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The concept of photonic frequency (ω) - momentum (q) dispersion has been extensively studied in
artificial dielectric structures such as photonic crystals and metamaterials. However, the ω − q dis-
persion of electrodynamic waves hosted in natural materials at the atomistic level is far less explored.
Here, we develop a Maxwell Hamiltonian theory of matter combined with the quantum theory of
atomistic polarization to obtain the electrodynamic dispersion of natural materials interacting with
the photon field. We apply this theory to silicon and discover the existence of anomalous atomistic
waves. These waves occur in the spectral region where propagating waves are conventionally for-
bidden in a macroscopic theory. Our findings demonstrate that natural media can host a variety of
yet to be discovered waves with sub-nano-meter effective wavelengths in the picophotonics regime.
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I. INTRODUCTION

Functional dependency of the energy and momentum
(dispersion) of particles hosted in matter captures the
fundamental properties of a material [1]. The disper-
sion for several electronic, phononic, and magnonic ex-
citations in condensed matter systems [2–16] have been
widely studied within an atomistic lattice band theory.
However, the concept of frequency and momentum (ω−q)
photonic dispersion [17] and the corresponding electro-
magnetic field confinement [18] have been formulated
only in artificial materials such as photonic crystals [19–
22], metamaterials [23–25], and other dielectric struc-
tures [26, 27]. These artificial materials are composed
of two or more macroscopic constituents. On the con-
trary, natural media itself can host electrodynamic waves
which adapt the symmetry and periodicity of the mate-
rial [28, 29]. Hence, natural materials can host a variety
of yet to be discovered electrodynamic waves and topo-
logical photonic properties [29–31]. As such, these are the
properties of atomistic matter itself and are not related to
a form of macroscopic engineering. In this article, we de-
velop a Maxwell Hamiltonian theory of matter combined
with the quantum theory of atomistic polarization to un-
veil the electrodynamic dispersion of the electromagnetic
(photon) field.

Recently, it has been shown that a graphene mono-
layer in the viscous hydrodynamic state [32] supports
spin-1 skyrmions in the bulk and topologically protected
electromagnetic edge states at the boundary [31, 33, 34].
This topological electrodynamic phase of matter is char-
acterized by an optical N -invariant [29] fundamentally
distinct from the Chern number and Z2 invariant. The
optical N-invariant was defined based on a semi-classical
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hydrodynamic nonlocal (photon momentum ~q 6= 0) di-
electric response which includes Hall viscosity and the dy-
namics of electromagnetic waves. However, the Maxwell
Hamiltonian theory of matter and the quantum theory
of atomistic polarization within the framework of a lat-
tice band theory has not been considered so far. Here,
we solve this key challenge and show that the atomistic
polarization results in the emergence of unique class of
atomistic waves. In this paper, we apply the theory to
silicon (Si) but in the future it can be adopted to topo-
logical systems with repulsive Hall viscosity.

In Fig. 1, we compare the light-matter interaction the-
ories across varying length scales. Traditional regime of
optics and flat meta-optics study the optical properties
within the classical electromagnetism, and the dielec-
tric response is considered to be a material dependent
function. Nanophotonics encompass the study of elec-
tromagnetic field interactions in artificial structures such
as metamaterials, photonic crystals, and other dielectric
structures [35]. Field solutions in these structures can be
effectively obtained through a classical wave equation,
with the dielectric response dependent on the spatial ge-
ometry [36] and frequency. In this article, our focus is
picophotonics, which comprises the light-matter interac-
tion in natural materials at sub-nano-meter (nm) regime.
We show that in the picophotonic regime, the electro-
magnetic fields satisfy a picophotonic Bloch functional
form. We define the dynamics of the fields by a picopho-
tonic nonlinear eigenvalue equation, which depends on
the quantum theory of atomistic polarization as opposed
to semi-classical Drude or hydrodynamic models. Fur-
ther, we apply this formulation for Si, and discover the
existence of anomalous atomistic waves. These waves oc-
cur in the frequency range where propagating waves are
conventionally forbidden in a macroscopic theory. We
show that the anomalous waves observed in Si are highly
oscillatory within a unit cell, well within the dominion of
picophotonics.

The paper is arranged as follows. In Sec. II, we de-
fine the atomistic dielectric tensor and discuss the im-
portance of contributions from the local-field effects in
a material. In Sec. III, we derive the transverse atom-
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FIG. 1. Branches of optics across the length-scales are depicted in the schematic diagram. Bulk optics and flat meta-optics
are applicable for electromagnetic waves passing through micro-meter scale artificial structures. Field equations in bulk optics
satisfy a standard Maxwell wave equation with a constant dielectric permittivity. Light-matter interaction in metamaterials,
photonic crystals are studied within nanophotonics. Field solutions in nanophotonics regime still satisfy the classical wave
equation with possible coupling to hydrodynamic effects. In nanophotonics, the dielectric function may depend on frequency
and vary spatially over the region of interest. Here, we define the field of picophotonics, where we analyze the light-matter
interaction in natural materials at sub-nano-meter regime. In this regime of picophotonics, the response function is dependent
on frequency, momentum, and the atomistic local-field effects. The dynamics of electromagnetic waves are studied within the
Maxwell Hamiltonian framework along with the quantum theory of atomistic polarization.

istic dielectric tensor within a linear response theory. An
atomistic nonlocal electrodynamics of matter based on
the Maxwell Hamiltonian is described in Sec. IV. In this
section, we also define the picophotonic Bloch function
and the picophotonic eigenvalue equation for the electro-
dynamic field. As an application of our formulation, we
obtain the nonlocal atomistic dielectric response and the
corresponding atomistic electrodynamic dispersion in Si
through an isotropic nearly-free electron model, as de-
scribed in Sec. V and Sec. VI, respectively. Concluding
remarks are presented in Sec. VII.

II. DEFINING THE ATOMISTIC DIELECTRIC
TENSOR

In solid-state materials, long-wavelength perturbations
can lead to short-wavelength responses due to short range
electronic correlations [37–39]. This phenomenon has
been termed as the atomistic local-field effect [40]. Con-
sequently, microscopic fields arising from the local-field
effects vary rapidly within the unit-cell. The macroscopic
field is obtained through averaging the microscopic fields
over a region large compared to the lattice constant. This

macroscopic field is not the same as the atomistic elec-
tromagnetic field in a material [41]. Inside a material,
fields will have rapidly varying terms with wavevector
q + G, where G is the reciprocal lattice vector and q is
the photon wavevector. Hence, the dielectric response of
a material depends on frequency (ω), momentum (~q)
and the local-field effects. The dielectric response of a
material is represented in momentum space as

ε(q + G, q + G′, ω) ≡ εGG′
(q, ω). (1)

When q 6= 0, we obtain the nonlocal dielectric response,
and the components with G,G′ 6= 0 are due to atom-
istic local-field effects. So far, in literature, only the lon-
gitudinal dielectric function (density-density response)

εGG′

L (q, ω) has been extensively studied [41, 42]. How-
ever, a crucial gap in the linear response theory of matter
is in understanding the influence of local-field effects on
the dielectric response arising from a photon field.

Traditionally, electromagnetic properties of matter are
treated within a macroscopic local electrodynamic frame-
work, where it is assumed that the dielectric function
is only dependent on frequency ε(ω). This considera-
tion is valid only in the long-wavelength limit, q → 0.
Although there have been efforts to develop quantum-
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electrodynamic first-principles density-functional theory
calculations [43, 44], applications of such frameworks
have been limited to artificial dielectric structures and
cavities. These frameworks are also developed in the
long-wavelength limit and the photon field is considered
to be in vacuum. In this article, our focus is the pi-
cophotonic, atomistic regime beyond the cavity quantum
electrodynamics [45] and local dielectric response approx-
imations.

For a system with infinitesimal translation symmetry,
a jellium model can be used, where we consider a non-
local dielectric function ε(q, ω) without any contribution
from the local-field off-diagonal components. This ap-
proximation has been successfully applied for the case
of simple metals [46]. The jellium model breaks down
in explaining the observed properties of nanoplasmonic
structures with metals in the sub-nm domain [47]. Non-
local quantum effects in nanoplasmonic structures can be
explained through hydrodynamic models [48–52] as op-
posed to a local Drude model response theory. However,
as shown in this article, in semiconducting materials, the
local-field effects beyond the hydrodynamic model takes
the central role in determining the atomistic electrody-
namic dispersion of matter.

Early efforts within classical electrodynamics to in-
clude the local-field effects in the dielectric function
were considered through the Clausius–Mossotti relation
(Lorentz–Lorenz equation) [53–55]. In this approxima-
tion, the simple cubic lattice of polarizable atomic sites is
replaced with a homogeneous cavity. This leads to a con-
nection between the macroscopic dielectric function εM
in terms of the molecular polarizability [56]. However,
the Clausius–Mossotti relation neither has frequency or
momentum dependency of the dielectric function, and
does not build in the symmetry of the Brillouin zone
of the system. We also note that the widely used ap-
proximation of replacing atoms by polarizable harmonic
oscillators is confined to the classical regime. Adler [41]
and Wiser [42] (from now on termed as the Adler-Wiser
formulation) put forth the quantum theory of atomistic

longitudinal dielectric function εGG′

L (q, ω) based on the
perturbation theory. Following these efforts, it has been
shown that the local-field corrections are quintessential
to determine the electron self-energy [57–59] and impu-
rity screening potential [60, 61]. Here, we introduce the

transverse dielectric function εGG′

T (q, ω) going beyond
the Adler-Wiser formulation.

III. BEYOND ADLER-WISER FORMULATION:
ATOMISTIC DIELECTRIC RESPONSE IN

MATTER

The Adler-Wiser formulation determines the atomistic
longitudinal dielectric response including the local-field
effects [41]. This expression for the dielectric function

has been the gold standard in first-principles calculations
to determine the optical response of a material [62, 63].
However, response of a material to a photon field is de-
termined by the atomistic transverse dielectric tensor. In
this section, we develop a quantum theory of εGG′

T (q, ω),
including the local-field effects.

The atomistic dielectric function of a material can be
expressed in a longitudinal and transverse basis [41, 64,
65] as

εGG′
(q, ω) =

[
εGG′

L (q, ω) εGG′

LT (q, ω)

εGG′

TL (q, ω) εGG′

T (q, ω)

]
, (2)

where, εGG′

L is the atomistic longitudinal dielectric re-

sponse (density-density correlation), εGG′

T is the atom-
istic transverse dielectric function (current-current cor-

relation). The cross-coupling terms εGG′

LT and εGG′

TL rep-
resent the longitudinal and transverse dielectric response
induced by the transverse and longitudinal field, respec-
tively. However, in a cubic material such as Si, contribu-
tions from εGG′

TL and εGG′

LT are negligibly small [42, 66],
and are neglected from consideration.

In Fourier space, the induced potential δVind(r, t) in a
material due to an external potential δVext (r, t) can be
expressed in terms of the longitudinal dielectric function
εGG′

L as

δVext(q + G, ω) =
∑
G′

εGG′

L (q, ω) δVind(q + G′, ω), (3)

Whereas, εGG′

T is defined as

4πc

ω2
Jind(q + G, ω)

=
∑
G′

[
εGG′

T (q, ω)− δGG′

]
·A(q + G′, ω), (4)

where, Jind is the induced current and A is the transverse
vector potential. We note that the transverse part of the
vector potential A is gauge invariant.

A. Adler-Wiser Longitudinal Dielectric Function

In literature, the longitudinal dielectric function is ex-
tensively studied including the local-field effects. We ne-
glect the exchange-correlation contribution within the re-
laxation time approximation (RPA) [38]. Our main con-
tribution in this section is the transverse atomistic dielec-
tric function. However, for completeness, we re-state the
atomistic longitudinal dielectric function which is given
by (see Supplemental Material [67] for a detailed deriva-
tion)
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εGG′

L (q, ω) =

δGG′ − 4πe2

q2
1

Ω

∑
n,n′,kσ

fnk (1− fn′k+q)

[
〈n,k| e−i(q+G)·r |n′,k + q〉 〈n′,k + q| ei(q+G′)·r′

|n,k〉
(εn,k − εn′,k+q + ~ω + i~α)

+ c.c

]
, (5)

where, Ω is the crystal volume, k and σ are the carrier
momentum and spin, fnk is the Fermi-Dirac distribution,
n, n′ are the band indices, and εnk is the eigen-energy.
Conservation of crystal momentum has been built in the
expression for the dielectric function.

This response determines the plasmon screening in a
material. Also, the screened coulomb interaction and the
self-energy operator are determined by the above nonlo-
cal longitudinal dielectric response function [57]. Hence,

in GW calculations, εGG′

L (q, ω) are determined including

the local-field effects. In Sec. IV, we employ εGG′

L (q, ω)
to determine the atomistic plasmon dispersion.

B. Beyond Longitudinal Dielectric Function:
Atomistic Transverse Dielectric Response

We emphasize that the atomistic transverse dielectric
function has received far less attention in literature. The
behavior of propagating electrodynamic waves (i.e pho-
tons) is governed by the transverse response of matter.
Previous work from Adler derived the transverse dielec-

tric function by assuming both the field and induced cur-
rent density as macroscopic quantities [41, 68]. Here, we
include all atomistic local-field contributions of the vector
field and obtain the transverse dielectric function starting
from the fundamental light-matter interaction Hamilto-
nian

H =

(
p− e

c
A
)2

2m
+ U(r), (6)

where U(r) is the periodic lattice potential. Both Jind

and A are microscopic in nature with components vary-
ing rapidly within the unit cell. Hence, the vector poten-
tial is of the form

A(r′, ω) =
∑
G′,q

AG′(q, ω) tG′ ei(q+G′)·r′
, (7)

where, tG is the unit vector component perpendicular to
q+G. In the Supplemental Material [67], we have derived

εGG′

T (q, ω). Here, we state the important contribution of
our manuscript which is

εGG′

T (q, ω) = δGG′ +
4πe2

Ωω2

∑
n,n′,k

〈nk| e−i(G+q)·rtG · J0 |n′k + q〉 〈n′k + q| ei(G
′+q)·r′

tG′ · J0 |nk〉×

(fn′k+q − fnk)

[
P.V.

(
1

εn′k+q − εnk − ~ω

)
+ iπδ (εn′k+q − εnk − ~ω)

]
, (8)

where, J0 is the probability current operator. In Sec. IV,
we show that this atomistic transverse dielectric response
determines the picophotonic dispersion of a material. In
Sec. V, we apply these formulae to obtain the atomistic
longitudinal and transverse dielectric function of Si based
on an isotropic nearly-free electron bandstructure.

IV. MAXWELL HAMILTONIAN IN MATTER

In this section, we develop the atomistic nonlocal elec-
trodynamic theory of matter. We derive the Maxwell
Hamiltonian in matter which depends on the spin-1 be-
havior of photons, analogous to the Dirac Hamiltonian
for spin-1/2 particles. This formalism will be employed

in the next section to obtain the atomistic electrody-
namic ω − q dispersion of a material. We emphasize
that the Maxwell Hamiltonian has been used to under-
stand the correspondence between photons and massless
fermions in the Dirac equation specifically in free space.
Only recently, the Maxwell Hamiltonian has regained at-
tention in condensed matter to predict topological elec-
trodynamic phases of matter [28]. Here we develop the
Maxwell Hamiltonian formalism of matter and apply the
formalism for the semiconducting material, silicon.
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FIG. 2. (a) Cubic crystal structure of silicon is shown. (b) First Brillouin zone of silicon, a truncated octahedron is plotted in
k-space. (c) Spherical Brillouin zone used in this work to obtain the dielectric properties is plotted in k-space. (d) Bandstructure
of silicon obtained using the empirical pseudo-potential method is displayed. (e) Bandstructure of silicon within a nearly-free
electron model is displayed. This isotropic model can be thought of as a symmetric expansion of the bandstructure around the
high-symmetric Γ point.

A. Picophotonic Bloch Function

Atomistic electrodynamic dispersion of matter is ob-
tained through solutions to the Maxwell Hamiltonian cor-
responding to the transverse part of the electromagnetic
fields. The equation of motion for the Maxwell Hamilto-
nian H (in Gaussian units) in vacuum (see Appendix A)
is given by

H · f =
ω

c
g;

f =

[
ET (r, ω)

HT (r, ω)

]
, g =

[
DT (r, ω)

BT (r, ω)

]
, (9)

where,

H =

[
0 H†
H 0

]
; H = q · S. (10)

Here, q = −i∇ is the momentum operator, S is the
spin-1 operator. The Maxwell Hamiltonian is expressed
in terms of spin-1 operators of photon [69] and the com-
ponents of the spin-1 operators are defined as

Sx =

 0 0 0
0 0 −1
0 1 0

 ; Sy =

 0 0 1
0 0 0
−1 0 0

 ;

Sz =

 0 −1 0
1 0 0
0 0 0

 ,
(11)

and they satisfy the angular momentum algebra
[Si,Sj ] = εijkSk. Given a translation operator T , the
field vector f(r, ω) and the displacement vector g(r, ω)
follow the relation

T · f(r, ω) = f(r + R, ω),

T · g(r, ω) = g(r + R, ω). (12)

It is easy to see that the Maxwell Hamiltonian commutes
with the translation operator, [T ,H] = 0. In vacuum,
the eigen-fields to the Maxwell Hamiltonian will be sim-
ple plane waves f ∼ eiq·r. However, inside a material,
the Maxwell Hamiltonian is modulated by a periodic di-
electric response, hence the eigen-fields will take a Bloch
form [70]

fq(r, ω) = eiq·ruq(r, ω), (13)

where, uq is the picophotonic Bloch function, a periodic
vector function with the same periodicity as the crystal,
and q is the photon momentum. uq can be expanded as
a Fourier series of plane waves eiG·r, with G being the
reciprocal lattice vector

uq(r, ω) =
∑
G

UG(q, ω)eiG·r, (14)

where, UG =
[
EG HG

]T
.

B. Picophotonic Eigenvalue Equation

In a material, the response to an ex-
ternal probe is captured by the displace-
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ment field gq(r, ω) =
∑

G VG(q, ω)eiG·r, with

VG =
[
DG BG

]T
. Within a linear response frame-

work, the atomistic displacement field VG can be
expressed as

VG =
∑
G′

RGG′ · UG′ ,[
DG

BG

]
=
∑
G′

[
εGG′

T (q, ω) ξGG′

T (q, ω)

τGG′

T (q, ω) µGG′

T (q, ω)

]
·
[
EG′

HG

]
,

where, RGG′ is the generalized linear response ma-
trix, which includes permittivity ε, permeability µ,
and magneto-electric coupling τ , ξ. The component
RGG′(q, ω) can be thought of as the linear response ob-
served in a given material at a field point q + G′ (in
reciprocal lattice space) due to a perturbation at the
source point q + G. This form can now be substituted
into Eq. (9), and the picophotonic eigenvalue equation is
given by

H(q + G)·
[
EG

HG

]
=
ω

c

∑
G′

RGG′(q, ω) ·
[
EG′

HG′

]
. (15)

RGG′ should build in the space group symmetry of the
Brillouin zone, and G,G′ 6= 0 terms in the matrix en-
codes the inhomogeneity due to the microscopic response
of the electrons (the local-fields). The above Hamilto-
nian equation depends nonlinearly on the eigenvalue ω
due to functional ω dependency of the response matrix
RGG′(q, ω). Such class of equations are known as the
nonlinear eigenvalue problem. Solutions to this general-
ized nonlinear eigenvalue problem results in the atomistic
electrodynamic dispersion of a material that represents
transverse photon interaction in a material system.

We note that the above Maxwell Hamiltonian equation
of motion is based on the plane wave expansion, whose
solutions result in the atomistic electrodynamic disper-
sion. Similarly, it is well known that the electronic band-
structure of a material can be determined by the plane
wave expansion of the Schrödinger Hamiltonian of the
form [71]

∑
G′

[
~2 |q + G|2

2m
δGG′ + V (G−G′)

]
U(G′)

= E U(G), (16)

and the corresponding electronic wavefunction will be of
the form ψ(r) = eik·r

∑
G U(G)eiG·r. Hence, the burden

of determining the electronic bandstructure of a material
falls upon the accurate determination of the pseudopo-
tential coefficients V (G−G′). In a similar manner, one
needs to obtain the response matrix RGG′(q, ω) to de-
duce the atomistic electrodynamic dispersion. In Si, only
the atomistic dielectric function εGG′

T has considerable
contributions, µT = 1, and ξT = τT = 0. In Sec. V,

εGG′

T (q, ω) and the atomistic electrodynamic dispersion
of Si are obtained within an isotropic nearly-free electron
model.

C. Pico-plasmonic Dispersion

Here, we go beyond the well known definition
of nanoscale plasmons and epsilon-near-zero materials
which uses the macroscopic response of matter. We show
that the atomistic electrodynamic theory reveals a dis-
persion relation that embodies the symmetries of the un-
derlying lattice. A plasmon is a self-sustained charge
oscillation induced by a longitudinal electric field with-
out the introduction of external charge densities. Since
the longitudinal field is purely determined by the scalar
potential, from Eq. (3), we see that the condition for
sustained plasma excitation in a material is given by

det
[
εGG′

L (q, ω)
]

= 0. (17)

Using the above relation, we can obtain the eigenfrequen-
cies ω for a fixed q. Hence, solving this equation one can
obtain the atomistic plasmon dispersion of the material.
In the continuum limit, we obtain the standard relation

εM (q, ω) = 0, (18)

where the macroscopic dielectric function εM is defined
as

εM (ω) = lim
q→0

1(
εGG′
L

)−1
00

, (19)

where,
(
εGG′

L

)−1
00

is the first diagonal component of the

inverse longitudinal dielectric matrix. Inverse operation
indirectly includes the off-diagonal local-field effect con-
tributions. Alternatively, in literature, the plasmon dis-
persion is determined by identifying the peaks of the en-
ergy loss function

L(q, ω) = −Im ε−1M (q, ω) ,

=
ε2 (q, ω)

[ε1 (q, ω)]
2

+ [ε2 (q, ω)]
2 , (20)

where we have taken εM = ε1 + iε2. This is known
as the experimental definition of the plasmon dispersion
[12]. At the plasmon frequency ωp, ε1(q, ωp) ≈ 0 and the
damping factor ε2 is small, so that we observe peaks in
the energy loss spectrum [72, 73]. However, we note that
Eq. (17) provides the most general theoretical relation
to obtain the atomistic plasmon dispersion of a material
[74].

V. APPLICATION TO SILICON

Silicon has the diamond cubic crystal structure
(Fig. 2(a)) and the first Brillouin zone has the shape of
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a truncated octahedron (Fig. 2(b)). It has been shown
earlier [75, 76] that the momentum dependent dielectric
function in diamond-type materials is insensitive to the
direction of q. Hence, we can replace the truncated oc-
tahedron shape (Fig. 2(b)) of the first Brilloin zone by
a sphere (Fig. 2(d)) and obtain the dielectric properties
through an isotropic model. Moreover, dielectric screen-
ing is not sensitive to the details of the bandstructure
since it involves all the valence electrons in the mate-
rial [77]. We show that the results obtained through an
isotropic nearly-free electron bandstructure agrees well
with the exact bandstructure models for Si.

The nearly-free electron model employed here was first
introduced by Penn [77, 78]. This model allows for the
formation of standing waves at the Brillouin zone bound-
aries and accounts for the Umklapp processes [79]. In
this scheme, the eigen-energy and wavefunctions of an
electron is given by

E±k =
1

2

[
E0

k + E0
k′ ±

√
(E0

k − E0
k′)

2
+ E2

g

]
,

ψ±k =

(
eik·r + α±k e

ik′·r
)

√
1 +

(
α±k
)2 , (21)

where,

α±k =
Eg

2
(
E±k − E0

k′

) ,
E0

k =
~2k2

2m
,

k′ = k −G1,

G1 = 2kf k̂, kf is the valence Fermi wavevector, and Eg
is the bandgap of the material. Superscripts + and −
represents k > kf (conduction) and k < kf (valence)
bands, respectively. Experimentally measured valence

electron density for Si is n0 = 0.19 e−/Å
3
. Now consider

a free electron solid with the same density. This will
form a Fermi sphere in momentum space. According to
Sommerfeld theory [80], the corresponding valence Fermi

wavevector in Si is kf = (3π2n0)1/3 = 1.78 Å
−1

. This will
form the fully occupied valence band. An additional con-
duction band with bandgap Eg is constructed to reflect
the semiconducting nature of Si. Wavefunction compo-
nents with wavevector k′ = k −G1 facilitates the Umk-
lapp process. For a given photon momentum q, k→ k+q
indicates the normal process and k→ k + q + G1 is the
Umklapp process.

In Fig. 2(c) & (e), we have plotted the exact bandstruc-
ture and the isotropic nearly-free electron bandstructure
of Si considered here, respectively. The nearly-free elec-
tron bandstructure can be thought of as an isotropic sym-
metric expansion of the electronic bandstructure around
the high-symmetric Γ point. This model can reproduce
the experimentally observed dielectric properties [81] of
silicon (See Fig. S1 in the Supplemental Material [67]).

We will now proceed to obtain the atomistic longitu-
dinal and transverse dielectric function of Si using this
model. Through inspection, we see that for either case,
within this model only the dielectric matrix elements cor-

responding to G = 0 and G1 = 2kf k̂ are non-zero. All
higher order elements corresponding to the reciprocal lat-
tice vectors vanish.

Typically, the dielectric function of a material is con-
sidered to be only a function of ω. In Fig. 3, we ob-
serve a family of curves dependent on the wavevector
q even at a fixed ω. Moreover, the evolution of longi-
tudinal and transverse dielectric function are found to
be inequivalent at q 6= 0. We note that εijL (q 6= 0, ω)

and εijT (q 6= 0, ω) represent the atomistic nonlocal contri-
butions to the dielectric properties. ε01L and ε01T (corre-
sponding to G = 0,G′ = G1), ε11L and ε11T (correspond-
ing to G = G′ = G1) are due to the local-field effects.
ε00L (q 6= 0, ω) and ε00T (q 6= 0, ω) determine the dielectric
response of a material at a source and field point on the
sphere of radius q. Since we have considered an isotropic
electron model, this dielectric response is identical at all
points on this sphere. Whereas, ε01L,T (q 6= 0, ω) deter-
mines the material response at a field point q +G1 from
a source point q in momentum space, and ε11L,T (q 6= 0, ω)
is the dielectric response from a source and field point
both at q + G1. These scenarios are pictorially depicted
in Fig. 3.

In literature, typically only the longitudinal dielectric
function in the long-wavelength limit ε00L (q = 0, ω) is cal-
culated and used to obtain all dielectric properties of the
material. Our calculations show that at finite momentum
(q 6= 0), transverse and longitudinal dielectric function
are inequivalent, and the higher-order components have
significant contributions to the dielectric properties even
at ω = 0. In our analysis we neglect the damping fac-
tor contributions in the dielectric response. In the next
section, we show that the local-field contributions lead to
an additional anomalous band formation in the atomistic
electrodynamic dispersion of Si.

VI. ANOMALOUS BAND IN THE FORBIDDEN
GAP

In this section, we apply the Maxwell Hamiltonian the-
ory of matter described in Sec. IV to obtain the atom-
istic electrodynamic ω− q dispersion in Si. We show the
existence of anomalous atomistic waves in the bandgap
of silicon. We also directly compare with existing theo-
ries to recover well-known waves and also prove that the
anomalous waves are the result of atomistic electrody-
namics.

Components of the atomistic transverse dielectric func-
tion are obtained through the isotropic nearly free-
electron model (see Fig. 3(b)). We compare macroscopic
electrodynamic approaches to atomistic nonlocal electro-
dynamic theory in the sections below.

Macroscopic local theory: In a macroscopic local elec-
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FIG. 3. (a) Within the linear response theory, induced potential δVind(r, t) in a material due to an external potential δVext(r, t)

can be expressed in terms of the longitudinal dielectric function εGG′
L . (c) The atomistic transverse dielectric function εGG′

T

determine the linear response of a material to a transverse electromagnetic pulse. Contour plots of the atomistic (b) longitudinal
(d) transverse dielectric function components for silicon are displayed as a function of frequency ω and wavevector q.
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FIG. 4. The atomistic transverse dielectric function εijT (q, ~ω = 2 eV) is plotted as a function of wavevector q. (a) In a
macroscopic local theory, the dielectric component ε00T is independent of q. Whereas, in case of the macroscopic nonlocal
framework, only the ε00T (q, ω) component is considered, and the local-field effects are neglected. (b) In an atomistic nonlocal
theory, ε00T , ε

01
T , and ε11T components have significant variation with q and contribute to the overall dielectric response of the

material.

trodynamic theory, the dielectric function is only depen-
dent on the frequency while the local-field effects are ig-
nored. Hence, only ε00T (q = 0, ω) contributes to the di-
electric properties of the material. For a given frequency,
ε00T is considered constant across the momentum range
(Fig. 4(a)). In a macroscopic theory, transverse electro-
magnetic waves satisfy the continuum relation

q2 = ε00T (q = 0, ω)
ω2

c2
. (22)

Solution to the above equation results in the electrody-
namic dispersion shown in Fig. 5(a). We observe the light

line behavior retained for small q values. A bandgap
is observed in the spectrum corresponds to the region
ε00T < 0. At large q values photons are localized (zero
slope of the band) consistent with the local dielectric re-
sponse considered here.

Macroscopic nonlocal theory: Dielectric function be-
havior at q 6= 0 determines the nonlocal response of the
material. Hence, in case of a macroscopic nonlocal the-
ory, we consider the dielectric response to be ε00T (q, ω) and
the local-field effects are again neglected. In Fig. 4(a),
we compare the dielectric function behavior considered
within a macroscopic local and macroscopic nonlocal the-
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FIG. 5. Atomistic electrodynamic dispersion of silicon is plotted as a function of momentum obtained through (a) a macroscopic
local electromagnetic theory, (b) a macroscopic nonlocal theory, (c) an atomistic nonlocal electrodynamic theory. In complete
contrast to the nanophotonic regime, in the latter case of picophotonics, we observe the emergence of an anomalous band in
the electrodynamic dispersion.

ory. With increase in momentum, we observe a decay-
ing behavior in the dielectric function ε00T (q, ω) at any
given frequency. Within this framework, transverse elec-
tromagnetic waves satisfy the continuum relation

q2 = ε00T (q, ω)
ω2

c2
. (23)

In Fig. 5(b), we observe that at large q values, electrody-
namic bands have a finite slope due to nonlocal response
of the material. We call the dispersion curves observed
in Fig. 5(a) and (b) through a macroscopic theory as the
regular bands.

Atomistic nonlocal electrodynamic theory: In Fig. 4,
we compare the dielectric response in a macroscopic and
an atomistic electrodynamic theory. In a macroscopic
theory, local-field effects are neglected. Hence, the di-
electric response has a single component. However, we
see that the higher-order dielectric components ε01T , ε

11
T

have small but non-negligible contributions to the over-
all dielectric response of the material. The generalized
nonlinear picophotonic eigenvalue problem in Eq. (15) is
solved to obtain the atomistic electrodynamic dispersion
(See Supplemental Material [67] for the solution to the
nonlinear picophotonic eigenvalue problem).

In Fig. 5(c), we see that along with regular bands,
an anomalous band is also observed in the dispersion.
This anomalous band is absent if we treat the problem
using macroscopic local or macroscopic nonlocal electro-
dynamic frameworks. Hence, the anomalous band is a
direct consequence of the inclusion of local-field effects
in Si. Even at q = 0, the anomalous band has a fi-
nite frequency. This is in stark contrast with the regular
band, whose frequency vanishes at q = 0. In classical
optical theories one would consider this regime to be per-
fectly metallic where the propagation of light is forbid-
den. However, from Fig. 5(c), we see that the light can
propagate through silicon in the picophotonics regime.

In Fig. 6, we plot the normalized electromagnetic
field at q = 0.178 nm−1 in Si hosted by the regular

-1
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FIG. 6. Normalized electric field is plotted at q = 0.178 nm−1

for the regular and anomalous bands. Here, the regular band
(blue curve) has the wavelength λ = 35.30 nm. In contrast,
the anomalous band (red curve) has λ = 0.18 nm, in the pi-
cophotonics regime. Field equations here follow the picopho-

tonic Bloch form Eq = e−iωteiqr
(
E0 + E1e

i2kf r
)
q̂⊥. The

E0 component predominates over the E1 component for the
regular band, and vice versa for the anomalous band. Hence,
we observe a substantial disparity between the wavelengths of
the regular and anomalous bands.

and anomalous band. Across the momentum, the reg-
ular band has wavelengths in nano-meters, whereas the
anomalous band has sub-nm wavelengths. The lattice
constant of a silicon unit cell is 0.543 nm, hence electro-
magnetic waves in the anomalous band are found to be
highly oscillatory within a unit cell, leading into the pi-
cophotonics regime.

For completeness, in Appendix B, we have calculated
the atomistic plasmon dispersion of Si obtained within
the isotropic nearly-free electron model. In Fig. 8, we ob-
serve that the atomistic nonlocal and macroscopic nonlo-
cal theory results in a nearly identical plasmon dispersion
across the momentum range.
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FIG. 7. Proposed experiment for verification of atomistic effects (a) For energies ~ω < 4.3 eV, only the regular band contributes
to the total transmission in a silicon block. (b) For energies ~ω > 4.3 eV, both regular and anomalous bands are excited by
an electromagnetic wave incident on a silicon block. (c) The total transmission coefficient Ttotal at normal incidence is plotted
as a function of energy ~ω. (d) The total transmission coefficient at normal incidence is plotted as a function of energy in the
deep ultraviolet regime, where both regular and anomalous bands contribute to the total transmission. We observe a clear
difference in the behavior of Ttotal obtained using the atomistic nonlocal theory while compared to the macroscopic theory.
This difference is attributed to the contributions from the anomalous band.

A. Experimental probe of anomalous atomistic
waves

We propose an experiment to probe the atomistic pi-
cophotonic dispersion relation in silicon. Consider an
electromagnetic wave incident normally on an Si block
(see Fig. 7(a)). Experimentally, one can control the en-
ergy, whereas the momentum within the crystal is deter-
mined by the atomistic electrodynamic dispersion. We
calculate the transmission coefficient at two different en-
ergy ranges, (a) ~ω < 4.3 eV, and (b) ~ω > 4.3 eV. For
energies ~ω < 4.3 eV, only the regular band is excited.
Hence the total transmission in Si block will have con-
tributions only from the regular band (Fig. 7(a)). From
Fig. 5(c) we see that for energies ~ω > 4.3 eV both reg-
ular and anomalous bands are excited with two distinct
momentum. Hence, the total transmission should include
additional terms from the interference effects due to field
contributions of the anomalous band (See Supplemental
Material [67] for the derivation of total transmission).

In Fig. 7(c), we have plotted the total transmission co-
efficient calculated using the macroscopic local, macro-
scopic nonlocal and the atomistic nonlocal theory. We
observe that all three calculations have similar results
for low energies. However, in deep ultraviolet regime
(DUV) (~ω > 4.3 eV), as shown in Fig. 7(d), the behavior
of atomistic nonlocal theory differs from that of macro-

scopic local theory, and macroscopic nonlocal theory. We
note that in the DUV regime, the anomalous band gen-
erates additional electromagnetic energies at a given fre-
quency of light. This additional energy contribution is
reflected in the behavior of total transmission coefficient
determined through our atomistic nonlocal theory.

Experimentally, one can measure the total transmis-
sion in the range 4.5 eV< ~ω < 6.5 eV by shining an ul-
traviolet light on a silicon block. The total transmission
can be accurately measured using high sensitivity sin-
gle photon detectors. Difference in the measured total
transmission coefficient to that of macroscopic electrody-
namic calculations should reveal the existence of anoma-
lous bands in the atomistic electrodynamic dispersion.
In our calculations we have not considered the phonon
mediated inter-band transitions in silicon. Based on the
experimental data [82] that is currently available from
the literature, we believe that the linear regime predom-
inates for optical intensity below 0.02 J/cm2. Hence, we
predict to observe anomalous waves in this low intensity
regime. Also, experiments [83] have shown that below
5.5 K, two-photon processes in silicon are significantly re-
duced by 50%. Hence the low temperature experiments
are well suited to study the linear regime discussed in
this article.
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VII. CONCLUSIONS

We have developed the atomistic nonlocal electrody-
namic theory of matter through a Maxwell Hamiltonian
framework. We introduced the atomistic transverse di-
electric tensor which determines the linear response of a
material to a transverse electromagnetic probe. The elec-
trodynamics of matter is considered within the Maxwell
Hamiltonian framework, which captures the spin-1 na-
ture of photons. Through this formulation, we have dis-
covered anomalous waves in the atomistic electrodynamic
dispersion of silicon. Local-field effects included in the
Maxwell Hamiltonian are essential to obtain the anoma-
lous waves in the atomistic electrodynamic dispersion.
These waves are highly oscillatory within a unit cell and
have sub-nm wavelengths in the picophotonics regime.
The anomalous wave generates an additional electromag-
netic energy contribution which was previously unac-
counted for. Experimental signatures for this additional
electromagnetic energy contribution can be deduced from
the total transmission coefficient in the deep ultraviolet
regime. We note that the frequencies corresponding to
the anomalous waves are forbidden in a macroscopic lo-
cal model, and are a signature of our quantum theory of
atomic polarization developed here.

Our findings demonstrate that natural media can itself
host several interesting electrodynamic phases. As such,
the electrodynamic phases we discussed here are prop-
erties of atomistic matter itself and are not related to
some form of macroscopic engineering. In this study we
considered Si as a prototype material. Ge, AlSb, ZnSe,
GaAs, GaP, InP, ZnS, ZnTe, CdTe are all expected to
display the anomalous band, since all these material sys-
tems have the same crystal symmetry as Si.

A variety of focused electron- and ion-based techniques
have recently shown compelling ways to manufacture
atomic structures with atomic precision in solids [84].
Currently available electron microscopes can manipulate
atomic structures, visualize them with picometer-level
accuracy, and infer their electronic and photonic prop-
erties [85]. Recently, it has been demonstrated that us-
ing atomic force microscopes one can embed atom-by-
atom in a silicon wafer to achieve single-atom control
[86]. Moreover, the enhancement of local-field effects
is the key to inherit anomalous waves in the atomistic
electrodynamic dispersion of materials. Materials such
as MnBi [87], SiO4 and Selenium [68] have been long
known to possess significantly enhanced local-field ef-
fects. Magneto-optical effects in MnBi is one of the man-
ifestations of the local-field effects, which can be sub-
stantially enhanced through systematic doping of Al ions
to form MnBixAl1−x [87]. Hence, we believe that engi-
neering the picophotonic media is well within the current
capabilities of material science and engineering.

Further, results presented here brings forth the impor-
tance of the atomistic electrodynamic phases of matter,
and the immediate need to develop first-principles based
atomistic nonlocal electrodynamics of matter to obtain

the atomistic electrodynamic dispersion of natural ma-
terials. We envision the development of picophotonic
electrodynamic density functional theory (PED-DFT) for
photons hosted by matter to reveal novel effects con-
nected to the atomistic electrodynamic dispersion. Our
analysis provides the fist step towards the discovery of
topological electrodynamic properties in natural materi-
als.
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Appendix A: Maxwell Hamiltonian in Free Space

In this appendix, we derive the Maxwell Hamiltonian
discussed in Sec. IV. The Maxwell’s equations (in Gaus-
sian units) are given by

∇ ·E = 4πρ, ∇ ·B = 0,

∇×E = −1

c

∂B

∂t
, ∇×B =

1

c

∂E

∂t
+

4π

c
J . (A1)

Along with the above equations, the charge density and
current density have to satisfy the continuity equation

∇ · J +
∂ρ

∂t
= 0. (A2)

Fields can be expressed in terms of the scalar and vector
potentials of the form

E = −∇V − 1

c

∂A

∂t
, B = ∇×A. (A3)

These potentials satisfy the gauge transformations

V → V − 1

c

∂Ξ

∂t
,

A→ A +∇Ξ, (A4)

where Ξ is the gauge function. It is convenient to de-
compose the electric field in terms of longitudinal and
transverse components, given by

E(r, t) = EL(r, t) + ET (r, t), (A5)

where, ∇·ET (r, t) = 0 and ∇×EL(r, t) = 0. Notice that
the magnetic field will have only transverse component
due to zero-divergence condition. With this decomposi-
tion, one can write

∇ ·EL = 4πρ, ∇ ·BT = 0,

∇×ET = −1

c

∂BT

∂t
, ∇×BT =

1

c

∂E

∂t
+

4π

c
J , (A6)
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and the corresponding gauge transformations are given
by

V → V − 1

c

∂Ξ

∂t
,

AL → AL +∇Ξ,

AT → AT .

(A7)

We can choose the gauge function Ξ such that AL = 0.
Hence

EL = −∇V, ET = −1

c

∂AT

∂t
, B = ∇×AT . (A8)

Hence, the longitudinal electric field EL is purely deter-
mined by the scalar potential. The Maxwell Hamiltonian
is related to the transverse part of the electromagnetic
fields. We first consider the Ampére–Maxwell equation
given by

∇×BT =
1

c

∂E

∂t
+

4π

c
J ,

=
1

c

∂EL

∂t
+

1

c

∂ET

∂t
+

4π

c
JL +

4π

c
JT . (A9)

We can show that

∇ · ∂EL

∂t
= 4π

∂ρ

∂t
,

= −4π∇ · JL.

Hence,

∂EL

∂t
= −4πJL. (A10)

Using this relation, we can simplify Eq. (A9) as

∇×BT =
1

c

∂ET

∂t
+

4π

c
JT . (A11)

We are interested in the response of a bulk material.
Therefore, it is convenient to represent the induced
charges and current in terms of the polarization P and
magnetization density M ,

ρ = −∇ · PL, J =
∂P

∂t
+ c∇×M . (A12)

The equations of motion in terms of the displace fields
D = E + 4πP , and H = B − 4πM are given by

∇×ET = −1

c

∂BT

∂t
, ∇×HT =

1

c

∂DT

∂t
. (A13)

Hamiltonian form presented in Eq. (9) immedi-

ately follows if we define f =
[
ET HT

]T
, and

g =
[
DT BT

]T
.
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FIG. 8. Atomistic plasmon dispersion of silicon is plotted as
a function of wavevector q. We have compared the results
obtained through a macroscopic local, macroscopic nonlocal,
and an atomistic nonlocal electrodynamic theory. Macro-
scopic nonlocal and atomistic nonlocal electrodynamic the-
ory results in nearly identical plasmon dispersion. However,
we note that the atomistic photonic effects are fundamentally
different as emphasized in the main text.

Appendix B: Atomistic Plasmon dispersion in
Silicon

The atomistic plasmon dispersion of Si has been stud-
ied both theoretically [12] and experimentally [88] previ-
ously in literature. For completeness, in this appendix,
we present the atomistic plasmon dispersion obtained us-
ing the isotropic nearly-free electron model. In Fig. 3(b),
we have displayed ε00L (q, ω), ε01L (q, ω), and ε11L (q, ω) for Si
obtained using this model. We can substitute these func-
tions into Eq. (17) to obtain the plasmon dispersion using
the atomistic nonlocal electrodynamic theory (Fig. 8).
As earlier, we compare the dispersion obtained through
the macroscopic local and macroscopic nonlocal theory.

In case of macroscopic local theory, dielectric function
ε00L (q = 0, ω) is considered independent of q. Hence,
the plasmon dispersion curve is observed to be a straight
line with zero slope and intercept given by the zero
of ε00L (q = 0, ω). In the macroscopic nonlocal theory,
plasmon frequencies are determined by the condition
ε00L (q, ω) = 0. Both macroscopic nonlocal and atomistic
nonlocal theory results in nearly identical plasmon dis-
persion, diverging slightly only at very large q. We note
that at q = 0, plasmon frequency (∼ 9.6 eV) obtained
through isotropic nearly-free electron model slightly un-
derestimates the corresponding experimentally observe
value (∼ 16 eV) [88].
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