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What is the fate of an oscillator when its inductance and capacitance are varied while its frequency
is kept constant? Inspired by this question, we propose a protocol to implement parity-time (PT )
symmetry in a lone oscillator. Different forms of constrained variations lead to static, periodic, or
arbitrary balanced gain and loss profiles, that can be interpreted as purely imaginary gauge fields.
With a state-of-the-art, dynamically tunable LC oscillator comprising synthetic circuit elements, we
demonstrate static and Floquet PT breaking transitions, including those at vanishingly small gain
and loss, by tracking the circuit energy. Concurrently, we derive and observe conserved quantities
in this open, balanced gain-loss system, both in the static and Floquet cases. Lastly, by measuring
the circuit energy, we unveil a giant dynamical asymmetry along exceptional point (EP) contours
that emerge symmetrically from the Hermitian degeneracies at Floquet resonances. Distinct from
material or parametric gain and loss mechanisms, our protocol enables on-demand parity-time sym-
metry in a minimal classical system— a single oscillator— and may be ported to other realizations
including metamaterials and optomechanical systems.

I. INTRODUCTION

Non-Hermitian Hamiltonians that are invariant under
combined operations of parity and time-reversal (or more
generally, an antilinear symmetry) are called PT sym-
metric. Since their discovery in the late 1990s [1, 2] and
the experimental realization in coupled optical waveg-
uides a decade later [3, 4], the field of PT -symmetric sys-
tems has grown increasingly diverse [5–7]. This expansive
growth is driven by the realization that a PT -symmetric
Hamiltonian represents an open system with balanced,
but separated, gain and loss. A PT -symmetric Hamilto-
nian has purely real spectrum when its non-Hermiticity is
small; at large non-Hermiticity, it changes into complex-
conjugate pairs. This PT -symmetry breaking transition
occurs at an exceptional-point (EP) degeneracy where
the non-orthogonal eigenmodes of the Hamiltonian also
coalesce [8]. EPs occur at the ends of a branch cut of
Riemann manifolds that represent complex eigenvalues,
and are responsible for enhanced sensing and topological
effects [9].

These results are applicable to any system governed
by a linear, first-order differential equation with a non-
Hermitian generator of motion. This observation has led
to the Cambrian explosion of PT -symmetric systems,
and more generally, systems with antilinear symmetries.
The resulting platforms are as diverse as two waveg-
uides [3, 4], two mechanical oscillators [10], two coupled
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electrical oscillators [11, 12], two fiber loops [13], two
or more coupled micro-resonators [14–16], acoustics [17],
diffusive systems [18], damped and driven shallow flu-
ids [19], and two coupled, time-delayed semiconductor
lasers [20]. In the past two years, these classical realiza-
tions with gain and loss have been superseded by realiza-
tions in minimal quantum systems [21–24] governed by
post-selected, lossy Hamiltonians (or Lindbladians [25])
with similar EP degeneracies.

Fundamentally, the quantum noise in a linear ampli-
fier [26] introduces a time-reversal asymmetry between
gain and loss mechanisms [27], and makes it impossible
to create PT -symmetric systems with small number of
excitation quanta [28, 29]. In the semiclassical domain,
customarily, the dissipation has been introduced through
material impurities [4], coupling to a cold reservoir [24],
or resistive elements [11, 12]; the amplification, through
nonlinear gain media [4, 13–15], four-wave mixing [30],
parametric driving [31], or temporal modulation of two
non-reciprocally coupled reservoirs [32]. Balancing the
gain and loss requires independent control over physi-
cally different mechanisms in spatially separated parts of
the system. Therefore, engineering dynamically tunable
PT -symmetric systems is extremely challenging.

Here, we present a protocol for the generation of PT
symmetry based on a time-dependent similarity transfor-
mation on the system of interest. Remarkably, the con-
comitant complex gauge potential, from the non-unitary
change of basis, generates effective balanced gain and
loss potentials, which can be controlled by properly time-
modulating the system’s parameters. Note that an added
benefit of this approach is that we can implement PT
symmetry in a minimal system with one variable i.e. a
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FIG. 1. PT -symmetry in a single LC circuit. (a) The state |φ(t)〉 of the circuit encodes the voltage V (t) across the capacitor
and current I(t) in the inductor, and satisfies a linear, first-order equation given by Kirchhoff laws. A static change-of-basis

to |ψ(t)〉 = A1/2|φ(t)〉 leads to a Hermitian Hamiltonian H0 = ω0σy for the new state |ψ(t)〉. Thus, an LC circuit is mapped
into a two-site model. (b) When C(t), L(t) are exponentially varied subject to the constraint L(t)C(t) = L0C0 (hyperbola),
the time-dependent change of basis generates balanced, constant gain and loss ±iγ. This leads to a purely imaginary, PT -
symmetric Hamiltonian HPT = ω0σy + iγσz. (c) When the constrained variation is not exponential, arbitrary, but balanced
gain and loss potentials ±iγ(t) can be generated. Here, we focus on the special case when γ(t) is periodic.

single oscillator. This contrasts with all gain-loss realiza-
tions to date, which have required two or more coupled,
separated degrees of freedom, one with the gain and the
other, loss. Therefore, although our protocol can be ap-
plied to arbitrarily larger systems, we will focus on the
most illustrative example, namely a single LC oscillator.

II. PT -SYMMETRY IN A SINGLE OSCILLATOR

Figure 1a shows a schematic circuit in which the volt-
age V (t) across the capacitor and the current I(t) in the
inductor satisfy Kirchhoff laws,

I(t) + C
dV

dt
= 0, (1)

V (t)− LdI
dt

= 0. (2)

Equivalently, it is described by a “state vector” |φ(t)〉 ≡
[V (t), I(t)]T which satisfies the equation i∂t|φ(t)〉 =
M |φ(t)〉 where the real, non-symmetric matrix M has

eigenvalues ε± = ±ω0 = ±1/
√
LC. Under a static, non-

unitary change of basis to |ψ(t)〉 = A1/2|φ(t)〉, the equa-
tion of motion becomes i∂t|φ(t)〉 = H0|ψ(t)〉 with a Her-
mitian Hamiltonian [33, 34] H0 = A1/2MA−1/2 = ω0σy.
Here A = diag(C/2, L/2) is the positive-definite bilinear
form that encodes the circuit energy E(t) = 〈φ(t)|A|φ(t)〉,
σy is the Pauli y-matrix, and the unitary evolution under
H0 indicates the constancy of energy in the LC circuit.

When the basis transformation depends on time, the
new state vector satisfies i∂t|ψ(t)〉 = Heff(t)|ψ(t)〉. The
effective Hamiltonian Heff is the sum of (possibly time-
dependent) Hamiltonian H0(t) and a gauge potential
iΓ(t) that arises from the non-constant nature of the

change of basis matrix [35],

iΓ(t) = i∂t lnA1/2(t). (3)

In fundamentally quantum systems, the matrix A1/2 is
unitary and gives rise to a Hermitian gauge term iΓ =
(iΓ)†. In contrast, for effective models like ours, a non-
unitary A1/2(t) can be tailored to create non-Hermitian,
gain and loss potentials.

Now, let us consider constrained variations of the form
C(t) = C0 exp[+2f(t)] and L(t) = L0 exp[−2f(t)] to
ensure that the frequency of the oscillator remains un-
changed. Such variations give rise to a traceless, anti-
Hermitian gauge potential iΓ = iγ(t)σz = i(df/dt)σz
that represents balanced gain and loss in a solitary oscil-
lator. The effective Hamiltonian then becomes

HPT(t) = ω0σy + iγ(t)σz. (4)

HPT(t) is invariant under combined operations of par-
ity P = σx and time reversal T = ∗ (complex conju-
gation). In contrast to quantum systems with a com-
plex state vector, the realness of the elements of |ψ(t)〉 =

[
√
C(t)/2V (t),

√
L(t)/2I(t)]T is guaranteed by an HPT

with purely imaginary entries. This requirement also
constrains the most general form of the non-Hermitian
Hamiltonian for this system to HPT = hyσy + ihzσz +
ihxσx with hk ∈ R.

With a suitable choice of the dimensionless function
f(t), Eq.(4) provides the protocol for arbitrary, balanced
gain and loss for the energy dynamics. When f(t) = γt
is linear in time, Eq.(4) gives the static PT -symmetric
Hamiltonian HPT(γ) = ω0σy+iγσz. As shown in Fig. 1b,
when γ > 0, the capacitor acts as the “gain site” and the
inductor acts as the “loss site” for the circuit energy. On
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FIG. 2. Dynamics of a PT -dimer with static gain and loss. (a) Schematics of synthetic LC circuit comprising capacitor (red),
inductor (blue), resistor (yellow), and signal adder (pink) boxes. (b) Actual circuit board with corresponding color-coded
components marked. The circuit has C = 100µF, L = 0.01 H, ω0 = (2π) × 159.15 Hz, and a parasitic resistance R = 103 Ω.
(c)-(d) Circuit energy E(t) oscillates in the PT -symmetric phase. The gain-loss strength is (c) γ = 0.375ω0 and (d) γ = 0.75ω0.
(e) E(t) grows exponentially in the PT -broken phase, γ = 1.05ω0 (experimental data: blue dots, theory: red dashed line). (f)
At γ = 0.375ω0 (PT -symmetric region, PTS) although the circuit energy E(t) oscillates, η2(t) = E(t) + γV (t)I(t)/2ω2

0 remains
constant with time. (g) The same, constant behavior of η2(t) is observed at γ = 1.05ω0 (PT -broken region, PTB). Gray traces
are experimental data; red dashed lines are theory.

the other hand, surfing the hyperbola L(t)C(t) = L0C0

back and forth leads to a time-periodic γ(t) where each
“site” acts as a gain for fraction of the period and a loss
for rest of the time (Fig. 1c).

III. EXPERIMENTAL RESULTS FOR A STATIC
PT -HAMILTONIAN

We experimentally demonstrate this protocol with a
state-of-the-art fully reconfigurable electronic oscillator
comprising functional blocks synthesized with opera-
tional amplifiers (op-amps) and passive linear compo-
nents (see Appendix A and Refs. [33, 34, 36] for details).
We thus electronically reproduce the dynamics described
by Eqs.(1) and (2) in the presence of a parasitic resistance
R = 103 Ω in parallel with the LC circuit. Figure 2a
shows for the circuit schematics, while the actual device
is shown in Fig. 2b. C0 = 100µF is minimum capaci-
tance and L0 = 0.01 H is the maximum inductance that
our electronic platform can efficiently simulate. Their
combination gives ω0 = (2π)×159 Hz as the fundamental
frequency of the oscillator. By increasing the capacitance
at different speeds, different gain-loss strengths are real-
ized. The eigenvalues of HPT(γ) are ±

√
ω2

0 − γ2, and
they change from real to complex-conjugate pair at the
exceptional point marked by γEP = ω0.

The time-dependent evolution of the circuit energy

E(t) = 〈ψ(t)|ψ(t)〉 in the PT -symmetric phase is shown
in Fig. 2 (experimental data: blue dots, theory: red
dashed lines). When the gain-loss strength is doubled
from γ = 0.375ω0, Fig. 2c, to γ = 0.75ω0, Fig. 2d, the
period of oscillations increases by

√
2, and the amplitude

of oscillations also increases. It is worth pointing out that
the fast fluctuations in the experimental data are due to
oscilloscope’s inherent noise; as the circuit energy E(t)
increases from tens of micro-Joules (µJ) to a milli-Joule
(mJ), the relative effect of the noise is suppressed. When
γ = 1.05ω0, Fig. 2e, the system goes into the PT -broken
phase, as indicated by a monotonically increasing circuit
energy. The temporal range of our simulation of a static
HPT(γ) is limited the maximum value of capacitance,
and not by the gain saturation of op-amps at high circuit
energies.

For an ideal PT -symmetric circuit, the energy E(t) =
〈ψ(t)|ψ(t)〉 either oscillates or grows exponentially with
time. And yet, for all values of γ/ω0, this open system
has two conserved quantities given by expectation values
of Hermitian, indefinite, intertwining operators [37, 38].
They are defined by [39, 40]

η̂kHPT(γ) = H†PT(γ)η̂k, (5)

and, in this case, are given by η̂1 = σy and η̂2 =
η1HPT/ω0 = 12 + (γ/ω0)σx. The experimentally mea-
sured η2(t) ≡ 〈ψ(t)|η̂2|ψ(t)〉 = E(t) + γV (t)I(t)/2ω2

0 is
shown in Fig. 2f (γ = 0.375ω0) and Fig. 2g (γ = 1.05ω0).
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Gray traces are experimental data; red dashed line is
theory. η2(t) remains flat (modulo oscilloscope noise)
in both PT -symmetric and PT -broken regions. Note
that the system starts out with V (0) = 0.99 Volts and
I(0) = 0, and thus the conserved quantity η2(t) = E(0).
Since |ψ(t)〉 has real entries and η̂1 = σy has purely imag-
inary entries, η1(t) is identically equal to zero.

IV. RESULTS FOR A TIME-PERIODIC
PT -HAMILTONIAN

The range of dynamics generated by Eq.(4) is tremen-
dously enhanced if the anti-Hermitian term γ(t) is pe-
riodic with period T [41–47]. Then the time-evolution
operator G(t) at time t = nT + θ is given by G(t) =

K(θ)GF (T )n where K(θ) = T exp[−i
∫ θ

0
HPT(t′)dt′] cap-

tures the micromotion that occurs during a single period
0 ≤ θ < T , T denotes the time-ordered product, n is
an integer, and GF (T ) ≡ K(T ) = exp(−iTHF ) is the
one-period time evolution operator, that, in turn, de-
fines the Floquet Hamiltonian HF . The complex eigen-
values λ± of GF (T ) determine whether the system is in
the PT symmetric region (|λ+| = |λ−|) or broken region
(|λ+| 6= |λ−|).

Congruent with the experimental setup, we use the
function f(t) = αΠ(t) = f(t+ T ) where Π(t) = sgn(t)/2
for |t| ≤ T/2 is the unit-step square wave (Fig. 3a),
and α quantifies the extent of constrained variation, i.e.
e−α ≤ C(t)/C0, L(t)/L0 ≤ eα. By taking into account
the δ-function generated by ∂tΠ(t), it is straightforward
to evaluate the purely real, one-period operator

GF (T ) = e+ασze−iω0σyT/2e−ασze−iω0σyT/2. (6)

Its eigenvalues are λ± = C2−S2 cosh(2α)± iS
√
D where

the discriminant is given by D = C2[1 + cosh(2α)]2 −
sinh2(2α), and C = cos(ω0T/2), S = sin(ω0T/2). The
boundary between the PT -symmetric and PT -broken re-
gions in the α−νT plane (νT = 1/T ) is marked by a
vanishing discriminant D = 0 or, equivalently,

cos(ω0T/2) = ± tanh(αEP). (7)

At α = 0, the eigenvalues λ± = e±iω0T of the ma-
trix GF become degenerate at odd resonances 2πνn =
2ω0/(2n + 1). These are diabolic-point (DP) degen-
eracies. At small α symmetrical EP lines, emerging
from the DP, satisfy the equation δνn(αEP) = ±AnαEP

where δνn = νT − νn is the distance from DP and
An = 2ω0/[(2n + 1)π]2. Thus, the PT -broken region
at arbitrarily small α, bounded by the two EP lines, be-
comes narrower with increasing n [46, 47]. Figures 3b,c
show these lines in the α−νT plane.

For this set of experiments, using C0 = 400µF and
L0 = 1 mH fixes the oscillator frequency at ω0/(2π) =
251 Hz. We use an experimentally friendly parameter [33,

48]

Λamp(α, νT ) = lim
2τ�T

1

τ
log

[
max E(0 ≤ t ≤ 2τ)

max E(0 ≤ t ≤ τ)

]
, (8)

obtained from the circuit energy to characterize the
strength of the PT -broken phase. Since E(t) oscillates in
the PT -symmetric phase, Λamp = 0, whereas its expo-
nential growth in the PT -broken region gives Λamp > 0.
Figure 3b shows the emergent triangular PT -broken re-
gions at ν2 = 100 Hz (cyan circles), ν3 = 71 Hz (yellow
circles), ν4 = 55 Hz (pink circles), and ν5 = 45 Hz (green
circles). The gray surface is theory. In the PT -broken
regions, at high circuit energies, E(t) does not grow expo-
nentially due to op-amp saturation. This leads to a sup-
pression of the effective amplification rate Λamp. This
suppression is maximum in the deepest PT -symmetry
broken region and leads to Λamp → 0 as the circuit en-
ergy saturates at short times. It is clearly seen in Fig. 3c
at ν1 = 167 Hz (orange circles) at large α, but is absent at
smaller values of α. The mauve surface is a theory pre-
diction with gain saturation +iγ(V ), whereas the gray
mesh is one without gain saturation. This suppression
is almost complete at the primary resonance which oc-
curs at ν0 = 2ω0/(2π) = 502 Hz (not shown) limiting the
use of Eq.(8) to distinguish between PT -symmetric and
broken phases.

In the Floquet case, the conserved quantities are the
expectation values of Hermitian, indefinite operators η̂F
that satisfy the intertwining relation G†F (T )η̂FGF (T ) =
η̂F , i.e. ηF (tm) ≡ 〈ψ(mT )|η̂F |ψ(mT )〉 is independent
of m [38]. We choose them as η̂1F = cosh(α)12 −
sinh(α)σz +sinh(α) tan(ω0T/2)σx and η̂2F = η̂1FGF (T ).
Figure 3d shows η1F obtained from the experimentally
measured state-vector |ψ(t)〉 at times t = tm. Since
ν ∼ 70 Hz−40 Hz, there are ∼ 5 stroboscopic data points
available. These are representative results in the PT -
symmetric (circles) and PT -broken (diamonds) phases
in the vicinity of ν3 and ν5 domes with color-coded sym-
bols (Fig. 3b). Experimentally measured η2F (tm) results
are shown in Fig. 3e. The deviation from flat gray lines
(theory) at long times t & 2τ is due to gain saturation in
the PT -broken phase (diamonds). Since GF (T ) = −12

at the DP degeneracies νk = 502/(2k+1) Hz, we see that
η2F (tm) = −η1F (tm) holds, surprisingly, irrespective of
the gain saturation. Similar results are valid, of course,
across the entire α–νT plane. This remarkable ability
to map out the entire Floquet PT -phase diagram across
five domes showcases the tremendous versatility of the
synthetic electronic platform, and the distinct advantage
of complex gauge-field induced gain and loss mechanism
over traditional approaches [4, 11–15, 24, 30–32, 45]. This
unparalleled versatility has also enabled the demonstra-
tion of conserved quantities in the Floquet dynamics of
a PT -symmetric system.
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FIG. 3. Floquet PT -transitions and conserved quantities. (a) The step-function f(t) switches C(t) and L(t) by a factor of e±α

and gives rise to periodic, δ-function gain and loss. Resultant EP lines emerging from odd resonances νk = 502/(2k+ 1) Hz are
shown by red and blue in the α−νT plane. (b) PT -broken regions in the vicinity of ν2 (cyan), ν3 (yellow), ν4 (pink), and ν5
(green), signaled by Λamp > 0, are shown (experimental data: filled circles, theory: gray surface). (c) At ν1 = 500/3 = 167 Hz,
the gain saturation leads to a suppressed Λamp, with the suppression largest near the resonance (experimental data: filled
circles; theory with gain saturation: muve surface, theory without: gray mesh). In all cases 2τ = 50 ms is used in Eq.(8).
(d) Constant of motion η1F (tm) is measured near the ν3 dome (yellow) in the PT -symmetric phase (ν = 69 Hz; circles) and
PT -broken phase (ν = 72 Hz; diamonds). These data are at α = 0.1. (e) Measured values of η2F (tm) near the ν5 dome (green),
both in the PT -symmetric phase (ν = 44 Hz, circles) and PT -broken phase (ν = 46 Hz, diamonds). These data are at α = 0.2.
Gain saturation leads to non-constant behavior at times t & 2τ . Gray flat lines are theory in (d)-(e).

V. WALKING THE EP CONTOURS

As a last demonstration of the synthetic oscillator plat-
form, we investigate the temporal dynamics at numerous
points along the EP contours. This has been extremely
challenging in gain-loss systems due to the requisite fine-
tuning of multiple mechanisms. In loss-only PT -systems,
it is a challenge because decay rate is maximum at the
EP.

A complementary way to show the PT -phase diagram
in the α−νT plane is the Dirac inner-product of the right
eigenvectors of GF (T ). By expressing the real, Floquet
evolution matrix as GF (T ) = G012 + Gxσx + Gzσz +
iGyσy where Gk ∈ R, it is straightforward to obtain the
inner-product as IP(α, νT ) = min(r, 1/r) where

r =
G2
y√

G2
x +G2

z

=
tanh(α)

cos(ω0/2νT )
. (9)

Figure 4a shows the heat-map overlaid with EP con-
tours, IP = 1, where blue is for the plus sign and red
corresponds to the minus sign in Eq.(7). Figure 4b shows
the region near ν1 = 167 Hz extended to negative values
of α. We “park the system” at 9 points with equidis-

tant αEP values along the blue (filled circles) and red
(open circles) contours each, and obtain the circuit en-
ergy evolution E(t). Since the system has second-order
EP contours, the stroboscopic circuit energy E(tm) =

〈ψ(0)|G†F (mT )GF (mT )|ψ(0)〉 grows quadratically with
time tm. Figure 4c shows the experimentally measured
circuit energy E(t) at α = 0.2 on the blue contour (blue
trace) and the red contour (red trace) over m ∼ 25 peri-
ods. It is constant except at integer and half-integer peri-
ods when the δ-function gain-loss potential is active. Sur-
prisingly, E(t) also shows an order-of-magnitude asymme-
try for the two contours that emerge symmetrically from
the DP at ν1; this asymmetry persists at all αEP.

We quantify the growth of stroboscopic, normalized
circuit energy E(tm) with two dimensionless coefficients,

E(tm)

E(0)
= 1−A±(αEP)m+ B±(αEP)m2, (10)

that depend only on αEP since it uniquely determines
the corresponding νT via Eq.(7). This approach al-
lows us to investigate their dependence on the prox-
imity to the DP degeneracy at α = 0, and the dy-
namical asymmetry between temporal evolution along
the blue (plus) and red (minus) EP contours. At the
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FIG. 4. Giant dynamical asymmetry along the EP contours. (a) The inner-product heat map IP(α, νT ) shows EP lines emerging
from odd resonances νk = 502/(2k+ 1) Hz, consistent with Eq.(7). (b) Zoomed-in view near ν1 = 167 Hz shows the αEP values
sampled for the circuit energy dynamics (filled and open circles). (c) Experimentally measured E(t) for the two EPs at α = 0.2
show a giant asymmetry. The circuit energy is constant except at times pT/2 (p ≥ 1) when the δ-function gain-loss potentials
are active. (d) Color-coded stroboscopic, normalized energy traces along the blue contour show quadratic behavior consistent
with a second-order EP. The (constant) energy along the flat steps in (c) is averaged to obtain error bars on E(tm)/E(0). By
fitting the data to Eq.(10), A±(α),B±(α) are obtained for the nine α values sampled along blue and red contours. (e) A±(α)
show approximate α ↔ −α symmetry, vanish at the DP as expected, and show that E(tm) growth along the red contour is
∼ 25-fold larger than along the blue contour. (f) Similar results, including a giant 25-fold asymmetry, are obtained for B±(α).

second-order EP, GF (tm) = e−ih0T (12 − imTHF ) where
h0T = π and HF = [∓2 sinh(αEP)σy + 2i tanh(αEP)σz ±
2i sinh(αEP) tanh(αEP)σx]/T is the Floquet Hamilto-

nian. We obtain A = iT 〈ψ(0)|H†F −HF |ψ(0)〉/E(0) and

B = T 2〈ψ(0)|H†FHF |ψ(0)〉/E(0) ≥ 0 for the coefficients
in Eq.(10). Figure 4d shows the stroboscopic, normalized
circuit energy E(tm)/E(0) as a function of m along the
blue contour for |α| = {0, 0.1, 0.3}. The error bars on
E(tm) are obtained by averaging its value over the con-
stant region. As the DP at α = 0 is approached from
either side, the coefficients A+(α) and B+(α) are mono-
tonically suppressed to zero. The slight negative slope of
E(tm) at α = 0 (no gain or loss) is due to the parasitic
resistance in the circuit.

We extract the coefficients A−(α) (Fig. 4e) and B−(α)
(Fig. 4f) from the experimental data along the red con-
tour. Similar results, with dramatically smaller values of
A+ and B+, are obtained for a walk along the blue con-
tour. They clearly demonstrate the order-of-magnitude
dynamical asymmetry that arises when the same initial
state |ψ(0)〉, with a fully charged capacitor, is evolved
along the two symmetrical EP lines that emerge from
ν1 = 167 Hz.

VI. CONCLUSION

Most of the transformative ideas in non-Hermitian
physics—Riemann surfaces, bi-orthogonal basis, excep-
tional points, to name a few—have been well-known in
mathematics. Yet, their reinterpreation in the context
of open systems has lent important insights that under-
pin the advances such as enhanced sensing [15, 16], chiral
mode switch [49, 50], or topological braiding [51].

Similarly, starting with the Kanai model [52, 53], a
quantum harmonic oscillator with exponentially varying
mass [54] has been extensively studied [55–58], with a
focus on the fate of the uncertainty relation [59] and non-
unitary canonical transformations [60].

We have, instead, contextualized time-dependent non-
unitary transformations into a protocol to implement bal-
anced gain and loss in a single oscillator. Simple har-
monic oscillator based models are all-pervasive in na-
ture, and our protocol provides a recipe for their non-
Hermitian generalization. For example, in a metama-
terial, the non-unitary change of basis is given by the
permittivity ε and the permeability µ. A constrained
variation of the two, with a constant product (and there-
fore a constant index of refraction), can lead to a class of
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PT -symmetric metamaterials [61] without material gain
or loss. It is also easy to generalize this protocol to a
network of oscillators, where the gain and loss “sites” are
localized in different nodes or are distributed throughout
the network. For example, with reconfigurable synthetic
LC circuits, this method can lead to non-passive, PT -
symmetric extensions of topoelectrical circuits [62].
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Appendix A: Experimental setup

In this appendix, we describe the experimental imple-
mentation of our RLC oscillator with time-dependent pa-
rameters. As previously mentioned, the temporal evo-
lution of electrical variables of an LC oscillator obeys
the Kirchhoff laws for the voltage in the capacitor and
the current across the inductor given by Eqs. (1) and
(2). These differential equations can be implemented
electronically in analog electronic circuits using func-
tional blocks (adder, integrator, and multiplier) synthe-
sized with active networks of general-purpose operational
amplifiers, analog multipliers, resistors, and capacitors.
Importantly, the electrical quantities of the analog cir-
cuit (analog computer) describe the same temporal evo-
lution as those of the original system, and therefore phys-
ical phenomena are equivalent [34]. In a standard ana-
log computer, the system parameters are directly trans-
lated into resistors and capacitors of the circuit. Thus,
to dynamically modulate the parameters of our LC os-
cillator, we replace physical components with analog
multiplications. This configuration allows us to inde-

pendently control each one of the oscillator parameters
through electrical potential differences provided by exter-
nal sources. The external voltage signals are supplied by
high-resolution digital-to-analog converters (DACs) that
take discrete values between 0 and 5 V with a resolution
of 12 bits. To facilitate the configuration of the voltage
signals, we label each DAC with a digital word, and then
through a data distributor managed by an 8-bit micro-
controller, we can enable/disable each DAC, as well as
set its output voltage level by employing a serial periph-
eral interface protocol. Note that the parameter values
depend directly on the characteristic of the external volt-
age signals, and they satisfy the following relationships:

1

L
=

Rf1VL1

Rf2Rf3Cf1
,

1

C
=

Rf1VC1

Rf2Rf3Cf1
. (A1)

In our experiment, Rf1 =10 kΩ, Rf2 =5 kΩ, Rf3 = 1 kΩ,
and Cf1 = 0.1 µF. Here, VL1 and VC1 are voltage signals
generated by the DACs, which can be time-dependent
and allow for the control of the circuit’s inductance and
capacitance, respectively. As for the dynamics of the elec-
trical signals, the initial condition is given by VIC [see
Fig. 1(a)], whereas the output signals, indicated with
red nodes in Fig. 1(a), denote the electrical variables
of interest, namely the voltage in the capacitor V1, and
the current across the inductor I1. With this design, we
can tune the natural frequency of the oscillator from 0
to 1590 Hz. Inherently, our LC oscillator has a para-
sitic resistance in parallel of 1 kΩ. To minimize the elec-
tronic noise of the circuit, we incorporate metal resistors
and polyester capacitors with tolerances lower than 1%.
The operational amplifiers Ui and analog multipliers Mj

are stabilized integrated circuits with series LF353 and
AD633JN, respectively. Our experimental setup is pow-
ered with a bipolar DC source (KEITHLEY 2231A-30-3),
and the electrical variables are tracked directly with an
oscilloscope Analog Discovery 2.
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