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We experimentally investigate the properties of hyperentangled states displaying simultaneous
entanglement in multiple degrees of freedom, and find that Bell tests beyond the standard Clauser,
Horne, Shimony, Holt inequality can reveal a higher-dimensional nature in a device-independent way.
Specifically, we show that hyperentangled states possess more than just simultaneous entanglement
in separate degrees of freedom but also entanglement in a higher dimensional Hilbert space. We
also verify the steerability of hyperentangled quantum states by steering different photonic degrees
of freedom.

I. INTRODUCTION

Entanglement—evincing nonlocal correlations that ex-
ceed what is possible according to any local realistic
model, i.e., local hidden variables—is at the very foun-
dation of quantum mechanics and underlies much of the
new quantum information revolution. In the 1960s, John
Bell developed a test to distinguish such hidden-variable
theories from quantum mechanical ones [1] by specifying
a quantity that had different maximal bounds in the two
models. Since their advent, Bell tests have been a focus
of fundamental research in physics, providing a means to
demonstrate the nonlocal effects present in quantum me-
chanics [2], verify the presence of entanglement [3], and
even explore the limits of ultra-nonlocal theories, which
can predict correlations stronger than those allowed by
standard quantum mechanics [4]. Other techniques, such
as quantum steering [5–8], expand the applicability of en-
tanglement verification to a wider set of scenarios with
differing assumptions. Initially, these tests of nonlocality
were conceived of as “thought experiments” that revealed
unexpected (or to some, illogical) features of quantum
mechanics; however, repeated experimental verification
of the correlations that are the hallmark of entangled
states has left little doubt that “spooky action at a dis-
tance” is a part of reality. The refinement of these mea-
surement techniques culminated in a trio of “loophole-
free” tests of nonlocality using Bell inequalities, providing
compelling evidence that Nature is truly nonlocal [9–11].
Meanwhile, loophole-free versions of quantum steering
have also been reported [12]. The fundamental impor-
tance of such experiments testing the features of nonlo-
cality was wonderfully highlighted by the recent Nobel
Prize in Physics awarded to pioneers in the field John F.
Clauser, Alain Aspect, and Anton Zeilinger [13].

Now that the original purpose of Bell tests, providing
a measurable criteria for separating local and nonlocal

∗ kwiat@illinois.edu

theories, has been largely fulfilled, a new era for Bell
tests is unfolding, in which they are used as tools for
probing and verifying the properties of quantum states.
Most recently, Bell tests have emerged as a resource for
generating provably random number strings [14, 15], and
as a means to ensure cryptographic security in “device-
independent” quantum-key-distribution protocols with-
out needing to trust all the devices [16, 17]. The abil-
ity to draw conclusions about a measured quantum state
without needing to trust the devices used to make the
measurement or prepare the state is a defining feature of
Bell tests and can be used to distinguish them from other
methods of verifying entanglement. Quantum steering
represents an intermediate case [8], in which one of the
measurement devices must be trusted, while no assump-
tions are made about the second measurement device.

Most Bell tests to date have used some version of the
Clauser, Horne, Shimony, Holt (CHSH) inequality [2] ap-
plied to qubits, but the space of possible tests and states
to test is much larger [4], e.g., including bipartite systems
of higher dimensionality, which has been partially ex-
plored [18–21]. In photonic systems, there have been ex-
perimental demonstrations of quantum steering for both
qubit-entangled states [22–24] and higher-dimensional
ones [25–29]. However, in all such previous steering
demonstrations, the entanglement has been shared on
a single degree of freedom (DOF) of the photon (e.g.,
polarization, frequency, position-momentum, etc.). Us-
ing multiple DOFs, a single photon is able to carry
more than just a qubit of quantum information, and
when two photons are entangled in more than one DOF,
higher-dimensional entanglement can be realized, a phe-
nomenon known as hyperentanglement [30, 31]. The use
of multiple photonic DOFs and hyperentangled states has
already shown advantages in tasks like state discrimi-
nation [32], entanglement distribution [33] and distilla-
tion [34], teleportation [35], and quantum error correc-
tion [36]. Thus, hyperentanglement is a promising candi-
date for achieving more efficient and noise-robust quan-
tum communication.

In this paper, we investigate nonlocality tests on hy-
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perentangled quantum states. By coherently control-
ling two DOFs on each photon, we can certify gen-
uine higher-dimensional entanglement, a task that can
otherwise be quite demanding to achieve experimen-
tally. After describing our experimental setup, we dis-
cuss results of a higher dimensional Bell inequality, where
we certify entanglement with dimensionality larger than
just two qubits. Polarization and path hyperentangle-
ment has been used previously in several tests of non-
locality [37, 38]. Our source uses polarization and time-
bin hyperentanglement for optimal applicability to the
space-to-earth channel [39, 40]. We also optimize the
choice of higher-dimensional inequality and characterize
the violation as a function of added decoherence. Finally,
we display quantum steering of our hyperentangled two-
particle state, also as a function of added decoherence.
To our knowledge, this is the first steering demonstration
across multiple DOFs of an entangled single photon.

II. EXPERIMENTAL METHODS

The time-bin and polarization hyperentangled photon
pair source, shown in Fig. 1, is driven by a 532-nm pulsed
laser (Spectra Physics Vanguard 2.5W 355 laser, fre-
quency doubled from 1064 nm) with an 80-MHz repeti-
tion rate. The pump laser is sent through an unbalanced
Mach-Zehnder interferometer to put each pulse into a
superposition of an early and a late time bin, separated
by 2.4 ns, large compared to the 7-ps pump-pulse du-
ration. After the interferometer, the polarization of the
pump beam is prepared using wave plates, after which the
pump enters a polarizing Sagnac interferometer [41, 42].
The Sagnac interferometer contains a periodically poled
lithium niobate (PPLN) crystal (poling period 7.5 µm),
inside which the pump undergoes type-0 phase-matched
spontaneous parametric downconversion. The horizontal
(vertical) component of the pump traverses the Sagnac
loop clockwise (counterclockwise) to produce a pair of
horizontally polarized photons with wavelengths 810 nm
and 1550 nm. The interferometer also contains a Fres-
nel rhomb, acting as a broadband half-wave plate, caus-
ing the output of the clockwise path to be vertically
polarized, while the counter-clockwise path’s output is
horizontally polarized (because the counter-clockwise-
propagating vertical-polarization pump was converted to
horizontal polarization before the PPLN crystal), lead-
ing to polarization entanglement. A 4.1-cm piece of cal-
cite (Thorlabs BD40) in the Sagnac (after the transmit-
ted port of the PBS) acts as temporal compensation, to
counteract the wavelength-dependent delay of the Fresnel
rhomb. After the Sagnac, in the 1550-nm path, there is
another small piece of calcite (0.5-mm long) to fix the de-
lay mismatch more precisely between the horizontal and
vertical polarizations exiting the Sagnac. Due to disper-
sion, only the 1550-nm side needed extra temporal com-
pensation outside of the Sagnac. For more information
on this source, see Ref. [39].

FIG. 1: Schematic of the hyperentangled photon
system. The pump is prepared in a superposition of
timing modes so that, when it passes through the

Sagnac polarization entanglement source, the output is
entangled in both polarization and time-bin. The

photons are then separated by a dichroic mirror for
further analysis. The measurement system combines

two standard polarization analysis systems with a
polarization-dependent unbalanced interferometer. This
leads to coupling between the polarization and timing
modes so that timing measurements can be controlled
with polarization optics. This measurement system is
duplicated for both photons, with the 810-nm photons

being detected by APDs and the 1550-nm photons being
detected by SNSPDs. The liquid crystals in the 810-nm
measurement system are used to tune the phases in the
generated state and of the measurement system. HWP
≡ half-wave plate. QWP ≡ quarter-wave plate. WP ≡
wave plate. PBS ≡ polarizing beam splitter. PPLN ≡

periodically poled lithium niobate. LC ≡ liquid crystal.
APD ≡ avalanche photodiode. SNSPD ≡

superconducting-nanowire single-photon detector.

In general, there will be relative phases between the
two polarization modes, the two-timing modes, and the
polarization and timing modes

|ψ〉 =
1

2
(|HH〉+ eiφp |V V 〉)⊗ (|t1t1〉+ eiφt |t2t2〉) (1)

=
1

2
(|00〉+ eiφt |11〉+ eiφp |22〉+ ei(φt+φp)|33〉), (2)

where in our system we assign |0〉 ≡ |Ht1〉, |1〉 ≡
|Ht2〉, |2〉 ≡ |V t1〉, and |3〉 ≡ |V t2〉. In our experiments,
these phases are set using liquid crystal elements acting
on the 810-nm photons.

After exiting the Sagnac interferometer, the down-
conversion photons are separated from the pump and
each other using dichroic mirrors, before being routed
to the measurement system. The measurement system
is designed so that both the time and polarization mea-
surements can be carried out using polarization optics.
This requires a coupling between the polarization and
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FIG. 2: Detail of analyzer interferometer, with photons
entrance from the top. Here we show the naming
convention of the wave plates used as part of the

measurement system.

time modes, achieved using another unbalanced Mach-
Zehnder interferometer that contains a final PBS (see
Fig. 2): the PBS couples the timing and polarization
modes, allowing the analysis timing mode to be effec-
tively controlled using waveplates.

In Fig. 2, we denote HWP1 and QWP1 as the pair
of waveplates before the analyzer interferometer; HWP2
and QWP2 as the pair of waveplates after the interfer-
ometer, but before the PBS in front of Detectors 1 and
2; and HWP3 and QWP3 as the pair of waveplates after
the interferometer, but before the PBS in front of Detec-
tors 3 and 4. For example, with QWP2 and HWP2 at 0◦

(with respect to the horizontal), Detector 1 will project
onto the first timing mode, with the polarization mode
set by QWP1 and HWP1; with HWP1 and QWP1 at
0◦, for instance, the measurement state for Detector 1 is
〈Ht1| or, with HWP1 at 22.5◦, 〈Dt1|. With HWP2 at
22.5◦, Detector 1 will project onto an equal superposition
of both timing modes with orthogonal polarizations; for
example, with QWP1 and HWP1 at 0◦, the measurement
state will be (〈Ht1| + 〈V t2|)/

√
2). In this way, the rele-

vant amplitude and phase between the measured timing
modes can be controlled with HWP2 and QWP2, while
the measured polarization state is controlled by HWP1
and QWP1.

Due to the probabilistic nature of the first non-
polarizing beamsplitter in this interferometer, three pos-
sible measurement time bins are generated. The early
(late) time-bin arises from photon pairs created by the
pump pulse that went through the short (long) arm of
the pump interferometer and were subsequently sorted
into the short (long) arm of the analysis interferometer;
the middle time-bin corresponds to photons that took
the short path in one interferometer and the long path

in the other. In this work, we post-select on this middle
time-bin [43]. Because we have matched the path length
differences (long path minus short) in the two interfer-
ometers, these “short-long” and “long-short” processes
are indistinguishable and, therefore, can interfere. To
preserve the relative phase of the time modes, it is nec-
essary to actively stabilize these measurement interfer-
ometers to match the pump interferometer. This active
stabilization is carried out by sending a portions of the
pump laser backwards through each measurement inter-
ferometers and measuring its intensity on photodiodes
(Thorlabs PDA36A) [39]. This feedback signal is then
used to adjust the length of the long arm of the measure-
ment interferometers using a piezoelectric element (Thor-
labs AE0505D16F with Thorlabs TPZ001 driver) to vary
the exact positions of the mirrors in the long arm; this
discrete-time stabilization system has an output rate of
about 100 Hz and yields an average phase stability of
about 3◦ [39].

The 810-nm photons are detected using four silicon
avalanche photodiodes (Excelitas SPCM-AQ4C) with a
measured detection efficiency of about 45% at 810 nm
and a timing jitter of about 600 ps. The 1550-nm photons
are detected with four superconducting nanowire single-
photon detectors (SNSPDs) with an efficiency of about
80% and a timing jitter of less than 100 ps. The outputs
of these detectors are then sent to a time-bin discrimina-
tion circuit [40] and then to fast time-tagging electronics
(UQDevices UDQ-Logic-16), yielding a net coincidence
timing resolution of about 700 ps. The resulting time
tags are processed to determine coincidence events corre-
sponding to detections in the middle time-bin, which is
then easily distinguished from the early and late time
bins at ±2400 ps, using the sorting capability of the
time-bin discrimination circuit. Unfortunately, for steer-
ing measurements in Fig. 4 with visibility below 0.6, the
time-bin discrimination circuit channel for Detector A4
was not functional, so each measurement was repeated
two times—the second time a HWP was used to direct
the A4 events to the functional Detector A3. This does
not present an issue because our measurement system is
not attempting to close any loopholes and our system
was stable over longer than the time to take multiple
measurements.

III. VERIFYING HIGHER-DIMENSIONAL
HYPERENTANGLEMENT

Bell inequalities can be characterized by the number
of bases measured and the number of outcomes of those
measurements; in general, these values can be different
for the two parties making measurements, so bipartite
inequalities require four parameters to be classified [44].
The CHSH Bell inequality uses two measurement bases
and two measurement outcomes on each side, and can
be referred to as I2222. For that particular set of pa-
rameters, there is only one possible inequality (ignoring
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trivial permutations), and this cannot distinguish be-
tween entangled qubits and higher dimensional entan-
glement. In contrast, for bases and outcomes above 2
there can be multiple inequalities for a given set of pa-
rameters. Here, we verify the higher-dimensional entan-
glement of the hyperentangled time-bin and polarization
state by making a Bell inequality measurement that can
produce different violations depending on state dimen-
sionality. Specifically, we focus on the symmetric case of
using four measurement bases and two measurement out-
comes for both photons in the pair (I4422), because some
of these inequalities display different quantum bounds
for qubits and qutrits [45]. With these parameters, there
are at least 27 known inequalities [44]. For complete-
ness, we also perform standard CHSH inequality mea-
surements on pairs of photons entangled in polarization
and separate measurements on pairs of photons entan-
gled in time-bin modes but these alone are insufficient to
say the state possesses higher dimensional entanglement.
See Appendix A for a description of CHSH measurements
and results.

Both observed CHSH Bell parameters nevertheless in-
dicate that the source was entangled in each degree
of freedom separately. Notably, however, measuring a
CHSH inequality of this type cannot be used to infer
that the state was entangled in both degrees of freedom
simultaneously, because formally the CHSH inequality
can always exhibit a violation even if the source is only
entangled in one degree of freedom; this is true even if
the measurement settings are chosen to depend on both
polarization and time mode, instead of measuring each
degree of freedom separately. Unless an assumption is
made that the states Alice and Bob projected onto were
indeed the ones they intended (or announced they would
measure), it is not possible to conclude that the state
was hyperentangled from just a CHSH Bell measurement.
However, an important feature of Bell tests is that they
need not rely on such an assumption about what mea-
surements were actually carried out; because the Bell
test can be interpreted solely as a mathematical game on
boxes with local realistic constraints [3], it does not de-
pend on what quantum states might violate it. Consider
the scenario in which Alice and Bob both try to mea-
sure in a hybrid basis between polarization and time-bin
that should only yield a violation for truly hyperentan-
gled states, but problems in their measurement devices
make their results insensitive to timing information, so
the actual bases used depend only on polarization. In this
case, a state only entangled in polarization would lead
Alice and Bob to incorrectly conclude that they shared
a hyperentangled state, because their assumption about
what measurement basis they used was violated. The

synthesis of a Bell parameter and any conclusions drawn
from it rely only on the correlations between Alice and
Bob’s results, and in this way, the CHSH inequality can-
not provide information about a state’s dimensionality.
To provide dimensionality information via Bell tests, it is
therefore critical that the conclusion not depend on trust
of the measurement devices used.

In order to select an optimal higher-dimensional in-
equality to measure using our experimental system
(which cannot measure all states), we carried out numer-
ical simulations of the maximum Bell parameter attain-
able with our system for each of the known 27 inequali-
ties (see Appendix B for short discussion of limitations on
inequality choice), using a maximally entangled ququart
state as an input:

|Ψ4〉 =
1

2
(|00〉+ |11〉+ |22〉+ |33〉), (3)

where in our system we assign |0〉 ≡ |Ht1〉, |1〉 ≡
|Ht2〉, |2〉 ≡ |V t1〉, and |3〉 ≡ |V t2〉. Based on this anal-
ysis, we chose to measure I184422 which is the inequality
with the largest difference between our system’s viola-
tion (constrained by our available measurements) using
entangled ququarts and the theoretic bound using en-
tangled qubits. With optimized wave-plate settings (see
Appendix B for optimal settings), our system can theo-
retically achieve a Bell parameter of 0.46, while a local
model is limited to a value of 0, and a qubit-entangled
state is limited to 0.18 [44, 45]. Note that I184422 is also
the I4422 inequality that has the largest separation be-
tween qubit and qutrit performance for any allowed mea-
surement basis [46]; however, our system cannot create
arbitrary measurements, so it is not able to reach the
maximum quantum bound of 0.64 [45].

We measured this I184422 inequality using our best ap-
proximation to the maximally entangled ququart state
given in Eq. (3). With optimal source tuning, we ob-
served a parameter of I184422 = 0.45±0.03 after measuring
85,000 coincidence events (summed over all measurement
basis combinations), very close to the expected maximum
value given our measurement limitations, proving that
the dimensionality of the state must be larger than that of
a qubit-entangled state. Since the state in Eq. 3 is actu-
ally composed of four-dimensional subsystems, one may
wonder whether our data can verify this; unfortunately,
as shown in Ref. [45], the I184422 inequality is already sat-
urated by entangled qutrits, i.e., it cannot distinguish
between higher dimensional systems.

We next investigated the robustness of this Bell pa-
rameter to state imperfections by reducing the amount
of entanglement in the time-bin degree of freedom. This
leads to a state of the form

ρ(λpol, λtime) = (
λpol

2 |φ
+
p 〉〈φ+p |+

1−λpol

2 (|H〉〈H|⊗2+|V 〉〈V |⊗2))⊗(λtime

2 |φ
+
t 〉〈φ+t |+ 1−λtime

2 (|t1〉〈t1|⊗2+|t2〉〈t2|⊗2)), (4)

where |φ+〉 ≡ (|00〉 + |11〉)/
√

2 with |0〉 and |1〉 being computational basis states in the given DOF. We imple-
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FIG. 3: Measured I184422 values showing the Bell
parameter visibility dependence. The visibility of the

temporal qubit was changed by unbalancing the
measurement interferometer’s path length difference

relative to the pump. In the bottom red region, there is
no evidence of nonlocality. In the yellow region, the

state is nonlocal but could be a pair of entangled
qubits. In the top green region, the state is nonlocal
and must have a dimensionality higher than that of a

pair of qubits, i.e., at least a pair of qutrits.

ment decoherence in time-bin qubits by slightly shifting
in time the timing modes relative to each other. In com-
bination with the measurement method, this functions
as an approximation of decoherence [47]. Because these
measurements already involved adding noise to a maxi-
mally entangled state, effort was not made to perfectly
tune the polarization state, so λpol ≈ 0.9 for these mea-
surements. As seen in Fig. 3, we were able to observe
an I184422 Bell parameter over the qubit-entangled limit
while the temporal visibility was above 0.75; in addition,
a Bell violation excluding all local realistic models was
observed for temporal visibilities of above 0.53, both in
agreement with theory after accounting for our produced
input state.

IV. REMOTE STEERING OF
HYPERENTANGLED STATES

Next, we verified the ability of one photon in the pair
to “steer” the other photon using a two-basis steering
scheme. At a high level, quantum steering can be un-

derstood as a game in which Alice’s goal is to convince
Bob that she has distributed to him half of an entangled
state. She does this by allowing him to measure his par-
ticle in a basis of his choice which he reports back to her;
based on this information, she then measures her particle
in a corresponding basis and reports the result back to
Bob. Only if the correlations violate a steering inequality
will Bob be convinced of the entanglement in the original
state [8]. To make this more precise, suppose Alice and
Bob share a bipartite state ρAB . In the simplest steering
test, Bob chooses between a pair of two-outcome pro-
jective measurements labeled by index y ∈ {1, 2}. The
collection of Alice’s post-measurement states is described
by the assemblage {ρb|y : b = ±1, y = 1, 2}, for which
we can write the steering inequality [48]

SStr ≡
1

2
(Tr [F0X1 ⊕X2] + Tr [F1Z1 ⊕ Z2]) ≤ 1√

2
, (5)

where Fy = ρ+1|y − ρ−1|y are formed from the untrusted
assemblage and {X1, Z1} and {X2, Z2} are Pauli observ-
ables measured on orthogonal qubit subspaces, given X
and Z are Alice’s Pauli observables in the x̂ and ẑ di-
rections of a qubit space (see Appendix C for steering
inequality derivation). The maximal value of SSteer is 1.

To apply Eq. (5) to our hyperentangled setup, we first
generate the state |Φ4〉 = 1

2 (|00〉 + eiφr |11〉 + eiφr |22〉 −
|33〉), with the computational basis states representing
the same polarization-time states as Eq. (3), where φr is
an uncalibrated random phase which the steering mea-
surements are insensitive to. Note, the sign difference on
the last term ensures that the state is not factorizable
with respect to the two subsystems (one for each degree
of freedom). Let X1 and Z1 denote Pauli observables in
the qubit subspace H1 = span{|Ht1〉, |V t2〉}, and like-
wise X2 and Z2 denote Pauli observables in the qubit
subspace H2 = span{|Ht2〉, |V t1〉}. In the steering pro-
tocol, Bob measures either X1 ⊕X2 or Z1 ⊕ Z2, in each
case obtaining a ±1 outcome. Because of the symmet-
ric nature of their shared state, Alice’s optimal strategy
is to measure the same observable as Bob. We achieved
a steering parameter of 0.93±0.02> 1/

√
2, thereby indi-

cating Alice’s ability to steer Bob’s measurement and the
entangled nature of the shared state. Accounting for pre-
vious measurements of the entangled state’s quality [39],
we would predict this system to produce a steering pa-
rameter of 0.95, in good agreement with the value mea-
sured.

We then investigated the robustness of the steering pa-
rameter to Werner-state-like entanglement [49]. Specifi-
cally, we produced states of the form

ρ4 = λ|Φ4〉〈Φ4|+
1− λ

4

(
(|H〉〈H|⊗2 + |V 〉〈V |⊗2)⊗ (|t1〉〈t1|⊗2 + |t2〉〈t2|⊗2)

)
, (6)
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FIG. 4: Measured steering parameter values. The blue
theory curve assumes a state exactly of the form given
in Eq. (6), while the “theory with phase” predictions

accounts for the entanglement phase Eq. (7), as
determined from a subset of the measurements. The

error bars represent one standard deviation, assuming
Poissonian counting statistics for the theory and was

calculated using 5 measured samples for the measured
data.

whose steerability bound for ρ4 is λ > 1
2 [50]. We re-

mark that the noisy state in Eq. (6) differs from stan-
dard Werner states that mix a maximally entangled state
with white noise. In contrast, ρ4 reflects dephasing noise
applied to |Φ4〉 that still maintains classical correlations
between the two photons. This state also differs slightly
from the one generated in the previous Bell measure-
ments above in that the degree of purity in the timing and
polarization modes are here intended to be the same. In
order to achieve this, simultaneous noise had to be added
to both the time-bin and polarization degrees of freedom.
In the polarization degree of freedom, the λpol parameter
was tuned by inserting quartz crystals of varied thick-
nesses into the 810-nm path after the source, leading the
two polarization components to walk off temporally from
each other; alternatively, this can be interpreted as a
frequency-dependent birefringent phase shift — tracing
over the 0.4-nm full-width half maximum spectral band-
width of the 810-nm photons leaves the pairs in a par-
tially mixed state. λtime was set in the same manner as
for the four-setting Bell tests, by unbalancing the inter-
ferometers relative to each other [51]. Special care must
be taken when applying this method in conjunction with
polarization decoherence techniques using birefringence,
because both methods rely on displacing modes relative
to each other in time; if polarization and timing modes
are coupled (as they are in our particular measurement
system), it is possible for these effects to act in oppo-
site directions, leading to reduced effective decoherence
in both modes.

Because the quartz elements produce discrete changes
in λpol, we tuned the path length difference of Alice’s
measurement interferometer to produce a value of λtime
in the time mode that closely matched that of the po-
larization. Note that the phase of the complete entan-
gled state depends on the relative path length differences

of the interferometers: |Φφ4 〉 = 1
2 (|00〉 + ei(φe1+φr)|11〉 +

eiφr |22〉 + eiφe2 |33〉). Hence the phases of the entan-
gled state had to be readjusted to match |Φ4〉 for each
noise value measured, using liquid crystals after the PBS
of the measurement interferometer. This readjustment
process becomes more challenging for small values of
λtime (mostly mixed states), as the phase-insensitive
noise dominates, leading to slightly different values for
the entanglement phases at each noise level, despite ef-
forts to re-tune this phase to zero between measurements.
In order to accurately predict the steering parameter ob-
served at each level, it was therefore necessary to take
into account this phase variation. Thus, for each noise
level, we used the steering measurements to determine
the entanglement phase

φe2 = arccos(4(p2 − p1)), (7)

where p1 is the coincidence probability of Alice measur-
ing -1 and Bob measuring +1 in basis 2, and p2 is the
probability of Alice and Bob both measuring -1 in basis
2. Note that the measurements are insensitive to φe1 and
φr.

As seen in Fig. 4, our steering measurement results
show that the effects of this phase re-tuning were sig-
nificant, as a model assuming this phase was zero does
not accurately predict the observed steering parameter.
When this phase was included, the model was able to ac-
curately predict the observed results. These results are
the first to demonstrate quantum steering over multiple
degrees of freedom using hyperentanglement. Quantum
steering generally provides a more robust method for cer-
tifying entanglement than violating some Bell inequality.
Our results demonstrate this fact for hyperentangled pho-
tons. In particular, for λ < 0.65 the state ρ4 cannot vi-
olate any Bell inequality using projective measurements
[50, 52], whereas we were still able to verify its entangle-
ment for part of this region via quantum steering until
λ < 0.5.

V. CONCLUSION

In this paper, we have shown a number of ways to
detect and quantify entanglement in a hyperentangled
photonic state. The use of Bell tests beyond the CHSH
inequality gives a device-independent indication of the
higher-dimensional nature of the generated state with
fewer measurements compared to a full state tomogra-
phy. It also provides more reliable certification of higher-
dimensional entanglement than other methods of entan-
glement certification/verification [53, 54], at the cost of
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more measurements. This new feature could be more
useful with increased study on the theoretic bounds of
these inequalities. For example, our present work only
shows that observing a sufficiently large Bell parame-
ter provides evidence that the state is more than qubit-
entangled, instead of indicating a specific dimension; if
the spectrum of maximum Bell parameters as a function
of entangled state dimension were known, then a more
precise conclusion about the state dimension could be
reached. It is an open, interesting, and relevant theo-
retical question whether, and to what extent, diagnostic
metrics like Bell and steering violations mirror the us-
ability of the imperfect states for quantum information
applications. For example, we found that our intention-
ally decohered ququart state could not achieve a beyond-
qubit violation when the visibility in the time degree of
freedom was < 0.75. Are these also the values, e.g., at
which the benefit from using higher-dimensional states
for quantum error correction vanishes? If so, then these
metrics may play a key role in monitoring the perfor-
mance capabilities of elements in a quantum network.

Further investigation into these less commonly mea-
sured Bell inequalities could thus lead to improved state
characterization techniques. Further, we demonstrated
the ability to steer hyperentangled states, which could
potentially enable a broad range of quantum applications
that involve a trusted measurement system, such as MDI-
QKD. To the extent that higher dimensional quantum
states are found to be (in)valuable resources for advanced
quantum protocols, nonlocality characterization methods
such as those presented here enable more efficient state
characterization and dimensionality estimation, than a
full quantum state tomography, which has an exponen-
tially increasing number of measurements for increasing
state dimension.
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Appendix A: Verification with CHSH inequality

For reference, we first measured a CHSH inequality [2]
on each of the degrees of freedom (DOF) individually.
The CHSH Bell parameter can be calculated from the
quantum correlations between measurement results made
in different bases for the two photons:

S = E(a, b) + E(a′, b) + E(a′, b)− E(a′, b′). (A1)

For local realistic states, |S| ≤ 2 and for quantum states,

|S| ≤ 2
√

2 [55]. E(a,b) can be calculated from the co-
incidences between Alice and Bob’s detector pairs when
Alice measures in basis a and Bob measures in basis b:

E(a, b) ≡ N11 +N22 −N12 −N21

N11 +N22 +N12 +N21
. (A2)

Here Nij is the number of events for which Alice’s mea-
surement outcome was i and Bob’s measurement out-
come was j. For the polarization DOF measurements,
outcome 1 (2) corresponded to detections on Detectors 1
or 2 (3 or 4) in Fig 1; for the timing DOF measurements,
1 (2) corresponded to detections on Detectors 1 (4).

For these measurements, the entanglement source was
adjusted to display entanglement in only one DOF at a
time. To generate photon pairs that were only entangled
in polarization, the long arm of the pump interferometer
was blocked so that the nonlinear crystal was driven by
only one time mode. We also adjusted the pump half-
wave plates to optimize the state for the CHSH measure-
ments, i.e., minimizing 〈DA| coincidences [56]. To mea-
sure pairs entangled only in time bin, we rotated the first
pump half-wave plate so that mostly the clockwise pro-
cess in the Sagnac source was activated and most of the
downconversion photons had a definite horizontal polar-
ization. We also inserted a half-wave plate and polarizer
on Bob’s side to project the polarization onto 〈H| and
then to rotate it to 〈D| since the analyzer projects onto

states like (〈Ht1| ± 〈V t2|)/
√

2 and (〈V t1| ± 〈Ht2|)/
√

2.
We then carried out a Bell measurement using the op-
timal measurement settings for a maximally entangled
state (a = 0◦, a′ = 45◦, b = 22.5◦, b′ = 67.5◦) [57].
For the polarization basis-measurements, these values
were set using the half-wave plates before each mea-
surement interferometer; for the time-bin basis measure-
ments, they were set by the half-wave plates after each
measurement interferometer. We observed a Bell param-
eter of 2.58±0.02 for the polarization-entangled state and
2.40±0.02 for the time-bin entangled state. From ear-
lier measurements on the quality of the source entangle-
ment [39], we would expect a polarization Bell parameter
of 2.75 and a time-bin Bell parameter of 2.68. The lower
observed values are explainable by imperfect phase tun-
ing and imperfect PBS extinction. The time-bin value
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TABLE I: Numerically optimized settings for the I184422
Bell inequality for the experimental setup in Fig. 1.

While the optimization was carried out over all HWP
and QWP settings, for the optimum, all QWP settings
were 0◦. With these settings, the system can achieve a

Bell parameter of up to 0.46, while a local model is
limited to a value of 0, and a qubit-entangled state is

limited to 0.18 [44, 45].

Basis 1 Basis 2 Basis 3 Basis 4

Alice HWP 1 45◦ 24◦ 58◦ 8◦

Alice HWP 2 12◦ 43◦ 22◦ 15◦

Bob HWP 1 12◦ 42◦ 7◦ −33◦

Bob HWP 2 20◦ 49◦ 22◦ 15◦

is further lowered due to residual phase averaging caused
by path length fluctuations in the interferometers, as well
as slight static mismatches between the three unbalanced
interferometers.

Appendix B: Bell Inequality Optimization Analysis

Like the standard Bell parameter, the I4422 inequalities
are a synthesis of three types of probabilities. The first
type of probability is the chance that Alice observes a

particular measurement outcome (e.g., 1) when she mea-
sures in a particular basis (e.g., a). Similarly, the second
type of probability is the chance that Bob observes a par-
ticular measurement outcome when he measures in a par-
ticular basis. The final type of probability is the chance
that Alice and Bob both measure particular outcomes
when they measure in particular bases. The inequality
then consists of a set of coefficients for these probabili-
ties, such that the sum of the probabilities multiplied by
their respective coefficients cannot exceed a certain limit
in a local theory (e.g., I184422 ≤ 0). In our measurement
protocol, for simplicity we take outcome 1 to be a detec-
tion event on Detector 1, and outcome 2 to be a detection
event on any of the other three detectors. Of course, we
could have assigned any detector to outcome 1, and the
other three to outcome 2.

Our measurement system cannot project onto an arbi-
trary ququart state (e.g., we cannot project onto |H〉 ⊗
(|t1〉+ |t2〉)/

√
2 because the two time-modes always have

orthogonal polarizations in our system), thus it is not
possible to obtain a violation for some of the inequal-
ities, and for those with a violation, the maximum vi-
olation achievable with our system does not necessarily
reach the theoretic limit of the inequality. For this rea-
son, we explored all known I4422 inequalities, and not
just those with the largest theoretic difference for qubit
and qutrit states.

After choosing the inequality,

I184422 = 2Pr(a1, b1) + 2Pr(a1, b2) + 2Pr(a1, b3)− Pr(a1, b4)

+ 2Pr(a2, b1) + Pr(a2, b2)− 2Pr(a2, b3) + 2Pr(a2, b4)

+ 2Pr(a3, b1)− 2Pr(a3, b2)− 2Pr(a3, b3)− 2Pr(a3, b4)

− Pr(a4, b1) + 2Pr(a4, b2)− 2Pr(a4, b3)− Pr(a4, b4)

− 2Pr(a1)− 2Pr(a2)− 2Pr(b1)− 2Pr(b2) ≤ 0, (B1)

we optimized the experimental measurement settings for
the best violation by our system with that inequality; the
optimal settings are in Table I.

Appendix C: Steering Inequality Proof

Suppose Alice and Bob share a bipartite state ρAB .
In the simplest steering test, Bob chooses between a
pair of two-outcome projective measurements, with mea-
surement y ∈ {1, 2} described by orthogonal projec-
tors {B+1|y, B−1|y}. The collection of Alice’s post-
measurement states is described by the assemblage
{ρb|y : b = ±1, y = 1, 2}, where

ρAb|y = TrB
[
I⊗Bb|yρAB

]
(C1)

(in general, any collection of positive operators {ρb|y}b,y
such that

∑
b=±1 Tr[ρb|y] = 1 for all y is called a state

assemblage).
If ρAB is not entangled, then it can be expressed in

separable form as ρAB =
∑
λ p(λ)|αλ〉〈αλ|A⊗ |βλ〉〈βλ|B .

Substituting this into Eq. (C1) yields

ρb|y =
∑
λ

p(b|y, λ)|αλ〉〈αλ|A, (C2)

where p(b|y, λ) := 〈βλ|Bb|y|βλ〉p(λ). Any state assem-
blage that can be expressed in the form of Eq. (C2) is
known to satisfy a local hidden state (LHS) model. Note
that measuring one-half of a separable state always yields
an LHS assemblage, but the converse is not true [7].

This discussion shows that every non-entangled state
generates an LHS assemblage when measured on one side.
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Conversely, if the post-measurement assemblage does not
satisfy a LHS model, then the original state ρAB was
entangled. This method of entanglement detection is
“semi-device-independent” since the only trusted device
is Alice’s measurement apparatus in testing the gener-
ated assemblage {ρb|y}b,y. For the simplest case of two
dichotomic measurement choices on Bob’s side, it has
been shown in Ref. [48] that all assemblages satisfying a
LHS model obey the steering inequality

1

2
(Tr [F0X] + Tr [F1Z]) ≤ 1√

2
, (C3)

where Fy = ρ+1|y − ρ−1|y are formed from the untrusted
assemblage, and X and Z are Alice’s Pauli observables
in the x̂ and ẑ directions of her qubit space. If {X1, Z1}
and {X2, Z2} are Pauli observables measuring on orthog-
onal qubit subspaces, then the previous inequality can be
extended to read

SSteer :=
1

2
(Tr [F0X1 ⊕X2] + Tr [F1Z1 ⊕ Z2]) ≤ 1√

2
.

(C4)
We prove this inequality by first noting that

Tr[F0X1 ⊕X2] = Tr[Π1F0Π1X1] + Tr[Π2F0Π2X2]
(C5)

Tr[F1Z1 ⊕ Z2] = Tr[Π1F1Π1X1] + Tr[Π2F1Π2X2],
(C6)

where Πi is a projector onto the {Xi, Zi} qubit subspace.
Since Fy = TrB

[
I⊗ (B+|y −B−|y)ρAB

]
, we have

ΠiFyΠi = piTrB
[
I⊗ (B+|y −B−|y)ρABi

]
=: piFi,y, (C7)

where ρABi = (Πi⊗I)ρAB(Πi⊗I)/pi is a normalized state
with pi = Tr[(Πi ⊗ I)ρAB ]. Therefore,

Tr[F0X1 ⊕X2] + Tr[F1Z1 ⊕ Z2]

= p1(Tr[X1F1,0] + Tr[Z1F1,1])

+ p2(Tr[X1F2,0] + Tr[Z1F2,1])

≤
√

2, (C8)

by Eq. (C3) above.
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