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We provide a theoretical description of light scattering by a spherical particle whose permittiv-
ity is modulated in time at twice the frequency of the incident light. Such a particle acts as a
finite-sized photonic time crystal and, despite its sub-wavelength spatial extent, can host optical
parametric amplification. Conditions of parametric Mie resonances in the sphere are derived. We
show that time-modulated materials provide a route to tailor directional light amplification, qual-
itatively different from that in scatterers made from a gain media. We design two characteristic
time-modulated spheres that simultaneously exhibit light amplification and desired radiation pat-
terns, including those with zero backward and/or vanishing forward scattering. The latter sphere
provides an opportunity for creating shadow-free detectors of incident light.

I. INTRODUCTION

Sub-wavelength high-index dielectric resonators pro-
vide a versatile platform for light control at the
nanoscale. These resonators can support strong light
localization described by multipolar Mie-type reso-
nances [1–6]. The resonant modes are generated by the
volumetric distribution of displacement currents and can
be of electric or magnetic kinds. A remarkable feature of
Mie-type scattering lays in the possibility to spectrally
overlap several multipolar modes for engineering complex
scattering patterns. During the last few years, such mul-
tipolar mode engineering led to a number of applications
in nanophotonics, including wavefront manipulations for
metasurfaces [7], bound states in the continuum [8, 9],
nonradiating anapole modes [10, 11], nanoparticle lo-
calization [12], and directional spontaneous parametric
down-conversion [13, 14], among many others.

Most of the previous works on Mie-type scatterers con-
centrated on time-invariant particles whose permittivity
does not change in time. The time variation of material
properties unlocks an additional dimension of control in
electromagnetic systems [15, 16]. Recently, a wide range
of novel optical effects was suggested based on time-
varying materials, such as photonic time crystals [17–
22], temporal discontinuities [23–26], time-varying meta-
atoms and antennas [27–31], effective magnetic field for
photons [32], optically induced negative refraction [33],
synthetic dimensions [34], etc. The temporal material
modulation has the potential to dramatically extend
both conceptual and applied aspects of Mie-type scat-
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tering [35, 36]. However, to date this area of research
has remained essentially unexplored.

In this work, we analyse light scattering by a sphere
whose permittivity is modulated at twice the frequency of
the incident light, which corresponds to the case of para-
metric excitation. Based on Floquet-Mie theory and the
temporal coupled mode theory, we demonstrate that such
a sphere, despite its sub-wavelength spatial extend, hosts
parametric Mie resonances. It is revealed that temporal
modulations provide an additional design dimension, al-
lowing directional light amplification by a scatterer. We
highlight a qualitative difference of this mechanism from
light amplification in scatterers with gain. We design
two characteristic examples of parametric scatterers pos-
sessing finite light amplification with desired scattering
patterns. A related effect of parametric amplification in
spherical scatterers with the second-order nonlinearity
was recently reported in Ref. [37], however, simultane-
ous far-field pattern engineering was not demonstrated.

II. BULK TIME-MODULATED MEDIUM

We consider a sphere located at the center of the
coordinate system (see Fig. 1). The material of the
sphere without modulations is described by a single-pole
Lorentz-Drude dispersion model with the stationary rela-
tive permittivity function given by εst(ω) = 1+ω2

p/(ω
2
r −

ω2−iγω), where γ is the damping factor and ωr the reso-
nance frequency. In what follows, we choose without loss
of generality a plasma frequency of ωp =

√
N0q2e/meε0 =

3.5ωr, where qe and me are the electron charge and mass,
respectively, and ε0 is the vacuum permittivity. Param-
eter N0 is the time-averaged bulk carrier density. The
temporal variation of the sphere’s permittivity ε is as-
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FIG. 1. Spherical particle with time-modulated bulk car-
rier density illuminated by incident light. Temporal modu-
lation leads to parametric Mie resonances with simultaneous
scattered-field amplification and possibility of far-field pattern
manipulation.

sumed to be via the modulation of the charge carrier
density of the form N(t) = N0(1+M cosωmt) (see Sec. 1
of the Supplemental Material [38]), where M is the mod-
ulation strength and ωm is the modulation frequency. In
what follows, we choose a regime of relatively low disper-
sion, that is, ωm = 0.5ωr. Modulation of the carrier con-
centration with the strength of the order of unity and ωm

at optical frequencies was experimentally demonstrated
in several recent works [33, 39, 40].

We first find the eigenfrequencies and corresponding
eigenmodes of an unbounded dispersive material with
time-varying carrier concentration N(t). The wave equa-
tion of such material written for the electric field E(r, ω)
reads [31, 36, 41]

∇×∇×E(r, ω)

= k2(ω)

E(r, ω) +

+∞∫
−∞

χ(ω − ω′, ω′)E(r, ω′)dω′

 . (1)

Here, k(ω) = ω/c is the wavenumber of free space, c is
the speed of light, r is the position vector, χ(ω−ω′, ω′) =
ε(ω − ω′, ω′)− δ(ω − ω′) is the generalized susceptibility
that describes the polarization density at frequency ω in-
duced by an electric field harmonic at frequency ω′, and
δ(ω − ω′) is the Dirac delta function. This susceptibility
incorporates the information about the dynamics of the
modulated medium and its dispersion properties [31, 42].
Solving the wave equation, we look for the electric field
in the form E(r, ω) =

∫
A(κ)Sκ(ω)F(κr)dκ, where A(κ)

is the complex modal amplitude, and Sκ(ω) and F(κr)
are the spectral and spatial parts of the eigenmodes, re-
spectively [36]. The latter is a solution of the Helmholtz
wave equation with eigen-wavenumber κ.

By substituting the electric field ansatz into (1), we
obtain the following eigenvalue equation in the matrix
form (see Sec. 1 of the Supplemental Material [38]):

k2n(εst,nSκ,n + εdyn,nSκ,n+1 + εdyn,nSκ,n−1) = κ2Sκ,n,
(2)
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FIG. 2. Band structure diagram of a time-modulated mate-
rial plotted for the case with modulation strength M = 0.1
and damping factor γ = 0 Hz. The thick blue and thin red
lines correspond, respectively, to low- and high-frequency bulk
plasmon-polariton bands in the Lorentzian dispersion.

where εdyn(ω) = [εst(ω) − 1]M/2 is the dynamic part
of the relative permittivity. In (2), index n means that
the corresponding function is taken at frequency ωn =
ω + nωm.

Equation (2) allows one to find a set of eigen-
wavenumbers κq (q is a positive integer) for a bulk tem-
porally modulated material at a given Floquet frequency
ω [18], as well as the matrix of weights Sqn of the modes
with frequency ωn and wavenumber κq. Eigenvalue equa-
tion (2) results in a band diagram with period ωm that
corresponds to that of a photonic time crystal. Such
a band diagram is dual (under replacement κ ↔ ω) to
that of conventional photonic crystals [43]. According to
the duality with conventional photonic crystals, photonic
time crystals can host momentum bandgaps. By solving
eigenvalue equation (2) numerically, we are able to plot
in Fig. 2 a band diagram of our photonic time crystal
for the special case of the material with M = 0.1 and
γ = 0 Hz (presence of a small nonzero γ leads to ad-
ditional bands in the diagram but does not significantly
modify the dispersion within the gap).

Since the considered material has a Lorentzian disper-
sion, there are two bulk plasmon-polariton bands where
the real part of the permittivity is positive. These two
bands are shown with blue and red lines in the figure.
The first one (blue) is split by a momentum bandgap, in-
side which there are two modes which have purely imagi-
nary eigenfrequencies (one attenuating and one amplify-
ing) [20, 43, p. 53]. The amplifying mode is responsible
for the parametric amplification effect in time-modulated
materials and it is being excited even if the bandgap is
closed by the red bands. The effect of the red bands in
the scattering by the sphere can be neglected. Note that
parametric amplification should be distinguished from
optical gain that is modeled by a negative damping fac-
tor γ.
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III. PARAMETRIC MIE RESONANCES IN
TIME-MODULATED SPHERES

Next, we analyse wave phenomena in a finite-size
sphere made from a time-modulated material. For clarity
of the analysis, here we assume that temporal modulation
inside the sphere are uniform. As we show in Sec. 3 of
the Supplemental Material [38], possible spatial inhomo-
geneities of the sphere has only a minor quantitative im-
pact on the results. First, we find the condition of optical
parametric amplification. For its derivation, we will con-
sider a separate eigenvalue problem for the electric field
amplitudes across the sphere boundary with no incident
field (parametric oscillations). To find the parametric os-
cillation condition analytically, we consider the Floquet
frequency right at the center of the momentum bandgap,
that is, ω = ωm/2, and exploit the weak-modulation ap-
proximation [44], which works perfectly in the regime of
M � 1 and provides a very satisfactory estimation for
M < 0.2 (see Fig. S2 in Sec. 5 of the Supplemental Ma-
terial [38]). Here, we apply the approximation solely for
the sake of making theoretical analysis more transparent
for the reader and highlighting the qualitative picture
of the considered phenomena. It is important to men-
tion that one can also solve the eigenvalue equation (2)
exactly, without resorting to any approximations, which
will be done for the scatterer examples considered below.
As we verified numerically, under this approximation,
there are only two dominant harmonics ω0 = ωm/2 and
ω−1 = −ωm/2 and two dominant (lowest) momentum
bands κ1 and κ2. In other words, the matrix of modal
weights Sqn can be truncated to merely a 2× 2 size with
indices q = {1, 2} and n = {0,−1}. The points with κ1
and κ2 are marked in the diagram of Fig. 2. Using the ap-
proximation, equation (2) can be solved analytically in a
closed form (see Sec. 2 of the Supplemental Material [38])
yielding the following expressions for the momenta and
modal weights for the parametric-oscillation regime:

κ1 =
ωm

2c

√
Re εst,0 − ε̃, κ2 =

ωm

2c

√
Re εst,0 + ε̃,

Sqn =

 ε∗dyn,0/(iIm εst,0 − ε̃) 1

ε∗dyn,0/(iIm εst,0 + ε̃) 1

 ,

(3)
where “∗” denotes complex conjugation and ε̃ =√
|εdyn,0|2 − (Im εst,0)2. For the case when γ = 0 Hz, the

matrix simplifies into Sqn = [−1, 1; 1, 1] and the momen-
tum bandgap width ∆κ = κ2−κ1 is linearly proportional
to the modulation amplitude M :

∆κ = M
ωm

4c

ω2
p√

ω2
r − ω2

m/4
√
ω2
r − ω2

m/4 + ω2
p

. (4)

Due to the spherical symmetry, the electric field in-
side the sphere can be expressed using a set of VSHs as

Ein(r, ωn) =
∑

α,µ,ν,q

Ain
αµνq F

(1)
αµν(κqr)Sqn, with Ain stand-

ing for amplitudes of corresponding VSHs with wavenum-
ber κq. Here, indices µ and ν stand for the angular
momentum along the z-axis and the multipolar order,
respectively [36],[45, Sect. 13.3]. Subscript α stands for
one of the two labels, αM or αN , and refers to magnetic
or electric multipolar modes, respectively. Finally, su-
perscript ι takes the values “1” or “3” to refer to regular
or radiating VSHs, respectively. The electric field outside
the sphere (in vacuum), represented by the scattered field

only, is given by Esca(r, ωn) =
∑
α,µ,ν

Asca
αµν(ωn)F(3)

αµν(knr).

Importantly, here we are looking for the solution with no
incident field present, which corresponds to the paramet-
ric oscillations regime. Next, we substitute these expres-
sions into the boundary conditions at the surface of the
sphere with radius R (r = R r̂) [36]

r̂×
[
Ein(r̂R,ωn)−Esca(r̂R,ωn)

]
= 0,

r̂×
[
Hin(r̂R,ωn)−Hsca(r̂R,ωn)

]
= 0,

(5)

where r̂ is the radial unit vector and R is the radius of
the sphere. Using the orthogonality relations for vector
spherical harmonics [36], we obtain the following system
of equations:

2∑
q=1

Ain
αµνq Sqnz

(1)
αν (κqR) = Asca

αµν(ωn)z(3)αν (knR),

2∑
q=1

Ain
αµνq Sqnκqz

(1)
βν (κqR) = Asca

αµν(ωn)knz
(3)
βν (knR).

(6)

Here, index β is always different from α, that is, if
α = αM then β = αN , and vice versa. Function

z
(ι)
αMν denotes the spherical Bessel (ι = 1) and Hankel

(ι = 3) functions of the first kind of order ν, while

z
(ι)
αNν(x) = 1

x
∂
∂x [xz

(ι)
αMν(x)]. Equations (6) must hold for

each set of parameters {α, µ, ν, n}. Writing these two
equations for the two frequency harmonics n = 0 and
n = −1, we finally formulate the eigenvalue equation
for the electric field amplitudes across the sphere bound-
ary, i.e., with respect to field amplitudes Ain

αµν1, Ain
αµν2,

Asca
αµν(ω−1), and Asca

αµν(ω0). For the regime of paramet-
ric oscillations in the sphere (in the absence of incident
waves), we are looking for the solutions with nonzero am-
plitudes Ain and Asca. Therefore, we equate the deter-
minant of the 4× 4 matrix in the eigenvalue problem to
zero and solve the resulting equation with respect to the
radius R and the modulation strength M of the sphere
(see Sec. 2 of the Supplemental Material [38]).

Figure 3 depicts with colored lines the solutions of the
zero matrix determinant for electric-type (α = αN ) and
magnetic-type (α = αM ) modes in the sphere with multi-
polar orders from ν = 1 to ν = 5, indicating the threshold
values of the modulation strength to provide parametric
oscillations. The data are plotted for γ = 0 Hz. Non-
zero dissipation would lead to merely a minor change in
Fig. 3, shifting all the curves to the upper side. The
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FIG. 3. The colored curves depict threshold values of the
modulation strength M that provide parametric oscillations
at fixed frequency ωm/2 for different multipolar modes in a
time-modulated sphere versus its normalized radius. The grey
dots depict values of the normalized imaginary part of permit-
tivity that support lasing at fixed frequency ωlas = ωm/2 for
different modes in a time-invariant sphere with optical gain.
While horizontal coordinates of these points match to those of
the minima of the colored curves for corresponding multipo-
lar modes, their vertical coordinates do differ and the differ-
ence depends on the value of chosen stationary permittivity
εst,0 = Re(εinv) (see Sec. 4 of Supplemental Material [38]).

solutions are independent of parameter µ. The lines in
the figure show all the sets of parameters (R and M)
which yield parametric amplification of the correspond-
ing multipolar mode in the time-modulated sphere. One
can observe from the plot that higher-order multipolar
modes (with larger values of Rωm/2c and higher quality
factors) can host parametric oscillations at lower values
of M . For example, the magnetic multipole of the order
ν = 5 (α = αM5, green solid line) exhibits paramet-
ric oscillation at the value of M as low as 2.27 × 10−4.
The normalized radii Rωm/2c at the dips in Fig. 3 ap-
proximately coincide with those of conventional Mie res-
onances RωMie/c of the corresponding modes in a non-
modulated sphere.

To analyse the physics of parametric Mie resonances,
we employ a temporal coupled-mode theory [46–49]. Let
us consider two coupled quasi-normal [50–52] modes in-
side the sphere at frequencies ±ωm/2 with the total elec-
tric field of the form E(r, t) = a1(t) e−iωmt/2 EMie(r) +
a2(t) e−iωmt/2 [EMie(r)]∗ + c.c. Here, a1(t) and a2(t) are
the slowly varying temporal envelopes of the original and
time-reversed modes and EMie(r) is the spatial mode pro-
file. We assume that ωm/2 is close to the frequency
ωMie that corresponds to one of the stationary Mie res-
onances, that is, ωMie = ωm/2 − ∆ω − iγtot (where
|∆ω + iγtot| � ωm/2). Here, γtot is the total decay rate
which includes radiation and possible dissipation losses

(due to positive γ). Starting from the wave equation
in the time-modulated material, one can arrive to the
following system of coupled-mode equations describing
evolution of mode envelopes a1(t) and a∗2(t) inside the
sphere (see Sec. 3 of the Supplemental Material [38]):

d

dt
a1(t) = [i∆ω − γtot] a1(t) + iηa∗2(t),

d

dt
a∗2(t) = [−i∆ω − γtot] a∗2(t)− iη∗a1(t),

(7)

where η is a coupling parameter linearly proportional to
modulation strength M . Solving system (7), we obtain
the threshold value of modulation strength Mthr ∝ γtot+

1
2γtot

∆ω2 for parametric amplification in the sphere. This

value provides a qualitative description of the spectral
lineshapes of the parametric Mie resonances (note that
in Fig. 3 the logarithm of M is plotted). For modes
with higher multipolar orders ν, the decay rate due to
radiation loss γtot is smaller, which results in deeper dips.

As is seen from Fig. 3, the curves depicting the para-
metric oscillation condition at fixed frequency ωm/2 are
continuous. This feature allows us to select the sphere
configuration with M and R at the points where the
curves intersect such that simultaneous parametric am-
plification of two desired multipolar modes occurs at the
same frequency (ensuring coherence). The orientation of
these modes is locked when the sphere is illuminated by
incident light. By choosing the pair of modes, one can
control the radiation pattern of the amplified scattered
light. Importantly, such a multi-mode coherent amplifi-
cation regime is not accessible in time-invariant spheres
made from a medium with gain [53]. In order to demon-
strate this, we additionally mark with grey dots in Fig. 3
those configurations of such an active sphere (with radius
R and complex time-invariant permittivity εinv) that sup-
port lasing (divergent scattering cross section) for differ-
ent modes at the fixed frequency ωlas = ωm/2. For fair
comparison, we choose Re(εinv) = εst,0. The details of
the calculations as well as comparison for other values
of Re(εinv) can be found in Sec. 4 of Supplemental Ma-
terial [38]. As is seen, lasing in time-invariant spheres
occurs only at discrete points in the configuration space,
and simultaneous satisfaction of the lasing condition for
several modes at the same frequency is generally impossi-
ble. Such qualitatively different behaviour suggests that
temporal modulations provide a pathway for achieving
coherent amplification by the sphere with desired radia-
tion pattern. Moreover, due to a finite width of each dip
in Fig. 3, it is possible to excite higher-order multipolar
modes in a sphere of smaller size compared to that in the
absence of temporal modulations [27].

IV. SCATTERING FROM TIME-MODULATED
SPHERES

In order to demonstrate the potential of directional
amplification, next we consider two representative ex-
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amples of parametric spheres. In both examples the
sphere is illuminated by monochromatic plane waves at
a frequency ωinc (see Fig. 1). The incident frequency is
slightly shifted away from ωm/2 so that we can achieve fi-
nite and controllable amplification and use the harmonic-
field analysis. From a practical point of view, the am-
plification can be locked-in to frequency ωinc instead of
ωm/2 if temporal modulations occur while the sphere is
illuminated by the incident light [54].

Designing the radiation pattern of a particle near the
lasing condition (near parametric oscillation) is chal-
lenging. Whereas the lasing occurs for each multipole
independently, we need to obtain the superposition of
multipoles of comparable strength and with appropri-
ate phases to achieve a desired radiation pattern. How-
ever, the lasing multipoles have diverging amplitudes and
therefore dominate the radiation pattern, rendering the
contributions of the rest of the radiating multipoles in-
significant upon a superposition. Therefore, the simul-
taneous satisfaction of the lasing condition for several
multipoles is needed to shape the radiation pattern of a
lasing particle. Fine tuning the system at the vicinity of
the parameter space, where such an overlap of paramet-
ric Mie resonances happens, allows for the engineering of
the relative amplitudes and phases of each lasing multi-
pole, finally leading to the engineering of a lasing particle
with a desired radiation pattern.

For the first example, we consider a sphere configu-
ration with M = 0.68 and R = 1.048 2c

ωm
, marked by

point A in Fig. 3. The configuration corresponds to the
first parametric resonance crossing of the electric and
magnetic dipole modes. Since contours in Fig. 3 were
plotted under the approximation of M � 1, for find-
ing the exact coordinates of point A, we calculated the
contours considering a large number of frequency har-
monics (see Sec. 5 in Supplemental Material [38]). In the
present and the following examples, we chose γ = 0 Hz.
We excite the sphere by incident light at ωinc = 0.498ωm.
To find the scattered fields, we use the eigenvalue equa-
tion (2), the boundary conditions which include the inci-
dent fields, and the expansion of the fields in series of ra-
diating VSHs (see Sec. 6 in Supplemental Material [38]).
Figure 4(a) depicts the scattered far-field pattern at fre-
quency ωinc. The pattern is unidirectional, revealing zero
backward scattering due to close fulfillment of the first
Kerker condition [55]. The condition implies that the
electric and magnetic modes in the sphere have approx-
imately same amplitudes and phases. We were able to
reach such a balance by fine adjustments of parameters
M , R, and ωinc. Interestingly, we observed that hav-
ing a non-zero damping factor γ in the material of the
sphere precludes achieving exact zero backward scatter-
ing, which is in agreement with recent similar findings
for time-invariant lossy uniform spheres [53, 56]. While
in [53] it was proved that ideal zero backward scatter-
ing cannot occur in spheres with optical gain, this state-
ment does not apply to the time-modulated spheres with
parametric gain considered in this work. The scatter-
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FIG. 4. Scattered far-field patterns of time-modulated
spheres with parameters (a) M = 0.68 and R = 1.048 2c

ωm
and

(b) M = 0.093 and R = 1.481 2c
ωm

. The patterns are calcu-
lated at the frequency of incident wave ωinc. The red contours
depict cross sections of the patterns parallel to the xy, yz, and
xz planes, calculated at the center of the coordinate system.
The colors of the patterns denote the scattering amplitude
(dark red and dark blue colors stand for the maximum and
minimum values, respectively).

ing and absorption cross sections in this example are
Csca/Cgeom = 2629.2 and Cabs/Cgeom = −2627.5, where
Cgeom = πR2 and negative sign of Cabs implies the activ-
ity of the modulated sphere. Clearly, the scattering cross
section largely exceeds that of the same sphere without
temporal modulations (for which case Cst

sca/Cgeom = 5.5
and Cst

abs = 0) due to the presence of modulation.

The second example is a sphere with a configuration
of M = 0.093 and R = 1.481 2c

ωm
(see point B in Fig. 3)

which coincides with the parametric resonance crossing
of the electric quadrupole and magnetic octupole modes.
Incident light at ωinc = 0.4995ωm is scattered by the
sphere with the pattern shown in Fig. 4(b). The pat-
tern has sharp dips in both the backward and forward
directions. Note that, whereas the electric and mag-
netic dipoles have opposite parity symmetry, ensuring
the first Kerker condition, the electric quadrupole and
magnetic octupole have the same parity symmetry, al-
lowing for the engineering of both the first and second
Kerker conditions simultaneously [55]. The scattering
and absorption cross sections are Csca/Cgeom = 858.3 and
Cabs/Cgeom = −857.5 (in comparison, Cst

sca/Cgeom = 2.53
and Cst

abs = 0 for the stationary sphere). For both consid-
ered time-modulated spheres, the optical theorem [57],
written for the forward scattering and extinction cross
section at the fundamental frequency ωinc, is satisfied.
The peculiar pattern in Fig. 4(b) with scattering dips
in both forward and backward directions stems from the
precise engineering of amplitude and phases of the two
multipolar modes (see Sec. 6 of the Supplemental Mate-
rial [38] and [58]).
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V. DISCUSSION

We have explored optical parametric amplification by
spherical scatterers with time-modulated permittivity.
The presented two example geometries highlight the fas-
cinating opportunities of simultaneous light amplification
and scattering pattern control provided by the additional
temporal dimension. Indeed, the second sphere example
provides an interesting functionality: shadow-free detec-
tion of incident light due to vanishing forward scattering
(related concept using active and parity-time-symmetric
dimers was suggested in [59, 60]). The sphere scatters
light sideways where it can be detected by sensors. Para-
metric amplification enables detection of extremely weak
signals. Due to the symmetry of the sphere, it is pos-
sible to determine also the propagation direction of the
light under detection by looking at the scattering pat-
tern. Furthermore, time-modulated particles can find ap-
plications for designing nanoscale amplifiers. Due to the
directional nature of their scattering and possibility of fi-

nite amplification, one can create exotic non-attenuating
waveguide modes and topological edge modes in a non-
uniform lattice of such spheres. Our results can be ex-
tended to other domains (acoustics, water waves, etc.),
to particles with other geometries, and represent the first
step towards parametric metasurfaces based on time-
modulated scatterers.
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