over
time, the players’ preferences are expected to converge to
similar values for each machine.

Looking ahead to the physical implementation, which
we are currently working on, errors in preparing the in-
put photon states will have different degrees of impact
on the final joint selection probability matrix for the two
quantum sampling methods. In OAM Attenuation, it is
the attenuator part that reflects individual preferences,
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and the source part plays the role of conflict avoidance.
Even if the phase difference or the amplitude settings of
the source part deviate slightly, the effect on the final
joint selection probability matrix is expected to be rela-
tively small because the conflict avoidance is still ensured
and the preference reflection by the attenuators remains.
On the other hand, in the Pure HOM, if a1 increases by
ε and a2 decreases by ε instead, all the values in the first
and second row as well as in the first and second col-
umn of the joint selection probability matrix will change.
Therefore, the states of the input photons must be care-
fully controlled.

Future studies include the mathematical or theoretical
understanding of why Pure HOM can achieve a loss quite
close to the theoretical minimum when players have the
same preferences. Moreover, examining the possibilities
of realizing an efficient sampling method that yields the
optimal joint selection probability matrix is an interest-

ing future topic. In the meantime, we considered the
average joint selection probability matrix for each sam-
pling method assuming an infinite number of repetitions.
However, for example, the joint selection probability ma-
trix for Random Order varies greatly depending on the
order of players, especially in a small finite number of rep-
etitions. In the case of OAM Attenuation, it also varies
depending on the setting of θi at the source point. The
evaluation of such sample-wise variance is also a future
topic.
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