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Abstract: 

Electromagnetic scattering bounds on subwavelength structures play an important role in 

estimating performances of antennas, RFID tags, and other wireless communication devices.  An 

appealing approach to increase a scattering cross-section is accommodating several spectrally 

overlapping resonances within a structure. However, numerous fundamental and practical 

restrictions have been found and led to the formulation of Chu-Harrington, Geyi, and other limits, 

which provide an upper bound to scattering efficiencies. Here we introduce a 2D array of near-

field coupled split-ring resonators and optimize its scattering performances with the aid of a 

genetic algorithm, operating in 19th-dimensional space.  Experimental realization of the device is  

demonstrated to surpass the theoretical single-channel limit by a factor of >2, motivating the 

development of tighter bounds of scattering performances. A super-radiant criterion is suggested 

to compare maximal scattering cross-sections versus the single-channel dipolar limit multiplied by 

the number of elements within the array. This empirical criterion, which aims on addressing 

performances of subwavelength arrays formed by near-field coupled elements, was found to be 

rather accurate in application to the superscatterer, reported here. Furthermore, the super-radiant 

bound was empirically verified with a Monte-Carlo simulation, collecting statistics on scattering 

cross sections of a large set of randomly distributed dipoles. The demonstrated flat superscatterer 

can find use as a passive electromagnetic beacon, making miniature airborne and terrestrial targets 

to be radar visible.  
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I. INTRODUCTION 

Scattering cross-section characterizes the interaction between an incident electromagnetic 

radiation and a body [1]. It is rather convenient to consider the phenomenon in three different 

regimes, which are defined by comparing an electromagnetic size of a body with a free-space 

wavelength. Interactions with large objects can be assessed with ray optics tools, wavelength-

comparable geometries require performing full-wave analysis, and subwavelength bodies can be 

addressed with Rayleigh approximation. However, structures made of high dielectric index 

materials can be both miniature and resonant. Ceramic elements for the MHz-GHz range [2–9] 

and semiconductor nanoparticles in the optical domain [10–14] are among representative 

examples. In many practical cases, antenna devices should be tuned to resonance for achieving 

better transmit and receive performances [15]. Size reduction of devices, operating at low-

frequency (kHz-MHz) regimes where implementing wavelength-comparable designs is not 

practical, is obtained with lumped impedances loading. While in this case, the element can be 

maintained at a resonance, size reduction implies a significant bandwidth degradation. Chu-

Harrington criterion bounds antenna quality factor (Q-factor) form below, relating it to the device 

form factor, normalized to an operational wavelength [16]. Being formulated to a dipole resonant 

condition, the limit can be generalized to include higher-order multipoles. Note, that high-Q, being 

a desirable parameter for strengthening light-matter interaction in the optical domain, has negative 

implications in antenna design, as it degrades operational bandwidths and has a very negative 

impact on the channel capacity of a wireless communication channel. Hereinafter, we will 

concentrate on discussing scattering on subwavelength elements. In this case, multipole expansion 

is a convenient tool to assess scattering. Each resonant multipole (a scattering channel), being an 

element of a complete set of basis functions, can contribute to the scattering cross section with 

(2ℓ+1)λ2/(2π), where ℓ is a total angular momentum and λ is a free space wavelength.  3λ2/(2π) 

with ℓ =1 is commonly referred to as a dipolar single-channel limit [17].  

To bypass the single-channel limit, several resonant multipoles should contribute 

constructively to the scattering. In this case, the structure is called a superscatterer [18–26]. It is 

worth noting that in geometries, lacking a complete rotation symmetry, eigenmodes of a resonator 

are nontrivially mapped on far-field multipole expansion of scattering [27,28]. Nevertheless, it is 

quite intuitive that a superscatterer should accommodate multiple resonances at nearly degenerate 

frequencies. In this case, a significant near-field accumulation in the vicinity of the structure will 



emerge, making the design to be extremely sensitive to material losses of constitutive elements 

and fabrication tolerances. Those aspects are well understood in antenna theory in the context of 

superdirectivity [29]. To cope with those severe, yet solely practical limitations, we have recently 

introduced structures, based on small wire arrays (wire bundles), pinched into a styrofoam holder. 

This arrangement is almost lossless at the GHz frequency range and does not require sub-mm 

accurate positioning of elements in respect to each other [30,31].  

To reduce the effect of near-field accumulation directly on lossy elements, but nevertheless 

keep it in the interior of the structure, it is quite appealing to investigate designs, made of strongly 

coupled resonator arrays. The collective response will originate from mode hybridization, which 

given a proper design, will lead to superscattering performances. Surpassing Chu-Harrington 

dipolar limit, in this case, will emerge quite straightforwardly. The challenge, however, is to 

formulate a tighter upper bound on the scattering cross-section. Here we will phenomenologically 

introduce a super-radiant scattering limit, which makes an assessment of structures, made of near-

field coupled resonators. In this case, the scattering cross-section will be compared with a single-

channel dipolar limit multiplied by the number of elements within the array. In other words, can 

the coupling improve the scattering performances? It is worth noting that related assessments were 

done across different disciplines, e.g. [32], [33]. Based on our recent investigations and the current 

report, it will become evident that surpassing this limit is quite challenging, if even possible. An 

appropriate terminology here is a “super-radiant scattering limit”, as the phenomenon shares 

similarities with the quantum effect of superradiance [34]. The essence of the latter is the 

acceleration of the spontaneous decay rate from N quantum systems owing to their mutual phase-

locking. In our case, the assessment of the total scattering cross-section 𝝈𝒕𝒐𝒕 will be as follows:  

𝝈𝒕𝒐𝒕 > ∑ 𝝈𝒊
𝑵
𝒊=𝟏 , (1) 

where 𝝈𝒊 is the scattering cross-section of each individual element within the array.  

Here we will investigate structures, based on near-field coupled split-ring resonators 

(SRRs). Subwavelength SRRs support resonant magnetic dipole modes at GHz spectral range and 

do not require additional loading with lumped elements [35–38]. Having enough degrees of 

freedom to tune electromagnetic parameters, SRRs are promising candidates for superscattering 

designs.    

The manuscript is organized as follows: the super-radiant scattering limit is investigated 

with the aid of discrete dipole approximation, motivating the further development and optimization 



of structures.  Analysis of a single element (SRR) performance and a brief assessment of small 

arrays is done next. Scattering cross-sections of the structures are normalized to the number of 

elements within the arrays to find an optimal number of elements for further investigations. Given 

this size (6 in our case), a genetic algorithm is set up to optimize the structure furthermore. 

Experimental assessment of the final design comes next. Discussions on the scattering cross-

section bounds come before the conclusions. 

 

II. THE SUPER-RADIANT LIMIT 

 

To assess the bound, we will consider several mutually interacting point scatterers, 

applying coupled dipoles formalism  [39]. A dipole moment (�⃗�(𝑟)) is proportional to the local 

electric field (�⃗⃗�𝑙𝑜𝑐) and particle’s polarizability: 

�⃗�(𝑟) = 𝜀0�⃗⃗⃡��⃗⃗�𝑙𝑜𝑐(𝑟),       (2) 

where �⃗⃗⃡� is a polarizability tensor and 𝜀0 vacuum permittivity. For the sake of simplicity, magnetic 

and magneto-electric interactions are ignored [40,41].  𝑁 dipoles problem is than formulated 

within 3𝑁 linear equations, taking into account the vectorial nature of the problem:  

�⃗�𝑖(𝑟𝑖) = 𝜀0𝜶𝑖⃡⃗⃗⃗ [𝐸0
⃗⃗⃗⃗⃗(𝑟𝑖) +  ∑ 𝐆(𝑟𝑖 , 𝑟𝑛)�⃗�𝑛(𝑟𝑛)𝑁

,𝑛≠𝑖 ], 𝑖 = 1. . 𝑁,    (3) 

where 𝐆 is the Green tensor of the single dipole and 𝐸0
⃗⃗⃗⃗⃗ is the incident field. This set of equations 

can be solved by a matrix inversion, which allows calculating dipole moments self-consistently.  

Then, the extinction cross section can be obtained from the optical theorem:  

𝐶𝑒𝑥𝑡 =
4𝜋𝑘

|�̅�0|2
∑ 𝐼𝑚(𝐸0

⃗⃗⃗⃗⃗
∗
(𝑟𝑖) ∙𝑁

𝑖=1 �⃗�𝑖(𝑟𝑖)),      (4) 

where 𝑘 = 2𝜋 𝜆⁄  is the wave number and the incident field amplitude variation on the array is 

neglected (plane wave excitation is assumed).  

 For assessing the super-radiant limit, the following numerical experiment will be 

performed: 𝑁 resonant point dipoles are randomly distributed in a subwavelength cubic volume 

with the side of 𝜆/5. The dipoles are not allowed to approach each other by a distance, smaller 

than 𝜆/40. The dipoles are isotropic, lossless and identical with polarizability of a subwavelength 

sphere, made of a lossless Drude material. Relative permittivity (𝜀𝑟 = −2) is the resonance 

condition. Radiation corrections are included in the polarizability model [42]. This numerical setup 

is rather arbitrary and solely serves for assessing possible extinction cross sections statistically.  



 Figure 1 shows the probability distributions of the normalized cross sections for several 

dipoles in the box - 𝑁, indicated in captions. The horizontal axis is 𝐶𝑒𝑥𝑡
𝑡𝑜𝑡𝑎𝑙/𝑁 ∙ 𝐶𝑒𝑥𝑡

𝑠𝑖𝑛𝑔𝑙𝑒
, where 

𝐶𝑒𝑥𝑡
𝑠𝑖𝑛𝑔𝑙𝑒

 is the maximal extinction of a single resonant dipole. 𝐶𝑒𝑥𝑡
𝑡𝑜𝑡𝑎𝑙 is the maximal extinction of 

the array. Note, that the resonance of the coupled system and the single dipole can be shifted in 

frequency. The probability distribution is calculated upon assessing 1000 random realizations 

(uniform distribution in the volume, no correlation between the dipole locations). The super-

radiant limit is 1 on the horizontal axis. Panels (a) and (b) differ by dipoles polarizability. ‘Strong’ 

correspond to the lossless’ dipole polarizability at its resonance, ‘weak’ to the same value, divided 

by 10. The following observations can be made: (i) no one of the realizations broke the limit 

statistically, (ii) increasing the number of dipoles in the volume shifts the distribution to the left, 

i.e., moving away from the limit (on average). It is worth noting that the local field within the array 

is extremely non-uniform, making effective medium theories [43] barely applicable. In appendix 

figures 1 (a1) and (b1) of the probability distributions demonstrate realization from the sample 

space. The realizations correspond to the maximal, mean, and minimal scattering, which were 

observed. It is worth noting that the realizations have no pronounced spatial arrangement and, as 

the result, are hardly predictable. It is quite obvious that probability distributions in the ‘weak’ 

polarizability regime, implying minor dipole-dipole coupling demonstrate, are peaked in the 

vicinity of 1. Increasing the number of dipoles in the box (the inset) results in the reduction of the 

scattering cross section on average. Note, that the overall scattering cross-section in the ‘strong’ 

polarizability regime are higher than in the ‘weak’ case, which increases the challenge in finding 

a proper configuration.  

This analysis demonstrates that approaching the limit with a large number of dipoles without an 

extensive optimization is challenging. Furthermore, it is impossible to draw a conclusion on 

whenever the limit can be overcome. The objective of the next sections is to assess this limit from 

the practical standpoint. Magnetic dipoles instead of electric ones will be used due to several 

practical aspects.  



 

 

FIG 1. Assessment of the super-radiant scattering limit - probability distribution on the 

normalized extinction cross-section (𝐶𝑒𝑥𝑡
𝑡𝑜𝑡𝑎𝑙/𝑁 ∙ 𝐶𝑒𝑥𝑡

𝑠𝑖𝑛𝑔𝑙𝑒
) for 𝑁 coupled dipoles in a 

subwavelength volume. (a) Strong polarizability case – resonant lossless dipoles. (b) Weak 

polarizability – 1/10 of the previous case.  

 

 



III. THE ELECTROMAGNETIC DESIGN AND STRUCTURE’S OPTIMIZATION 

Prior to analyzing arrays, performance of single elements will be briefly surveyed. 

Electromagnetic modelling was performed in CST Microwave Studio Suite, Frequency Domain 

Solver. The number of mesh cells was approximately 1.5-2×105 for all models.  For basic element 

we chose double circle split ring resonator (CSRR), as it has a smaller footprint, higher Q-factor, 

and symmetrized response – all in respect to a single SRR. CSRR can be tuned to a resonance at 

GHz-spectral range without a need to introduce additional lumped impedances. CSRRs are 

implemented by etching copper strips on a dielectric substrate (Isola IS680 AG338, ɛr ≈ 3.338, 

tan(δ) = 0.0026) – relative permittivity and loss tangent). The inner and outer radii of the ring are 

𝑟𝑖𝑛=1.9 mm and 𝑟𝑜𝑢𝑡=3.5 mm respectively. The metal strips width is 1 mm and thickness 35 µm, 

with the gap between the inner and outer rings of 0.4 mm. The upper split in the outer ring and the 

symmetric split in the inner ring have the same width of 1 mm. Single CSRR on a substrate was 

tuned to resonate at 5.2 GHz (magnetic dipole predominates the interaction), with the Q-factor of 

61. 

At the next stage the number of elements within the array will be chosen. Figure 2(b) is a 

color map, showing the total normalized scattering cross-section as a function of frequency and a 

number of elements within the array (2-10 element arrays were investigated). As the last variable 

is discrete, a linear interpolation has been made. Horizontal cuts correspond to the normalized 

scattering spectra. The normalization is made by dividing the values by the scattering cross-section 

of a single CSRR - 𝜎𝑡𝑜𝑡/𝑚𝑎𝑥 (𝜎𝑡𝑜𝑡
𝑆𝑖𝑛𝑔𝑙𝑒 𝐶𝑆𝑅𝑅

). In all the cases, the elements were equally distributed 

on a circle with 𝑟 = 25 mm radius. This number is quite arbitrary, nevertheless it was chosen to 

keep the structure electrically small, e.g., 2𝑟 𝜆⁄ < 1. In those studies, all the CSRRs were mutually 

aligned (their gaps were kept parallel, as it appears in Fig. 2(a)). While single channel dipolar 

(ℓ=1) limit for an ideal CSRR is 3λ2/(2π) ≈ 15.9 cm2, in the presence of a lossy substrate the 

practically achievable value is ≈ 11 cm2 (at 5.2 GHz).  The colormap in Fig. 2(b) clearly indicates 

that 6-element array is the best candidate for further investigating superscattering effect. 

𝜎𝑡𝑜𝑡/𝑚𝑎 𝑥(𝜎𝑡𝑜𝑡
𝑆𝑖𝑛𝑔𝑙𝑒 𝐶𝑆𝑅𝑅

) is approaches maximum for 6 CSRRs and almost saturates for larger 

arrays. Relying on this observation, we will concentrate on this ‘magic’ number hereafter, 

nevertheless, any other can be chosen as a starting point. Note, that the saturation effect has nothing 

to do with statistical distributions in Fig. 1, as it relates to specific pre-optimized realizations.  

 



 

 

FIG 2. (a) Schematics of a single CSRR, array, and the incident plane wave. (b) Numerical 

analysis - the total scattering cross-section, normalized to the maximal total scattering of a single 

CSRR, as a function of frequency and the number of elements within the array.   

 

While the previously investigated structure is rather symmetric, symmetry breaking can 

lead to a significant improvement of certain electromagnetic parameters. A good historical 

example is photonic crystal cavities, where a miniature displacement of holes around a defect was 

found to boost Q-factors by orders of magnitude [44,45].   

Scattering cross section maximization is an optimization problem in a multiple variables 

space. A choice of an optimization algorithm is always a subject to several tradeoffs, 

compromising between computational efforts and reliability of a solution. Evolutionary algorithm 

(particle swarm optimization will be used here) starts its initial iteration with a set of random 

vectors (individuals). There are well-understood conditions, where this algorithm converges to a 

global extremum with a probability of 1  [46]. Nevertheless, it is quite difficult to fulfill all the 

requirements to ensure the convergence, which than comes at an expense of computational efforts. 

Consequently, in many practical applications, the possible heuristic proof of a global minimum is 

waived in a favor of resource reduction [47,48]. Inverse design using deep learning is another 

approach, which can be employed for the optimization (e.g.  [49,50]). However, machine learning 

models, e.g. deep neural networks, require a large amount of training data and are less useful for 

designs, discussed here.  



Evolutionary algorithms apply basic provisions, adopted from biological evolution theory. 

Main steps consist of selection, mutation, and crossover. A random initial population evolves in 

accordance with the selection rules (which depend on the fitness function) and only the best 

individuals reach the next iteration of the algorithm. Being    considered in 1956 [51], evolutionary 

methods are extensively used nowadays in various fields of physics. Antenna design [52,53], 

including the famous NASA evolved antenna [54], 2D materials design [55–57],  development of 

reflective and absorbing structures [58] and metasurfaces [59,60], design of artificial magnetic 

metamaterials [61] and plasmonic nanoparticles [62] are among the examples.  Hereafter, we will 

use a particle swarm optimization algorithm, where the following parameters are chosen to form 

the search space: the radius of the circle 𝑅 on which the CSRRs are initially located, the angle of 

rotation α𝑖 of each CSRR relative to its center, and the position of the element in a neighborhood 

of the starting point (this parameter was chosen as  δ =  𝑅 / 3 to prevent a potential geometrical 

overlap between the array elements). For convenience, the position of the ith ring is given in polar 

coordinates (ρi, ϕi). Thus, the optimization vector of parameters contains 19 components. The 

radius (𝑅) is varied from 10 mm to 60 mm, the rotation angles (α𝑖) of each CSRR from -π to π, ρi 

from 0 to 5 mm and ϕi from - π to π.  Zero angle corresponds to y- axis direction. The final set of 

the parameters, obtained with the optimizer, are summarized in Table 1, Supplementary.  

Figure 3 is a schematic representation the optimization algorithm flow. At the beginning, 

a population of N individuals (random vectors of parameters) is formed. Each of the individuals 

corresponds to a certain design, which was modeled in CST Microwave Studio. The excitation is 

kept the same – a plane wave propagates along x-axis with the magnetic field polarized along z-

axis. The maximal scattering cross-section was constrained to appear at 5 - 6 GHz interval. Setting 

a hard restriction on the resonant frequency might cause conversion issues and, hence, this 

parameter is better to be loosely defined. After an integration with the direct solver (evaluation of 

the electromagnetic problem with CST), the algorithm singles out optimum individuals of the 

population, which proceeded to the stage of crossing and mutation. As a result of the crossover, a 

new generation of individuals is created. Further, the mutation operator is applied to the resulting 

new generation, the purpose of which is to add a small perturbation to the components of the 

vectors of the new population (the implementation of the mutation operator may also differ from 

the implementation of the algorithm). At the end of each step of the algorithm, the scattering 

spectra of new individuals are calculated, and new best representatives of the population are 



selected. This process is repeated Niterations times and after exiting the algorithm, the best individual 

is obtained - the design that corresponds to the best-found scattering spectrum. 

 

 
FIG 3.  Scheme of the optimization algorithm. 

 

The numerical experiment was carried out with Niterations = 1000.  The runtime on 512 GB 

RAM 3.3 GHz, is 2000 minutes (~2 minutes for a single iteration). The same machine was used 

to run the algorithm and CST.  

Our final superscatterer design is shown in Fig. 4(a). Parameters of the structure are 

summarized in Table 1 (Appendix). Fig. 4(b) shows the comparison of scattering cross-sections of 

a single CSRR, unoptimized array, and the result of the genetic algorithm. The growth of the 

scattering peak can be clearly seen with genetic design prevailing the unoptimized counterpart by 

the factor of 1.4.  The resonant frequencies of all those 3 structures differ slightly from each other, 

as the result of relaxing this variable in the optimization.  

 

 



 

FIG 4. (a) Schematics of a flat superscatterer - 6 CSRRs are distributed on a substrate (Isola 

IS680 AG338). Illumination is a plane wave, propagating along the X axis and polarized along 

the Y axis. (b) Scattering cross-section spectra of the superscatterer (genetic design) - blue solid 

line, equidistantly distributed 6 SRRs on circle - red solid line, and a single CSRR - black solid 

line. 

 

To reveal the device operation, multipolar expansion of the scattering spectra should be 

done. In this case, finite element method (COMSOL Multiphysics) was used. The multipole 

expansion of the scattering cross-section, i.e., the sum of the contributions from different multipole 

moments up to the third order is given by formula for Cartesian multipoles [50–52]: 

 

𝜎𝑠𝑐𝑎
𝑡𝑜𝑡 = 𝜎𝑠𝑐𝑎

𝑝 + 𝜎𝑠𝑐𝑎
𝑚 + 𝜎𝑠𝑐𝑎

𝑄𝑒

+ 𝜎𝑠𝑐𝑎
𝑄𝑚

+ 𝜎𝑠𝑐𝑎
𝑂𝑒

+ 𝜎𝑠𝑐𝑎
𝑂𝑚

≈
𝑘4

6𝜋𝜀0
2|𝐸0

2|
|𝑝𝑗|

2
+

𝑘4𝜀ℎ

6𝜋𝜀0
2𝑐2|𝐸0

2|
|𝑚𝑗|

2
+

𝑘6

80𝜋𝜀0
2|𝐸0

2|
|𝑄𝑗𝑘

𝑒 |
2

+
𝑘6𝜀ℎ

2

80𝜋𝜀0
2𝑐2|𝐸0

2|
|𝑄𝑗𝑘

𝑚 |
2

+
𝑘8𝜀ℎ

2

1890𝜋𝜀0
2|𝐸0

2|
|𝑂𝑗𝑘𝑙

𝑒 |
2

+
𝑘8𝜀ℎ

3

1890𝜋𝜀0
2𝑐2|𝐸0

2|
|𝑂𝑗𝑘𝑙

𝑚 |
2

 ,   (5) 

 

where |E0| is the electric field amplitude of the incident plane wave, 𝑘 is the wavenumber, and 𝑐 

is the speed of light,  εh  is  the  permittivity  of  the  host  media (air in our case),  ε0  is  the  

permittivity of vacuum, pj and mj are the electric (ED)  and magnetic dipole moments (MD),  (𝑄𝑗𝑘
𝑒 )  

and  (𝑄𝑗𝑘
𝑚) are  the  electric and magnetic quadrupoles (EQ and MQ), (𝑂𝑗𝑘𝑙

𝑒 ) and (𝑂𝑗𝑘𝑙
𝑚 ) electric and 

magnetic octupoles (EO and MO). 



Figure 5 summarizes the expansion results for the non-optimized array and for the array 

obtained by the genetic algorithm. Recall, that the non-optimized array was nevertheless tuned to 

its resonance, exhibiting high scattering performances. While in both of the cases, multipole 

contributions have overlapping resonances, the genetic design leads to a better collocation and, 

remarkably, brings a MD resonance, which is missing in the initial array (dashed brown line in 

Fig. 5). Overall, the multipole series reproduce the peak, nevertheless, the exact conversion is not 

obtained. The conclusion here is that higher order multipoles in the series are missing. Including 

them explicitly is a rather complex task, as mathematic formulation becomes involved. It is worth 

noting that the lack of conversions in electrically small structures is extremely rare and, typically, 

several multipoles describe the interaction quite accurately. Constructive interference of 6 

multipoles in our structure become evident.  

 

 

FIG 5. Multipole expansion of the scattering cross-section of (a) a non-optimized array and (b) 

array, obtained with the genetic algorithm. Abbreviations appear in captions and elaborated in 

the main text.  

 

 

 

IV. EXPERIMENTAL MEASUREMENTS 

 



The sample, consisting of 6 CSRRs was manufacturing by chemical etching. Isola IS680 

AG338 (εr = 3.338, tan(δ) = 0.0026) was used as a low-loss substrate. The thickness of the 

dielectric support is 0.2 mm, while the thickness of the copper layer is around 35 μm. Those 

parameters were used to reduce the influence of the substrate on the array’s performance. The 

CSRRs are arranged according to the layout, provided by the algorithm. The fabrication process 

was optimized to provide high-quality samples with sub-mm precision in all the parameters, 

though, without using clean room facilities. The experimental sample is shown in the inset to 

Fig.6(b).  

Experimental spectra are shown in Fig. 6(b). Several angles (see captions) of incidence 

were considered. The sample was rotated around its axis (see Fig. 6(a)), while the magnetic field 

was always polarized along the CSRRs normal. Optical theorem was used to evaluate the total 

scattering cross-section. The angular dependence here is relatively weak, making the device 

attractive from an applied point of view, as an accurate alignment is not required. Black dashed 

line shows the scattering spectrum of a single CSRR. Its peak is 5 times smaller than the maximal 

scattering cross-section of the array.  

 

V. DISCUSSION 

 

After demonstrating the structure’s performances, assessing fundamental limits made 

possible.  

(i) Single-channel limit 

The single-channel limit was defined in the introduction. For this structure it is 17.9cm2 (at 

4.9 GHz). Note, that the single CSRR with the maximal scattering of 8.146 cm2 does not reach this 

limit because of losses. Our structure was found to beat the single channel limit by  ≈ 2.17.  

(ii) Super-radiant scattering limit 

Our newly introduced limit will be assessed next, considering 𝜎𝑡𝑜𝑡
𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 (𝑁𝜎𝑡𝑜𝑡

𝑠𝑖𝑛𝑔𝑙𝑒 𝐶𝑆𝑅𝑅
)⁄ , where 

𝑁 = 6. This assessment allows underlining the impact of near field coupling on the total scattering. 

Fig. 6(c) demonstrates the limit for different angles of incidence. The maximum is obtained for 0°, 

for which the structure was initially optimized. It is worth noting that the numerical analysis 

predicts overcoming the super-radiant limit by a small fraction, while the experimental results drop 

below this value. This is rather good indication that the empirical formulation of this bound is 



rather tight and difficult to bypass. The experimental sample is rather sensitive to many factors 

including substrate losses, fabrication accuracy, and the surrounding environment. While the 

chemical etching was made quite accurate, the substrate permittivity might have fluctuations as 

well as the copper layer. All those aspects lead to deviations between the theoretical predictions 

and practical results.  

 

 

FIG. 6. (a) Experimental setup to measure scattering cross-section. Inset – the sample. (b) 

Experimental total scattering cross-section spectra for different angles of incidence (in captions).   

(c) Super-radiant limit, experimental and numerical data. Different angles of incidence are 

considered.  

 

VI. CONCLUSION 

The design and experimental realization of the superscatterer, based on split-ring resonators array 

was demonstrated. Genetic algorithm, optimizing 19 independent degrees of freedom, has been 

implemented to design spectral overlap of 8 multipolar contributions at the same frequency. The 

experimental sample was shown to surpass the single-channel limit by a factor of 2.17 and 



motivated the development of new more practical bounds to assess scattering performances of 

structures, made of near-field coupled elements. A super-radiant bound has been formulated, 

suggesting a comparison of the maximal scattering cross-section with a single channel dipolar limit 

multiplied by the number of elements within the array. The bound was empirically assessed with 

the aid of Monte-Carlo simulation. We performed a numerical experiment, calculating scattering 

cross sections of a large set of randomly distributed point dipoles, placed within a subwavelength 

volume. Any realization succeeded to overcome the super-radiant bound, suggesting its accuracy, 

yet on a statistical basis. While quite a few physical limits in electromagnetism have been 

developed [66], the super-radiant limit is quite appealing owing to its applied simplicity.  

The designed 6-element array succeeded for overcome this bound by a small fraction in theory, 

while the experimental values were found below the limit. Those results indicate that this new 

assessment sets a rather tight limitation and promote its further use in the field of superscattering.  

The demonstrated superscatterer is two-dimensional and it is implemented on a thin flexible 

lightweight substrate. Similar designs can find a use in many practical applications, including 

electromagnetic passive beacons, alignment marks for indoor navigation, radar chaff and many 

others. 
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APPENDIX 

 

 

Figure 1a1. Minimum, mean, and maximum realizations of the dipoles arrangement from the 

sample space for strong polarizability case.  

 



 

Figure 1b1. Minimum, mean, and maximum realizations of the dipoles arrangement from the 

sample space for weak polarizability case.  

 

Parameter Value 

 SRR number   

α𝑖 

1 86.5 degree 

2 25.5 degree 

3 -171.4 degree 

4 101.9 degree 

5 -138.5 degree 

6 -37.2 degree 



ρi 

1 2.93 mm 

2 0.48 mm 

3 3.49 mm 

4 2.15 mm 

5 0.03 mm 

6 1.69 mm 

ϕi 

1 114.7 degree 

2 -165.3 degree 

3 123.4 degree 

4 -122.3 degree 

5 -103.9 degree 

6 86 degree 

𝑅 25 mm 

Table 1. Final parameters of the optimization result.  

 

 


