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Doped graphene nanostructures are a promising platform for photonics due to their exception-
ally strong and tunable plasmonic resonances. When placed in a periodic array configuration, the
plasmons supported by the individual nanostructures interact with each other and, under the appro-
priate conditions, can give rise to a collective mode known as a lattice resonance. Here, we perform
a comprehensive analysis of the response of periodic arrays of graphene nanodisks and identify the
conditions under which the system is able to support lattice resonances. We find that the ratio be-
tween the period of the array and the wavelength of the plasmon completely determines the behavior
of the system. As a consequence, strong lattice resonances are achieved for micron-size nanodisks in
the THz regime. We develop a theoretical model valid beyond the electrostatic approximation and
use it to derive closed analytical expressions for the strength, the wavelength, and the width of the
optical resonance of the arrays. The theoretical framework developed in this work paves the way
for facile design and discovery of emerging properties of periodic arrays of graphene nanostructures
that could enable applications in photonics and plasmonics.

I. INTRODUCTION

Nanostructures carved out from graphene monolayers
are exceptional platforms for the manipulation of light
at the nanoscale [1, 2]. When doped with charge carriers
(i.e., electrons or holes), these systems support localized
plasmons that lead to very strong optical cross-sections
with record levels of field confinement [3]. Furthermore,
the wavelength of these plasmons can be tuned by modi-
fying the number of carriers in the nanostructure, which
can be achieved, for example, through electrostatic gat-
ing [4–6]. Thanks to their exceptional optical proper-
ties, graphene nanostructures have been proposed as a
platform for a variety of applications, principally in the
THz regime [7]. These applications range from biosens-
ing [8–14] to the enhancement of dipole-forbidden tran-
sitions [15–18] and nonlinear effects [19, 20], as well as
the implementation of polarizers, modulators, absorbers
[21–24], and even time-varying metasurfaces [25].

In order to fully exploit the potential offered by
graphene nanostructures, it is necessary to develop the-
oretical tools capable of efficiently describing their op-
tical response. In this context, the plasmon wave func-
tion (PWF) formalism has been shown to provide an ac-
curate description of the localized plasmon resonances
supported by individual graphene nanostructures of ar-
bitrary shape, when their sizes are much smaller than the
wavelength of the light used to excite them [3, 26, 27].
Nevertheless, many interesting applications rely on us-
ing ensembles of nanostructures ordered in a periodic ar-
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rangement. In such case, it is well known that the inter-
action between the localized plasmons supported by the
nanostructures can give rise to collective responses that
can be very different from those of the individual con-
stituents [28]. A paradigmatic example are lattice reso-
nances, which are collective modes that emerge from the
coherent multiple scattering enabled by the periodicity
of the array [29–31]. Due to their collective character,
these resonances display very narrow lineshapes, which
give rise to quality factors that are significantly larger
than those of the localized plasmons. For that reason,
lattice resonances are being exploited in applications such
as nanoscale light emission and color generation [29–31],
to cite a few.

However, despite the extensive research effort devoted
to studying the plasmonic response of graphene nanos-
tructures, the prospect of using them to support lattice
resonances remains largely unexplored. Here, we inves-
tigate the response of periodic arrays of graphene nan-
odisks and analyze its dependence on the different geo-
metrical and material properties of the system. To that
end, we first introduce electrodynamic corrections to the
PWF formalism and then combine it with the coupled
dipole model (CDM) [28, 32–36]. The resulting approach
allows us to derive analytical expressions for the spectral
position, the strength, and the quality factor of the reso-
nances supported by the array. We identify two different
regimes determined by the relative value of the period of
the array a and the resonance wavelength of the localized
plasmon of the individual nanodisks λp. For a < λp, the
response of the array resembles that of the localized plas-
mon supported by the nanodisks, resulting in a strong
extinction but a relatively small quality factor. On the
contrary, when a > λp, the array can support collec-
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tive lattice resonances that produce a weaker extinction
but with a much larger quality factor. The results of this
work provide a simple yet accurate theoretical framework
that facilitates the design and implementation of appli-
cations exploiting the exceptional properties of periodic
arrays of graphene nanodisks.

II. RESULTS

We start by considering an individual graphene nan-
odisk of diameter D, doped to a Fermi energy EF,
which is placed in the xy-plane and surrounded by vac-
uum. The response of this nanostructure can be de-
scribed using the plasmon wave function (PWF) formal-
ism [3, 13, 16, 18, 26, 27]. This approach is based on the
electrostatic approximation and therefore assumes that
the size of the nanodisk is much smaller than the wave-
length of light λ, such that kD � 1 with k = 2π/λ. Us-
ing the PWF formalism, and considering only the lowest
order dipolar mode, we can write the electrostatic polar-
izability of a nanodisk as [3, 13, 27]

α0 =
D3ξ2

−1/η − iωD/σ
, (1)

where η = −0.07249 and ξ = 0.85020 are constants
[18, 26], ω = 2πc/λ is the angular frequency, and σ repre-
sents the electric conductivity of graphene, which we de-
scribe using the Drude model as σ = (ie2EF/πh̄

2)/(ω +
iγ). In this expression, γ = ev2F/(µEF) is the damping
coefficient with vF ≈ c/300 being the Fermi velocity of
graphene and µ the electron mobility. Here, we assume
µ = 104 cm2/(Vs), a value that is within experimental
reach [37–39]. The electrostatic polarizability defined in
Eq. (1) displays a dipolar plasmon resonance with wave-
length

λp,0 =
2πch̄

e

√
|η|π

√
D

EF
. (2)

In this work, we aim to explore arrays of graphene nan-
odisks with resonances in the THz regime, for which the
localized plasmon resonances of their constituents have a
wavelength of the same order than the array period, i.e.,
λp ∼ a. Therefore, we consider graphene nanodisks with
sizes of D = 10µm and D = 20µm and doping levels
in the range EF = 0.4 eV to EF = 1.0 eV. As demon-
strated by previous works [3, 40–42], this range of Fermi
energies is within experimental reach. Furthermore, us-
ing Eq. (2), these systems are expected to have localized
plasmon resonances in the wavelength range from 50µm
to 110µm (i.e., ∼ 3 THz to ∼ 6 THz). This means that
the condition kD � 1 may not be fully satisfied and
therefore, in order to obtain an accurate description of
the response of the nanodisks, we need to incorporate the
appropriate electrodynamic corrections to α0. To do so,
we need to calculate the electrodynamic depolarization
field that the dipole induced in the nanodisk produces

on itself. Following the derivation shown in Appendix A,
the corrected polarizability is given by

α =

(
α−10 − 3

k2

D
− 2

3
ik3
)−1

. (3)

The second term on the right-hand side, which arises
from the real part of the depolarization field, is associated
with the dephasing of the field created at different points
of the nanodisk and produces a shift in the position of
the plasmon resonance towards larger wavelengths [43].
As we show below, the contribution of this term, which
is usually overlooked, is substantial for the systems un-
der consideration. The other term on the right-hand side
is the so-called radiative correction term, which provides
the radiative losses of the nanodisk that are not taken
into account in the electrostatic polarizability. There-
fore, this term contributes to reducing the strength of
the plasmon resonance and to increasing its linewidth
[43, 44].

FIG. 1. Extinction cross-section for an individual graphene
nanodisk with diameter D = 10µm (a) and D = 20µm (b).
In both cases the nanodisk is doped to a Fermi energy of EF =
1 eV. As indicated by the legend, the yellow curves display the
results obtained with the PWF formalism including different
levels of electrodynamic corrections as described in the main
text. For comparison, the black solid curves show the results
obtained using a finite element method (FEM) approach.

We can characterize the optical response of an individ-
ual nanodisk by calculating its extinction cross-section,
which, in the dipolar limit, is defined in terms of its po-
larizability as σext = 4πkIm{α}. Figure 1(a) displays
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the spectrum of σext for a nanodisk with D = 10µm and
EF = 1 eV. The yellow dot-dashed curve shows the re-
sults obtained using the electrostatic polarizability α0.
As anticipated, these results depart significantly from
those obtained from full solutions of Maxwell’s equations
solved using the finite element method (FEM), which
are plotted with the black solid curve. The FEM cal-
culations are performed following previous works [16]
and are checked for convergence with respect to all rele-
vant discretization parameters. Examining these results,
we observe that the inclusion of the radiative correction
term improves the agreement of both the strength and
the linewidth of the plasmon resonance, but its spectral
position is still off by a significant amount. It is only
when we use the fully corrected polarizability α (yellow
solid curves) that we obtain a result in excellent agree-
ment with the FEM simulations. A similar behavior is
observed for a nanodisk with D = 20µm, shown in Fig-
ure 1(b), although, in this case, the larger size of the nan-
odisk makes the electrodynamic corrections even more
relevant. Importantly, with these corrections, the wave-
length at which the localized plasmon resonance of the
nanodisk appears in the spectrum becomes

λp =
√
λ2p,0 + 12π2|η|ξ2D2,

which confirms that the electrodynamic corrections pro-
duce a redshift of the plasmon resonance with respect to
the PWF results.

Once equipped with an accurate model to describe the
response of individual graphene nanodisks, we proceed to
analyze the response of periodic arrays built with these
nanostructures. Specifically, as sketched in Figure 2(a),
we focus on arrays with a square lattice of period a, which
are located in the xy-plane and surrounded by vacuum.
When the array is illuminated with an electromagnetic
field, the graphene nanodisks are excited by the incident
field as well as by the field scattered by the other con-
stituents of the array. In this context, the coupled dipole
model (CDM) [28, 32, 34–36] can be used to describe the
response of the array in the limit of the nanostructures
being smaller than both the wavelength of light and the
periodicity of the array. In our case, we choose the inci-
dent field to be a plane wave that propagates along the
negative z-axis and is polarized along the x-axis. Due to
the symmetry of the problem, we only need to consider
the x-component of the dipole induced in the nanodisks,
which, for the nanodisk located at position Ri, reads

pi = αE0 + α
∑
j 6=i

Gijpj . (4)

Here, α is the corrected polarizability of the nan-
odisks defined in Eq. (3), E0 is the amplitude of
the incident field, and Gij is the xx-component of
the dipole-dipole interaction tensor, defined as Gij =[
k2 + ∂2x

]
eik|Ri−Rj |/ |Ri −Rj |. Thanks to the period-

icity of the system, Eq. (4) admits the following solution

in the form of a Bloch wave:

p = AE0,

where A =
[
α−1 − G

]−1
is the effective polarizability of

the array and G =
∑∞
i 6=0Gi0 is the lattice sum [34, 36, 45],

which contains the information of the interaction between
the elements of the array.

In order to investigate the response of the array of
graphene nanodisks, we analyze the extinction efficiency
of the system, which is defined in terms of the array po-
larizability as

E =
4πk

a2
Im{A}. (5)

This quantity constitutes a generalization of the extinc-
tion cross-section of an individual nanodisk to an infinite
array [46]. Figure 2(b) shows the extinction efficiency
for different arrays of graphene nanodisks. In partic-
ular, we investigate arrays made of nanodisks with ei-
ther D = 10µm (left column) or D = 20µm (right
column) and a period satisfying a/D = 2.0 (top row),
a/D = 5.5 (middle row), or a/D = 7.0 (bottom row).
For each of the cases, we consider four different Fermi
energies: EF = 0.4 eV (purple curves), EF = 0.6 eV (blue
curves), EF = 0.8 eV (red curves) and EF = 1.0 eV (yel-
low curves).

Examining these results, we notice that, for a/D = 2.0,
the spectra of all of the arrays under consideration dis-
play relatively broad resonances. These resonances are
located very close to the wavelength at which the indi-
vidual nanodisks have their localized plasmon λp, which
is indicated by the vertical dotted lines. In contrast, as
the value of a/D is increased to 5.5 and 7.0, we observe
the emergence of much narrower resonances, which ap-
pear at wavelengths slightly larger than the array pe-
riod a. While the broad resonances located near λp
completely resemble the localized plasmon of the indi-
vidual nanodisks, the narrow resonances that appear at
λ >∼ a display the characteristics of a collective lattice res-
onance. The existence of these two types of resonances is
connected to the relative value of λp and a. The reason
is that, while the localized plasmon of the nanodisks is
associated with the pole of their polarizability α, lattice
resonances appear at the poles of the array polarizability
A [34, 45, 47, 48]. These poles are located at wavelengths
larger than, but close to, the Rayleigh anomalies, where
Re{G} diverges to +∞. For normal incidence, the first
Rayleigh anomaly appears at λ = a (see the black ar-
rows). Therefore, in order for the array to be able to
sustain a collective lattice resonance, the localized plas-
mon of the nanodisks must be located at a wavelength
smaller than the array period (i.e., λp <∼ a). In that way,
Re{α−1} can take large positive values for λ >∼ a, that
is, in the region where Re{G} also reaches large values,
thus allowing there to be the pole of A [34, 45, 47, 48].
This condition is not satisfied for any of the arrays with
a/D = 2.0 under study, and, as anticipated, the reso-
nance in the extinction spectra mostly corresponds to the
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FIG. 2. (a) Schematics of a periodic array of graphene nanodisks. (b) Extinction efficiency spectra for arrays made of nanodisks
with D = 10µm (left column), and D = 20µm (right column). The panels in the top, middle, and bottom rows show results
for arrays with a/D = 2.0, a/D = 5.5, and a/D = 7.0, respectively. In all of the panels, each of the colors represents the results
for a different value of EF, as indicated by the legend located in the top left panel. For comparison, the dashed curves in the
panels of the middle row show results obtained from FEM simulations. In all of the cases, the colored dotted lines indicate the
value of λp, while the black arrows signal the position of the first Rayleigh anomaly λ = a. (c) Field amplitude |E| on the unit
cell, for the arrays with a/D = 5.5 and EF = 0.8 eV. In both cases, the results are calculated at the wavelength of maximum
extinction efficiency and normalized to the amplitude of the incident field E0.

localized plasmon of the nanodisks, with both a blueshift
and an increased linewidth caused by the interaction be-
tween the elements of the array. Indeed, comparing the
top left and middle left panels, we observe that both of
these effects become smaller with the increase of a/D,
as expected from the decrease of the interaction between
the nanodisks.

The middle right and bottom left panels show a tran-
sition between the two different behaviors. While, for

EF = 0.4 eV, the array still displays the resonance asso-
ciated with the localized plasmon of the nanodisks, for
the rest of Fermi energies under consideration, the sys-
tem is able to sustain a lattice resonance. This resonance,
which is located right on the red side of the first Rayleigh
anomaly, has a much narrower linewidth than the plas-
mon of the nanodisks. The transition is completed for
the array analyzed in the bottom right panel. In this
case, for all values of EF, the array displays a lattice res-
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onance with an extremely narrow linewidth. Incidentally,
in this case, we can also observe the second-order lattice
resonance, which appears at wavelengths ∼ a/

√
2, for the

two largest values of EF.
In order to confirm the accuracy of our model, we

benchmark the results displayed in the panels of the mid-
dle row against calculations obtained from FEM simula-
tions, which are plotted with dashed curves. In all of
the cases analyzed, the results of both approaches are in
excellent agreement. Furthermore, we use the results of
the FEM simulations to plot maps of field amplitude pro-
duced by the array for two different resonances. In par-
ticular, Figure 2(c) shows the normalized field amplitude
|E|/E0 over one unit cell, for the arrays with a/D = 5.5
and EF = 0.8 eV. In both cases, the results are obtained
for the wavelength at which the extinction reaches its
maximum value. Examining these plots, we observe how
the field amplitude for the array with D = 10µm only
takes significant values around the nanodisk. This is the
expected behavior for a resonance resembling the local-
ized plasmon of the individual nanodisks. In contrast, for
D = 20µm, the field amplitude extends over the whole
unit cell, showing fringes that change in the direction per-
pendicular to the polarization of the incident field. The
period of these fringes is consistent with the field oscillat-
ing at λ >∼ a, exactly as expected from a collective lattice
resonance [34]. Therefore, we conclude from the results
of Figure 2 that, as the array transitions from a < λp to
a > λp, its response evolves from a regime in which it
is dominated by the localized plasmon of the individual
nanodisks, with a large extinction efficiency but a broad
linewidth, to another regime in which it supports a lattice
resonance, resulting in a smaller extinction efficiency but
a much narrower linewidth. It is important to note that
the extinction spectra of the arrays that support a lat-
tice resonance also display the peak corresponding to the
localized plasmon of the individual nanodisks, although
these always produce smaller values of extinction for the
systems under consideration.

One interesting aspect of the results displayed in Fig-
ure 2(b) is that the peak value of the extinction effi-
ciency for a fixed EF only depends on the ratio a/D,
as can be seen by comparing the curves with the same
color of the panels in the same row. To understand
this phenomenon and get further insight into the opti-
cal response of the arrays, in the following, we derive
analytical expressions for different relevant quantities.
We start by noting that, at the resonance of the ar-
ray, we can approximate Re{α−1 −G} ≈ 0 and therefore
Im{A} ≈ −1/Im{α−1−G}. Furthermore, the Weyl iden-
tity [49, 50] allows us to write Im{G} = 2πk/a2 − 2k3/3
for λ > a. Then, using Eqs. (3) and (5), we can write the
peak value of the extinction efficiency for the resonance
sustained by the array as

Epeak =
2

1 + C
E2

Fµ

(
a
D

)2 , (6)

with C = cv2Fh̄
2/
(
2eξ2

)
being a constant. Importantly,

FIG. 3. Peak value of the extinction efficiency plotted as a
function of a/D. The circles and crosses represent the results
from the CDM calculations for arrays made of nanodisks with
D = 10µm and D = 20µm, respectively, while the solid
curves correspond to the predictions of Eq. (6). Each color
represents a different value of EF, as indicated by the legend.

this expression predicts a peak value of the extinction
efficiency that is always smaller than 2, in accordance
with the theoretical limit for infinitely extended systems
[51]. Furthermore, this expression confirms that, for a
given value of EF and µ, Epeak only depends on the ratio
a/D.

As shown in Figure 3, the prediction of Eq. (6) (solid
curves) perfectly matches the results from the CDM cal-
culations, which are represented with circles and crosses
for arrays made of nanodisks with D = 10µm and
D = 20µm, respectively. This excellent agreement,
which holds for all of the values of a/D and EF under
consideration, confirms the accuracy of Eq. (6) and al-
lows us to extract some important general trends. First,
the increase of a/D results in a decrease of the peak ex-
tinction efficiency, which is clearly shown by the results
analyzed in Figure 2(b). Furthermore, a larger Fermi en-
ergy and a larger mobility always contribute to increasing
Epeak. This is consistent with the system having a larger
number of free carriers, whose density is proportional to
E2

F, and a smaller damping coefficient γ.

The next quantity for which we want to obtain an an-
alytical expression is the wavelength of the resonance
supported by the periodic array of graphene nanodisks
λpeak. We analyze this quantity through the function
∆ = λpeak/a − 1, which represents the normalized shift
of the resonance wavelength with respect to the Rayleigh
anomaly. Unfortunately, in this case, it is not possible
to obtain a simple analytical expression that is valid for
all of the arrays under consideration, as we did for the
peak extinction efficiency. Therefore, we analyze the two
regimes identified in the description of Figure 2(b) sep-
arately. For a < λp, as discussed above, the resonance
supported by the array corresponds mostly to the local-
ized plasmon of the individual nanodisks, with a rela-
tively small shift caused by the interaction between the
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FIG. 4. Normalized spectral shift ∆ (a,b) and quality factor Q (c,d) of the resonance of arrays made of nanodisks with either
D = 10µm (a,c) or D = 20µm (b,d). In all of the panels, the dots indicate the results from the CDM calculations, while the
dashed and solid curves represent, respectively, the predictions of Eqs. (7) and (8) in panels (a) and (b), and Eqs. (9) and (10)
in panels (c) and (d). In all of the cases, the different colors correspond to different values of EF, as indicated by the legends.

elements of the array. Therefore, we can directly write
λpeak = λp and

∆a<λp = λp/a− 1. (7)

In the opposite limit, when a > λp, the array is able to
support a lattice resonance, whose wavelength, as shown
in Figure 2(b), can strongly differ from λp. Therefore, to
find an expression for ∆ in this regime, we look for the
solution of Re{α−1−G} ≈ 0. Following Refs. 52, 28, and
50, the real part of the lattice sum of a square array can
be approximated near the first Rayleigh anomaly (i.e.,

for λ >∼ a) as Re{G} ≈ 4π2
√

2/(a3
√
λ/a− 1) − 118/a3.

Using this expression, together with the definition of α
given in Eq. (3), we have that

∆a>λp
= 32π4

[
1

|η|ξ2
a3

D3

(
1−

λ2p
a2

)
+ 118

]−2
. (8)

To verify the accuracy of Eqs. (7) and (8), we com-
pare in Figures 4(a) and (b), the value of ∆a<λp (dashed
curves) and ∆a>λp (solid curves) against the results of
the CDM calculations (dots). We observe that, for all
of the arrays under study, the predictions of the analyti-
cal expressions are in excellent agreement with the CDM
results in their corresponding regimes. As expected, the
agreement deteriorates in the transition region between
the two regimes. The location of this transition region,
which corresponds to λp ∼ a, has a nontrivial depen-
dence on EF, D, and a, but can be visually identified as
the point where ∆a<λp

goes to zero.

The last quantity necessary to fully characterize the
resonance supported by the periodic array of graphene
nanodisks is its quality factor. This quantity is de-
fined as Q = λpeak/Γ, with Γ being the full width
at half maximum of the resonance. Noting that E ∝
−Im{α−1 − G}/|α−1 − G|2 and assuming that the reso-
nance has a Lorentzian profile, we can perform a Taylor
expansion of α−1 − G around the resonance wavelength
and get

Γ ≈

∣∣∣∣∣ 2 Im
{
α−1 − G

}
∂
∂λ Re {α−1 − G}

∣∣∣∣∣ ,
where we have assumed that Re{α−1 − G} ≈ 0 and
(Γ/2)∂Im{α−1 − G}/∂λ � Im{α−1 − G}. Importantly,
all of the expressions above are to be evaluated at the
wavelength of the resonance. To further simplify this ex-
pression, it is again necessary to distinguish between the
two regimes discussed above. For a < λp, the response
of the system is dominated by the localized plasmon of
the individual nanodisks and therefore we can assume
∂Re{α−1}/∂λ � ∂Re{G}/∂λ. By doing so, we are able
to write the quality factor as

Qa<λp
=
Epeak

8π2|η|ξ2
a3

D3
(∆a<λp

+ 1). (9)

On the other hand, for a > λp, we take the oppo-
site approximation, i.e., we assume ∂Re{α−1}/∂λ �
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∂Re{G}/∂λ. Therefore, in this case, we have

Qa>λp
=
Epeak
4
√

2

1

∆
3/2
a>λp

. (10)

Interestingly, using Eq. (8), the leading term of this ex-
pression scales as (a/D)9, similar to what was previously
obtained for arrays of metallic nanospheres [45].

The two analytical expressions defined above provide a
simple way to compute the quality factor of the resonance
of the array. However, the nontrivial dependence of Epeak,
∆a<λp

, and ∆a>λp
on the different geometrical and mate-

rial parameters of the array complicates the extraction of
general trends. Therefore, to analyze the behavior of the
quality factor and to verify the accuracy of the analyti-
cal expressions derived above, we plot their predictions
in Figures 4(c) and (d). Once again, we use dashed and
solid curves to represent the results of Eqs. (9) and (10),
respectively, while the dots correspond to the CDM cal-
culations. Examining these results, we conclude that, as
was the case for the normalized spectral shift, each of the
analytical expressions for the quality factor is in excellent
agreement with the CDM calculations within its regime
of applicability. In addition, we observe that, as the sys-
tem transitions from the a < λp regime (dashed curves)
to the a > λp regime (solid curves), the quality factor un-
dergoes a dramatic increase. As this happens, the value
of Q becomes strongly dependent on both a/D and EF.
All of these behaviors are consistent with the resonance
supported by the array changing from the localized plas-
mon of the individual nanodisks to a collective lattice
resonance.

III. CONCLUSIONS

In summary, we have performed a comprehensive anal-
ysis of the optical response of periodic arrays of graphene
nanodisks. To do so, we have introduced electrodynamic
corrections to the plasmon wave function (PWF) formal-
ism, which has allowed us to describe the response of indi-
vidual nanodisks beyond the electrostatic regime. Then,
we have used the coupled dipole model (CDM) to ac-
count for the interactions between the nanodisks in the
array. With this combined approach, we have investi-
gated the resonances supported by arrays with different
geometrical and material properties, identifying two dif-
ferent regimes. When the period of the array is smaller
than the wavelength of the localized plasmon of the nan-
odisks, i.e., a < λp, the extinction spectrum of the ar-
ray displays a resonance with a large extinction efficiency
but a relatively small quality factor, which resembles the
localized plasmon of the individual nanodisks. In the
opposite regime, i.e., a > λp, the array supports a lat-
tice resonance with a much larger quality factor but a

smaller extinction. Taking advantage of the simplicity of
our model, we have derived analytical expressions for the
peak extinction efficiency, the wavelength, and the qual-
ity factor of the resonance supported by the array, which
completely characterize the optical response of these sys-
tems in both regimes. Importantly, these expressions
are valid beyond the range of parameters investigated in
this work, provided the dipolar approximation is valid.
Therefore, our work provides a simple and accurate the-
oretical tool to investigate emerging phenomena in pe-
riodic arrays of graphene nanodisks as well as to guide
experimental efforts seeking to exploit the extraordinary
properties of these systems.
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Appendix A: Electrodynamic Corrections to the
PWF Polarizability

In order to incorporate the electrodynamic corrections
to the PWF polarizability, we begin by writing the dipole
induced in the nanodisk as

p = α0 (E0 + Ed) ,

where Ed represents the electrodynamic terms of the de-
polarization field. To calculate this field, we assume that
the induced dipole is uniformly distributed over the nan-
odisk and then add up the field produced by each in-
finitesimal surface element at the center of the nanodisk.
Therefore, considering only the lowest order electrody-
namic terms and exploiting the symmetry of the system,
we have [43]

Ed =
4p

πD2

∫ 2π

0

dθ

∫ D/2

0

dr

[
k2

2

(
cos2 θ + 1

)
+ i

2

3
k3r

]
,

which, upon integration, results in Ed =
(

3
Dk

2 + i 23k
3
)
p.

Then, noting that the corrected polarizability is defined
as p = αE0, we get Eq. (3).
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F. J. Garćıa de Abajo, Gated tunability and hybridiza-
tion of localized plasmons in nanostructured graphene,
ACS Nano 7, 2388 (2013).

[41] Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. M. Ajayan,
F. J. Garćıa de Abajo, P. Nordlander, X. Zhu, and
N. J. Halas, Active tunable absorption enhancement with
graphene nanodisk arrays, Nano Lett. 14, 299 (2014).

[42] C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng,
B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segal-
man, S. G. Louie, and F. Wang, Controlling inelastic light
scattering quantum pathways in graphene, Nature 471,
617 (2011).

[43] A. Moroz, Depolarization field of spheroidal particles, J.
Opt. Soc. Am. B 26, 517 (2009).

[44] R. Yu, L. M. Liz-Marzán, and F. J. Garćıa de Abajo,
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