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Flux-tunable qubits are a useful resource for superconducting quantum processors. They can be
used to perform cPhase gates, facilitate fast reset protocols, avoid qubit-frequency collisions in large
processors, and enable certain fast readout schemes. However, flux-tunable qubits suffer from a
trade-off between their tunability range and sensitivity to flux noise. Optimizing this trade-off is
particularly important for enabling fast, high-fidelity, all-microwave cross-resonance gates in large,
high-coherence processors. This is mainly because cross-resonance gates set stringent conditions
on the frequency landscape of neighboring qubits, which are difficult to satisfy with non-tunable
transmons due to their relatively large fabrication imprecision. To solve this problem, we realize a
coherent, flux-tunable, transmon-like qubit, which exhibits a frequency tunability range as small as
43 MHz, and whose frequency, anharmonicity and tunability range are set by a few experimentally
achievable design parameters. Such a weakly tunable qubit may be used to avoid frequency collisions
in a large lattice while exhibiting minimal susceptibility to flux noise.

I. INTRODUCTION

Quantum computers promise significant speedup, over
their classical counterparts, for certain hard computa-
tional problems, such as factoring and quantum chem-
istry [1-3]. However, for quantum computers to achieve
a clear advantage over classical computers they need to
run error correction codes and have sufficient quantum
volumes [4]. One leading architecture for realizing such
universal quantum computers is a crystal-like lattice of
Josephson-junction-based qubits that supports the sur-
face code or similar variations [5, 6]. But to realize
such a generic architecture, it is critical to employ high-
coherence qubits that are simple to fabricate and char-
acterize, and high-fidelity two-qubit gates that are fast,
easy to tune up, and, preferably, require a minimal hard-
ware overhead. Two leading candidates that have been
shown to satisfy these requirements are single Josephson-
junction (JJ) transmons [7-9] and cross-resonance gates,
which are fully controlled by microwave signals [10, 11].
In particular, single-JJ tansmons, formed by capacitively
shunting a JJ (see Fig. 1(a)), exhibit coherence times on
the order of a few hundreds of microseconds [12], and
cross-resonance gates, which realize cNOT gates by gen-
erating a ZX-like interaction between two coupled qubits,
regularly yield fidelities in excess of 99.1% with gate times
of about 300 ns [13].

However, despite these favorable properties and nu-
merous successful realizations of small quantum proces-
sors consisting of tens of single-JJ transmons and cross-
resonance gates, deploying such qubits and gates in large
quantum processors can be quite challenging. This is
because cross-resonance gates, which are based on driv-
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ing the control qubit at the target qubit frequency, set
stringent lower and upper bounds on the first and sec-
ond energy-level detunings of not only the control and
target qubits but also their direct neighbors [14-18]. Sat-
isfying these lower and upper bounds, which are neces-
sary to avoid frequency collisions and slow gates, respec-
tively, is particularly difficult to accomplish with single
JJ-transmons. The difficulty arises from the fact that
their fixed frequencies f, are primarily determined by
the JJ energies, which owing to uncontrolled parameters
in the fabrication process, have random scatter with a
standard deviation oy that is comparable to the upper
bounds of the required detunings (set by the qubit an-
harmonicity). Such imprecision in the occurring trans-
mon frequencies significantly increases the likelihood of
frequency collisions between neighboring qubits and de-
creases the yield of collision-free chips. For example,
a ‘heavy hexagon’ type lattice of qubits in a three-
frequency pattern was shown to most effectively evade
frequency-collisions [14]. Yet even the smallest-sized such
lattice, containing 23 qubits, if fabricated with conven-
tional precision of o/ f, ~ 3%, will be collision-free only
0.1% of the time [14].

To address this crippling frequency-collision problem in
medium and large quantum processors, several strategies
are being pursued, including: 1) replacing the single JJ-
transmons with symmetric/asymmetric de-SQUID trans-
mons (see Fig. 1(b),(c)), whose frequency is tunable with
external flux [7, 19]; 2) combining single-JJ transmons
with large-anharmonicity qubits, such as capacitively-
shunted flux qubits [20]; and 3) selectively modifying un-
desired transmon frequencies following fabrication and
testing by etching a portion of their capacitive pads [21]
or illuminating their JJs with focused laser beams for
short durations [14, 15]. The first strategy enables precise
qubit frequency tuning and the second eases frequency
crowding, but in either case the qubits will suffer dephas-
ing when tuned away from their flux-insensitive ‘sweet
spots.” The third strategy requires complex processing
that is challenging to apply to large 3D-integrated and
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FIG. 1: Transmon circuits. (a) Fixed-frequency transmon
consisting of a single Josephson junction with energy FEj
shunted by a capacitor C. (b) Widely tunable transmon
consisting of a symmetric de-SQUID with identical junctions
Ej;1 = Ej2 = E;/2 shunted by a capacitor C. The qubit
frequency can be tuned using an external magnetic flux ¢,
threading the SQUID loop. (c) Medium-range tunable trans-
mon consisting of an asymmetric de-SQUID with dissimilar
junctions Ej2 > Ej1, where Fjo & Ej, shunted by a capaci-
tor C.

packaged processors. The best demonstrated precision of
such schemes is 0y = 14 MHz, which can yield a collision-
free 23-qubit device 70% of the time, but enables only
8% yield of a 127-qubit device and < 0.1% yield at 1000
qubit scale [14].

Here, we realize a superconducting qubit, named
weakly tunable qubit (WTQ), that retains the desirable
properties of single-JJ transmons in multi-qubit archi-
tectures and whose frequency tunes weakly with applied
magnetic flux. Such a limited tunability could solve the
frequency-collision problem in multi-qubit architectures
while maintaining high coherence. This tunability could
also improve qubit relaxation times by evading two-level
systems (TLSs) in frequency space. According to Ref.
[22], shifting a qubit by about 10 MHz can decouple it
from the TLS and restore the qubits 77. Moreover, such
a qubit could be beneficial in realizing high-fidelity para-
metric gates that rely on frequency modulation [23, 24].

Prior to introducing the WTQ circuit, we briefly
highlight the drawbacks of existing tunable transmons,
namely, the symmetric de-SQUID transmon and the
asymmetric dc-SQUID transmon, whose circuits are
shown in Fig.1 (b),(c). Since the frequency tunability
range in the symmetric case can be large exceeding a gi-
gahertz, its flux-noise sensitivity, which, to first order,
increases with [df, /d®,/, results in a significant dephas-
ing away from the sweet spot [19]. In the asymmetric
case on the other hand, a smaller tunability and sensitiv-
ity to flux noise can be achieved with large JJ-area ra-
tio. Junction ratios of 15 to 1 have been fabricated using
conventional shadow-evaporation, resulting in tunability
of 330 MHz [19]. To reduce tunability to the minimum
needed to avoid frequency collisions would require even
larger ratios. However, since the Josephson energy of
the large-size JJ in the asymmetric SQUID (i.e., Ej2) is
comparable to that of the single-JJ transmon (i.e., E),
a significantly thicker oxide is required in the fabrication
process to yield Ejo > Ej (see Fig. 1(c)). Such a thick
oxide requirement increases the probability of lossy two-

level systems in the JJs, potentially limiting the qubit
lifetime.

The outline of the remainder of the paper is as follows.
In Sec. II, we introduce the WTQ circuit. In Sec. III, we
derive the WT'Q Hamiltonian. In Sec. IV, we present an-
alytical formulas for the frequency and anharmonicity of
the WTQ and calculated response of a WTQ example. In
Sec. V. we calculate the relaxation and dephasing rates of
WTQs. In Sec. VI, we present experimental results, i.e.,
spectroscopy and coherence, taken of two 7-qubit chips
that incorporate 6 WTQs and a fixed-frequency trans-
mon each. In Sec. VII, we discuss the measurement re-
sults, offer additional theoretical predictions, and outline
possible enhancements and future directions. Finally, in
Sec. VIII, we provide a brief summary and highlight the
advantages of employing WTQs in large quantum pro-
Cessors.

II. THE WTQ CIRCUIT

The WTQ circuit consists of three Josephson junctions
Ji1, Ja, Js with self-capacitances Cj,, Cj,, Cj,, respec-
tively, and three capacitors C7, Cy and C, as shown in
Fig.(2). The junctions J; and Js form a SQUID loop
which is connected in series with the junction J;. The
junction Jj shunted by the capacitance C; provides the
main transmon mode of the qubit. The SQUID shunted
by the capacitance Cy generates a second transmon-type
mode whose frequency is tuned by the external flux bias
®,, threading the SQUID loop. Asymmetry is introduced
in the SQUID by making the areas of the junctions Jo
and J3 unequal to reduce the sensitivity to the flux noise
[19]. The tunability of the qubit mode is achieved by
the electrostatic interaction of the junction J; with the
SQUID through the capacitance C..

In general, the underlying physics of WTQs is very sim-
ilar to that of tunable coupling qubits (TCQs) [25-28],
which also consist of two capacitively coupled transmons.
TCQs and WTQs, however, differ in their circuit and
functionality. While TCQs employ nominally identical
symmetric SQUID transmons, WTQs employ a single-JJ
and asymmetric SQUID transmons. TCQs also allow to
independently tune their frequency and coupling strength
to the readout resonator, whereas WTQs mainly enable
their frequency to be tuned within a small range.

III. DERIVATION OF THE WTQ
HAMILTONIAN

We will apply the circuit quantization formalism devel-
oped in [29] to derive the Hamiltonian of the WT'Q circuit
and will employ the analysis technique described in [30]
to make a Born-Oppenheimer approximation and calcu-
late the decoherence rates. To better describe the cou-
pling of the WTQ to the flux bias circuitry we introduce
a more detailed circuit model of the flux bias mechanism
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FIG. 2: Circuit diagram of the WTQ. It consists of three
Josephson junctions with inductances Lj,, Lj,, L, and self-
capacitances Cy, , Cj,, Cj;, respectively. The critical currents

of the junctions are related to their inductances by the rela-
tion Io; = 5—2—, for ¢ = 1,2,3. The SQUID loop formed

QTrLJi

by the junctions J» and J3 is biased by the external DC flux
®,. The sensitivity of the SQUID loop to the flux noise is
reduced by making the areas of the junctions J2 and J3 un-
equal, i.e. Ic3 = pyl.2 for some p; > 1. Capacitors C1 and
C5 shunting the junctions create the two main modes of the
circuit: the qubit mode formed by J; shunted with C; and
the high-frequency mode formed by C2 shunting the SQUID
loop. The electrostatic interaction of the qubit mode with the
SQUID through the capacitance C. provides the tunability of
the WTQ.

as shown in Fig. (3). The flux bias in the SQUID loop is
generated by the DC current source Ip with impedance
Z(w). Note that this construction is quite general in the
sense that a wide range of circuits can be represented
with this simple model by Norton’s theorem. The flux is
coupled to the SQUID loop by a coil of inductance L.
We have introduced two partial inductances L; and Lo
[31] to model the linear inductance of the SQUID loop
which are coupled to the bias coil with mutual induc-
tances My and Ms. The finely detailed circuit model in
Fig. (3) that carefully models the inductive network of
the WTQ circuit and the flux bias circuitry is crucial for
avoiding ambiguities in the calculation of the decoherence
rates [32, 33]. Our Born-Oppenheimer treatment of the
inductive network of the WTQ circuit, which reduces the
capacitance matrix to unity, finds the irrotational gauge
discussed in [32] that removes the inconsistencies associ-
ated with a gauge freedom.

Before applying the formalism in [29] we transform the
capacitive network in the original WT'Q circuit in Fig. (3)
with the help of the multiport Belevitch transformer T
as shown in Fig.(4). This transformation reduces the
number of capacitors by one and help us bring the circuit
to a form treatable in the formalism of [29] by making
the capacitance matrix of the circuit diagonal:

FIG. 3: Detailed WTQ Circuit Diagram. The flux bias in
the SQUID loop is generated by the DC current source Ip
with impedance Z(w). L. is the inductance of the coil that
produces the magnetic field threading the SQUID loop. Two
partial inductances [31] L1 and L2 are introduced to model
the linear inductance of the SQUID loop which are induc-
tively coupled to the coil with mutual inductances M; and
Mo, respectively. Such a finely detailed construction of the
WTQ circuit avoids inconsistenties in the calculation of the
decoherence rates.
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where Cy = C1 + Cy, + Cc;fczr and Cg = Cy + C..
Also, since the number of degrees of freedom is given
by the number of capacitors in the minimum spanning
tree of the circuit, we reduce the number of degrees of
freedom by one. The Belevitch transformer turns-ratio

matrix T is given by

t11 ti2 1
T = = Co+C. 2
<t21 tao ) <0 21 ' (2)

which is obtained by a Cholesky Decomposition of the
2x2 impedance matrix defined looking into the purely
capacitive network consisting of the capacitances C;, Co
and C..

The fundamental loop matrix defined in [29] is given
by:




FIG. 4: Multiport Belevitch transformer with a turns-ratio
matrix T is introduced to reduce the number of capacitors by

one. The capacitance values are Ca = C1 +C, + ccj_cé and

Cp = (U3 + C.. The turns-ratios are t11 = 1, t12 = +c ,
t21 = 0 and t22 = 1. Note that C, is added Wlth Ch anof con-
tributes to the value of the capacitance C'4a. In blue are the
branches corresponding to the spanning tree. The remaining
branches are the chord branches that define the fundamental
loop matrix in Eq.(3) [29]. The multiport Belevitch trans-
former is eliminated according to Ref.[34] to arrive at the
effective fundamental loop matrix in Eq. (3).
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Note that the fundamental loop matrix of [29] is gen-
eralized to have real entries (turns ratios) other than 0,
1, and —1 [34].

The branches of the spanning tree are indicated in blue
in Fig. (4). The remaining branches are chord branches
that define the fundamental loop matrix. The effective
loop matrix in Eq. (3) is obtained by eliminating the mul-
tiport Belevitch transformer defined in Eq. (2) using the
technique introduced in Ref.[34].

We use Eq. (62) of [29] to calculate the inverse induc-
tance matrix Mg as

My = Fo L 'LL,FL, . (4)

To be able to calculate Mg we need to first introduce
some auxiliary matrices related to the inductive network
in the circuit that are defined in [29]. The inductance
matrix Ly is defined in Eq. (1) of [29] as

B L Lk
Ly 0 M

| 0 L, M (6)
M, Ms L,

The inductance matrix L; defined above is partitioned
according to the choice of the tree and chord inductors
in the network and the subscripts L and K denote chord
and tree inductors, respectively. Hence L; and Ly are
chord inductors, whereas L, is a tree inductor.

In general, there will be a non-zero mutual inductance
M5 between Ly and Lo. However, such a mutual induc-
tance will only bring corrections of order (Mi2/L1) and
(Mj2/Ls), which are small because L; and Lo are much
larger than Mj,. Therefore, we assume above Mo = 0
to avoid complicating the analytical treatment.

Equations. (32) and (33) of [29] define the matrices L
and L as

L=L-LyxL L], (7)
2
L, — My MM,
( ]WlI\IJQ L(}w? ) (8)
c L - T2
]T.JK = LK — LgKL_lLLK (9)

where we defined the inductive coupling coefficients k;

and ko as k1 = \/% and ko = \/ﬁ/fT Ly turns out to

be a scalar since we have only L. as a tree inductor in
our circuit.

Next, we borrow some more definitions from [29] that
are used in the definition of My in Eq. (4) above. Eq. (42)
of [29] reads

Frr=Frr — L' L], (11)
1
- L ). (12)

where we used the fact that Fxr, = (0 0) since the
only tree inductor L. does not belong to any of the fun-
damental loops defined by the chord inductors L; and
Ly. Eq. (41) of [29] defines another auxiliary inductance
matrix L K as

Lix = (g — LgFr L' Lx L) 'Ly (13)
= Lc(1—kf — k3) (14)
Again, similar to Lx calculated above Lg turns out

to be a scalar since we have only L. as a tree inductor in
the circuit. Next, we calculate two more matrices that



appear in the definition of My in Eq. (4) above. Eq. (51)
of [29] defines the matrix Ly, as

LLL:]TJ'FF};L:EJKFKL (15)
L, (16)

since Fxr, = (0 0) as we noted above. Eq. (47) of [29]
defines the matrix L; as

L' = (1, + L' LoD LgFr )L™t (17)
(1L 0
_( / 1/L2). (18)

Using the definitions above we can now evaluate the
expression for My given in Eq. (4) as

1/L; 0
M, = Fer, ( b L2> FL, (19)
2 1 1 t1 t1 1
R I At Gy
_ti 1 _1
— tLl Ly 1 Ly
s 0z ~Is
1 1 1 1 1 1
ne(h+d) & H Eth

The coupling vector Sy to the current source Ip is
calculated using Eq. (66) of [29] as

So=Fcp—For(L;;) Fi, LEFrp (21)

t12 ((1 - k%)%l - (1- k%)% + klkzi(M/—ZL;))
—(1 = k3) % — kiko A2

= V.L1Lo
Mo My
(1 — k%)fz +k1k2m s
(1= k)5 — (1 — k)22 + ko ky B30
(22)
M M.
he (- %)
M
= ]\/ILQI R (23)
Ly
My My
I Lo

using the auxiliary matrices introduced above and noting
that Fop = 0 since none of the capacitors in the WTQ
circuit belongs to the fundamental loop defined by the
chord branch corresponding to the DC current source Ig
and Fgp = —1. In the last line above we used the fact
that the inductive coupling constants ki, ko are small;
i.e. k1, ks < 1 to simplify the expressions. We note here
that the coupling vector my (defined in Eq. (65) of [29])
to the impedance Z(w) is given by

my =Fcz — For(Ly) Fi LiFrz (24)
- _SO7 (25)

since Foz = 0 and Fgz = 1. We will use mg in later
sections to calculate the decoherence rates of the WTQ.

Hence, we can write the Hamiltonian of the WTQ cir-
cuit in the initial frame as

3
H = %QTC(;IQ+%¢TMO<I>+<I>TSOIB—Z Ej.cos(py,),
i=1

(26)
where ® = 2 (¢, ¢4,, 00, 1). Here, the first three
coordinates are the phases across the junctions whereas
the last coordinate (4 is the phase across the capacitor
Cp. Q is the vector of charge variables canonically con-
jugate to the fluxes P.

To find the DC flux bias developed across each junc-
tion in the limit of small loop inductances L; — 0,
Ly — 0 and to determine the coupling of the WTQ to
the impedance Z(w) we need to perform a few coordinate
transformations:

1 00O
[t 101
Ro=14,011 27
0 001
1 0 0 0
0 1 0 0
R, = 0 0 1 0] (28)
Cy,4C.
_t12( I26+'b 73) _%Jbz _%J: 1
Cy,Co  Cg,Che
R, = , 29
*“lo o 10 (29)
0 0 0 1
where we defined
ChC,
c,=C! #, 30
NG 30)
Co=Co+C.+Cy,+Cy,, (31)

with C] = C1 + Cy, and C) = Cy + Cj, + Cy,. Next
we do a capacitance re-scaling as required by the Born-
Oppenheimer treatment of [30]

Nenll 0 0
0 Cii —BvCy% 0
VO =0T 0 | (g

A=l 0 Cao
0 0 0 VCy
with
B Ca3Cp3
Ch1 = Cy, C.Cy (33)
CaCp
= —_— 4
022 CJ3 Ca,3CB73’ (3 )
8= CJ20J3 (Cl +Cc) (35)

C.,Cy, CaCg'’



and

OC (02 + CJg)
Co+C.+ C,]3 ’
0573 ZCQ+CC+CJ3. (37)

Cos=0C1+ (36)

All four coordinate transformations can be combined
into one, i.e., Ry, such that

R; = RgRjRoA ™% (38)

The initial capacitance matrix Cy is transformed into the
identity matrix by the total transformation R; as

Co - RIC)R, =1. (39)

This ensures the choice of the irrotational gauge that
removes the inconsistencies in the decoherence rate cal-
culations as discussed in [32].

Initial flux coordinate vector @ is transformed into the
final capacitance re-scaled coordinate vector f by

® = R,f. (40)

Phases across the junctions can be written in terms of
the final coordinates f = (f1, fo, fs, f4)T as

—_
~—

@y, = oq1fi +ouafo + oz fs + s fa, (4
@, = 01 f1 + o fo + o3 f3 + o4 fa, (4
0, = a1 f1 + asafo + assfz + asa fa, (4
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~

w
=

with

S N AN
11_m7 21 — Cb \/d7

CC \/ CJQ

a1 = — y Q13 = — )

VCaCrCo 3Cs 3 VCaCpCh 3033
(46)

1 Ca3C3,3

Qog = : —, g3 =0, 47

o[ o (n
o 77(C{+CC)\/C.;2 i — 1 CsCp

2 JCuChCasChs 0 O\ CanCss
(48)

Hence, we can write the system Hamiltonian in the
capacitance re-scaled final coordinates f as

1
H = afas +U(H), (49)

where qy is the vector of momenta canonically conjugate
to the final coordinates f and the potential U(f) is given
by

3
1
U(f) = 5fTRtT1\/10Rtf +E R SoIs — > Ejcos(py,).
=1

(50)

Born-Oppenheimer Approximation

We perform the Born-Oppenheimer approximation fol-
lowing [30]. The coordinates fo and f3 are fast coordi-
nates denoted by the vector f; = (f2, f3) and will be
eliminated. Since the potential seen is very steep along
the direction of the fast coordinates it can be approxi-
mated with a harmonic potential as given by the Eq. (14)
in [30]

Uf)=V(f)) + Zai(fj_)i + sz‘j(ﬂ)i(ﬁ)jv (51)

where f| = (f1, f4) is the vector holding the slow coor-
dinates and the matrix b = [b;;] is the 2x2 sector (cor-
responding to the coordinates fo and f3) of the trans-
formed Mg matrix in the final frame; i.e. of the matrix
R;TM(]RtZ

1 1
a3,C3, L

Casln
b= 1 1 (014000 . (52)
Cazly oz%sC?,SLg CaCpCq 3Cg 3L

1 [CrCuCy  (Ci+C.)
where we defined Cy3" = 4/ CJ?CA o C(wlcw 7 The vec-
tor a = (a1, az) in Eq. (51) holds the entries (correspond-
ing to the fast coordinates fo and f3) of the transformed

So vector in the final frame; i.e., of the vector RT'Sq (with
the scale factor Ig/yp):

My

" a22Cy, L1 Ip
a= (C}+C.)/CTry M1 Mo %) (53)
\/CACBCa,scB,sLl as3Cg L2 0

where g = ®o/27 is the reduced flux quantum.

One can verify that fo and fs are indeed fast degrees
of freedom by checking the diagonal entries in Eq. (52)
which give squared frequencies in units of (rad/sec)?.
Using Eqgs. (47)-(48) these frequencies can be seen to be
very nearly equal to 1/(Cy,L;) and 1/(Cj, L) which are



much larger than the frequencies of the qubit and SQUID
modes that are mainly determined by the junction induc-
tances Ly, Ly, and Lj, and the geometric capacitances
C1, Cy, C, that are much larger compared to Ly and Lo
and Cjy, and Cj,, respectively.

The potential is centered around

(e, =
Cl+C.)C.
o, (4 5, ()
—a33C 5, Mo o
(54)

for the fast coordinates (here, we dropped terms
quadratic in the small inductive coupling coefficients k1,
k2). This is the DC component of the fast coordinates
that does not depend on the slow coordinates. We used

the Eq. (16) of [30] to calculate (fi"m)oz

min 1 —1
(fT )oz_ib a. (55)

Hence, the reduced DC flux bias in the phases of the
junctions is

z,1 Q12 Q13
Pro | T | Q22 Q23
(0) Q32 (33

©0) _

o (£, (56)

Ce(Cyy Ma—C gy M)
Ca(cé c.)c I
— | CasCa: 1+C.)C. B
- Bt M+ g, = My <@0> , (57)
(ci+c.)

Ciy Ca 2032
— .Gy M, — c.Ch Mo

where we defined

CC(OQ + CJQ)
Cy+0C,.+ C]z ’
0/372 =Cy+C.+ CJ2. (59)

Coo=0C1+

We note that ¢, = 90;(?% - ‘Pg?:)s =

(My + Ms) (;—BO), as expected.

We perform the Born-Oppenheimer approximation by
expanding the cosine potentials around the DC flux bi-
ases in Eq. (54) for the fast coordinates to obtain the
following effective Hamiltonian:

here

1
H= §qTC_1q—EJ1 cos (cpl + wfco%) —FEscos <<p2 + 4,0;2)) ;
(60)

where

Ci+C. —C.
CZ( e cg+cc>’ (61)

E; = (Ej, + Ey,)cos (%) \/1 + d2tan? (%), (62)

(o) + o) .

P =27 "/ _tan! (dtan (—x>) ) (63)

2 2

withd = (Ej, — Ej,) [ (Ej, + Eygy), 91 = f1/VCa, p2 =
f2/VCy, Ey, = @oly1, Ej, = @oly2, and Ej, = polys.

Eq. (60) is the Hamiltonian corresponding to two trans-
mon qubits with Josephson energies E; and Es and
shunting capacitances C] and C% coupled electrostati-
cally with capacitance C.. In other words, the WTQ
mode associated with the shunt capacitance C] and
Josephson energy FEj, determines the bare qubit mode,
whereas the mode associated with the shunt capacitance
C} and effective Josephson energy F> determines the
bare SQUID mode. In the next section, we calculate
the dressed frequencies with a perturbative treatment of
the Hamiltonian in Eq. (60).

IV. WTQ FREQUENCY AND
ANHARMONICITY

At this point we can calculate the qubit frequency w,
using formulas derived in [35]

7/-2w2
TP § ) S— 64
“ “’1\/ Fou-ma

where w; is the bare frequency of the qubit mode given
by [35]

- Ec, /h
=R T T R () (65)
with
62
Fo =% 6
@201+ ) (66)
and
wy, = ! (67)

V LJ1 (Ci + OC) '

The coupling coefficient r in Eq.(64) between the
modes of the WTQ is defined by

C.
~ J/CiC,+ C.(CT + Cp)

r

(68)

The charging energy FE¢, for the high-frequency
SQUID mode is
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Bare frequency ws of the SQUID mode is given by

Fo, /h
Wy =wy, — ——— 70
2= T TR () (70)
with
LUJ2 = 1 (71)

ChL+C. ’
\ Ly A

where we defined the effective SQUID inductance L g

Ly, = ((Liz + Ll) ‘cos (%)‘ \/1 + d?tan? (902”“))_1 :

(72)
Anharmonicity a of the qubit mode can be estimated
by [35]

%% 2 T2(A}2 3
— 1
a=ra (5) (o) - @

In Fig. 5(a),(b) we plot the transition frequency fo1 =
fq = wq/2m and the anharmonicity a of a WTQ as a
function of the normalized applied flux. The device pa-
rameters in this example are chosen to yield a WTQ with

12 and « of about 5 GHz and 300 MHz, respectively,
and frequency tunability § = 50 MHz. In the calcu-
lation, we use the analytical formulas of Egs. (64) and
(73), which we plot as red dashed curves and compare
them to the results obtained using the exact diagonaliza-
tion of the qubit Hamiltonian specified in Eq. (60) in the
charge basis (Bloch-wave basis), which we plot as blue
solid curves. As seen in Fig. 5(b), the WT'Q anharmonic-
ity varies with the applied flux. But the variation is rel-
atively small of about 17 MHz in this example, between
the minimum and maximum sweet spots (based on the
exact calculation). Similarly, we plot in Fig. 5(c), using
blue solid and red dashed curves, the exact and analyti-
cal solutions for the high-frequency mode of the qubit fig
versus the normalized applied flux. The slight bending
in the exact diagonalization curve (the solid blue), seen
around 14 GHz, is due to the crossing of f1g, the first
excited level of the SQUID oscillator, and the third level
of the qubit.

V. CALCULATION OF THE DECOHERENCE
RATES

We will now employ Fermi Golden-Rule type formu-
las in Egs. (10-11) of [30] to calculate the relaxation and
dephasing rates of the WTQ:

1 4 T 2 fiwor
— == f1 h 4
FHOImTE )7 o coth (8 ) ()
1 1 _ _ 2 J(w)
— = — [(0|mTf|0) — (1| mTf[1)|" == 2kpT,
h‘ ‘ hw w—0
(75)

where m is the vector giving the coupling to the
impedance in the final frame, that is

m = R my
0
CjyCa,3Cs 301
= (C{"FCC)\/ CJ3M1 _ Cy,3C3 3 Moy
\/CaCpCa,3Cs 3L CaCpCyy L2

(76)

Hence, we see that only the fast coordinates (f2 and
f3) are coupled to the decoherence source which is the
impedance Z(w).

The spectral density J(w) of the bath due to the
impedance Z(w) is calculated using Eq. (93) of [29] (up
to the scale factors)

B wRe [Z(w)]
w2L? + |Z)? + 2wLeIm [Z(w)]
(77)
where K(w) is the kernel function of the bath given in
Eq. (73) of [29] as

J(w) =Im [K(w)]

K(w) = L' (). (78)

L is defined in Eq. (58) of [29] as

Lz=Lzz Lz L; L1z, (79)

where Lzz is given in Eq. (52) of [29] as

LZZ = LZ + FT[;Z]:KFKZ (80)
=Ly -l—I:K (81)

Z
N

where in the second line above we used the fact that
Fiz = 1 and in the third line we used Eq. (14). Ly is
given by Eq. (53) of [29] as

Ly, =FL, LgFrz =0, (83)

since Fx = 0. Hence, Lz in Eq. (79) above is given by
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FIG. 5: A WTQ example. (a) Qubit frequency and (b) anharmonicity of the WTQ as a function of the normalized flux
threading the SQUID loop. In this example, the WT(Q has a maximum frequency and anharmonicity of about 5 GHz and
300 MHz, respectively and exhibit a frequency tunability 6 = 50 MHz. Blue curves are obtained by the diagonalization of
the Hamiltonian in Eq. (60) in the charge basis. Red dashed curves are calculated using the analytical formulas in Egs. (64)
and (73). (c) The high-frequency mode of the WTQ fio versus normalized flux. The WTQ circuit parameters employed in
this example are I.1 = I.o = 26 nA, I.3 = psle2, psj = 3.5, C1 = 50 {fF, C5 = 20 fF, C. = 20 fF, where Cj, = Cj;, = 1 {F
and Cjy, = psjCy,. In plots (d), (e), (), we evaluate the dependence of the WTQ coherence times, i.e., T, Ty, and T> on the
applied flux. In this calculation, we assume 7" = 0.02 K and Z(w) = R = 0.1 Ohm and that the maximum values for 77 and
T> = 1.5T7, i.e., 100 us and 150 us respectively, are set by loss or noise sources that are independent of flux or the flux biasing
circuit. The T» curves in (f) are calculated using the relation 1/T> = 1/2T) 4+ 1/Ty, which also sets the maximum for T} in
(e). The analytical calculation of T} and Tj uses the matrix element results of Egs. (96-103). The exact calculation employs
Egs. (74), (75) with a diagonalization of the Hamiltonian in Eq. (60).

Furthermore, calculating Im[K(w)] using Eq.(87)
yields the result of Eq. (77) since k1, ko < 1.

Lz =Lzz (84) The dependence of the argument m”f of the matrix
_ Z(w) L=k — k) (85) elements on the slow coordinates ¢; and ¢ can be cal-

Ciw ¢ v culated using Egs. (16-20) of [30]. Eq. (16) of [30] reads

Now Eq. (78) for K(w) reads
min 1 —
o1 (£7"") () = —5b~"a(f)), (88)
K(w) =Lz (w) (86)
w

= . — (87)  where (£7™) (f)) gives the dependence of the fast coor-
Z(w) +iwLle(1 — k¥ — k3) dinates on the slow coordinates with
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FIG. 6: Dependence of WT'Q dephasing time T on the normalized flux threading the SQUID loop for varying parameter R
(a) and T (b) of the flux biasing circuit, where Z(w) = R is assumed. In (a) and (b) the values of T" and R are set to 0.02 K
and 0.1 Ohm, respectively. The WTQ circuit parameters employed in this calculation are the same as Fig.5. The curves in
both plots are obtained by the diagonalization of the Hamiltonian in Eq. (60) in the charge basis along with Egs. (74), (75).

sin (¢.,) /Ly
at) = (02 02 09 ) (ston) /Lo | 69
13 23 33 sin (QDJS) /ng
Hence,
m’f =m’ (f7'") (f)) (90)

= AMsin (o) + AP)sin (p.) + AP)sin (¢.1,),
(91)

where m is the sub-vector of m corresponding to the
fast coordinates and

Ce(CryMi—Cyy My)

1
AW C.CiLs,
A. — A(2) _ Ca,308,3M1+(C1+C:)Cyy M2
s s - CoCyLy,
Ag?’) (CiJrCc)CJQM1+Ca,2C/3,2M2
CuCyLy,

(92)

Note that we dropped the DC flux bias terms in the
expression in Eq. (90) above. The last two terms in the
above expression can again be combined in a single sine
function as:

m’f = Agl)sin (501 + @;OD

+ Acos (%) \/1 + d2tan? (%)sin (apg + w&s)) )

(93)

AP,
ol

where A = Aff) +
(A8 AD) /(a2 4 A

(@53% + (p;o%) /2+ tan—1 (dstan (¢, /2)).

and

Matrix elements can be evaluated by assuming har-
monic wavefunctions for the main qubit mode and the
SQUID mode. Since the coupling between the two modes

is dispersive, we can write the excited level |1) of the
qubit as:

0 (1-5 ) o) - elon, (94)

where € = %. Here the excitation on the left under the

ket corresponds to the qubit mode, whereas the right ex-
citation corresponds to the SQUID mode and A = wo—wy
is the detuning between the qubit and SQUID modes.
The coupling rate Ji2 between the qubit and SQUID
mode is given by

1 Ce

J =
T 0712y CLCY, + C(C + C)’

(95)

where Z7 is the characteristic impedance of the qubit
mode and Z5 is the characteristic impedance of the
SQUID mode, which are given by

1
w1 (Ch +C.)’
Ly,
(Ch+Co) (1-

7y =

Zoy =

2Ec, \
hUJQ

Using symmetry arguments one can show that

(0[sin (<p1 + soS)) 0) =0, (96)
(I]sin (wl + wi”) 1) =0. (97)



Using Eq. (94), we get

2

2
(1]sin (<p2 n gog?)) ) = (1 — ;) (10/ sin (goQ + go§f>) 110)

+ €2 (01| sin ((pg + wgs)) |01).
(98)

Hence,

(O] mT£|0) — (1] mTE|1) ~ ¢ (10| sin (@2 + gogf)) 110)

— €2 (01] sin (cpg + go?) [01)
2
= e?nlexp (—22) sin (pa) ,
(99)

where

YA = tan™! (dtan (%)) + tan~! (dstan (%)) ,

(100)
Z
r]% =47 (2 ) ,
h

and Rg = -5 ~ 25813Q is the resistance quantum.

2
The matrix elements in the T 1 expression in Eq. (74)
can be calculated as:

(101)

@Sin (<p1 + wé”) |/T> = (00| sin (cpl + @551)) [10)

(102)
with nf = 47 (%) and

(0]sin (cpz + sOSf)) 1) = €2 (00| sin (cpz + wﬁf)) |01)
2

= ?naexp (—1722> cos (pa) .
(103)

Using the WTQ example of Fig.5(a)-(c), we compare
in Figs.5(d),(e) the calculation for the relaxation and
pure dephasing times as a function of normalized applied
flux based on Egs. (74), (75) and the diagonalization of
the Hamiltonian (Eq.(60)) versus the approximate re-
sults obtained using the analytical expressions for the
matrix elements derived above, where in both cases we
assume a constant, real impedance Z(w) = R. To com-
plete the picture, we plot in Fig.5(f) the expected de-
coherence time 75 for the same WTQ example given by
the relation 7, ' = (271)™* + T, '. In our theoretical
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evaluation of the coherence times of the qubit, i.e., 17,
Ty, and Ty, we make the following assumptions, (1) the
maximum relaxation time 100 us of the qubit is limited
by a loss mechanism that is unrelated to the flux bi-
asing source, such as dielectric loss. (2) the maximum
decoherence time of the qubit T3 is equal to 1.577 and
limited by a non-flux noise source, such as thermal pho-
ton population in the readout resonator which remains
the dominant dephasing mechanism in our quantum pro-
cessors, (3) the parameters R and T associated with the
flux biasing circuit are 0.01 Ohm and 0.1 K, respectively.

Furthermore, to illustrate the dependence of the de-
phasing time on the parameter R of the flux-biasing cir-
cuit for fixed T' = 0.02 K, we use the WTQ example
of Fig.5 and plot in Fig.6(a) the exact solution of Ty
versus normalized applied flux corresponding to varying
parameter R. The blue, cyan, magenta, and red curves
in Fig. 6(a) correspond to R =1,0.1,0.05,0.01 Ohm, re-
spectively. As expected, we find that the dips in Ty away
from the sweet spots increase with decreasing R. This
is because the smaller the resistance in parallel with the
current source is (see Fig.3), the larger the current por-
tion flowing through it.

Likewise, in Fig.6(b), we illustrate the dependence of
T4 on the parameter 7', while keeping R = 0.1 Ohm
constant. The blue, cyan, magenta, and red curves in
Fig.6(b) correspond to T' = 0.02,0.2,0.4,1 K, respec-
tively. As expected in this case as well, the dips in Tj
away from the sweet spots increase with T' of the flux-
biasing circuit resistor that is in parallel with the current
source (see Fig. 3).

VI. EXPERIMENTAL RESULTS

We realize and measure two seven-qubit chips (referred
to as A and B), which are similar in design to those with
single JJ-transmons we measured in the past [17]. Each
chip includes six WTQs and one single-JJ transmon as
shown in the device photo in Fig.7(a). Each qubit is
capacitively coupled to a readout resonator, which, in
turn, is capacitively coupled to a readout port. All res-
onator buses coupling the qubits are disabled by shorting
their ends to ground. We implement the WTQs in two
configurations, labeled P-shape and U-shape, which dif-
fer in the shape of the gap-capacitance electrodes shunt-
ing the JJs. In the P-shape configuration exhibited in
Fig. 7(b), the three capacitance electrodes are parallel to
each other, whereas in the U-shape configuration dis-
played in Fig.7(c), one of the outer electrodes wraps
around three sides of the middle electrode of the qubit.
The motivation for designing WTQs using these two pos-
sible configurations is to experimentally examine if ei-
ther holds any coherence advantage over the other. In
Fig. 7(d), we exhibit a simplified circuit of the WT'Q. The
shunting capacitances C7, C4 include the capacitances
of the JJs. Figure7(d) also outlines the useful parame-
ter space of WTQ capacitances and Josephson energies
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FIG. 7: (a) A photo of one of the two 7-qubit chips measured in this work. The chip consists of 6 WTQs and one single-JJ
transmon (Q4). The WTQs are realized using two gap-capacitance geometries shown in (b) and (c). (b) P-shape WTQ (Q2,
Q3, Q7), in which the capacitance pads are parallel. (c) U-shape WTQ (Q1, Q5, Q6), in which one capacitance pad is curved.
The fabrication of the WTQ chips follows the same planar device fabrication process described in Ref. [16]. (d) Equivalent
WTQ circuit. C] and Cj represent the total capacitance shunting the JJs (including the self capacitance of the JJs). The
small junction of the SQUID is comparable to the junction of the single-JJ transmon Ej2 = Ej = E;, whereas the other JJ
of the SQUID is slightly larger, giving p; = 2 — 5. Rounded corners used in the electrodes are an effort to minimize E field
concentration and are not specific to the WTQ design.
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FIG. 8: Representative qubit spectroscopy measurements of chip A plotted versus normalized external flux. The data shows
fo1, and fo2/2 curves. (a) WT'Q2 (P-shape). (b) WTQ3 (P-shape). (c) WTQ5 (U-shape). (d) WTQ6 (U-shape). WTQ2 and
WTQ5, having p; = 3.5, exhibit a small tunability of 50 MHz and 43 MHz, respectively. WTQ3 and WTQG6, having p; = 2.8,
exhibit a slightly larger tunability of 89 MHz and 86 MHz. Dashed black curves are solutions to the Hamiltonian in Eq. (60).

(i.e., in comparison to the transmon qubits presented in stages inside the fridge. The output line incorporates two
Fig. 1). wideband isolators 4 — 12 GHz and a K&L filter with a

The WTQ chips are mounted in a light-tight magnetic ~ cutoff at 12 GHz at the base temperature and a Caltech
shield can that has a top cover made of eccosorb. The  HEMT at the 4K stage. Since the readout resonators
input line incorporates cryogenic attenuators at different are measured in reflection, we use a three-port 4 —8 GHz
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FIG. 9: Coherence measurements for chip A taken for Q4 (a), WTQ2 (b), WTQ3 (c), and WTQ5 (d). Top to bottom rows
show the qubit frequency fq (blue circles), T1 (black stars), Tow, Tor (red circles and magenta squares, respectively), and T,
(blue circles) as a function of the applied coil bias current Ig. The solid black curves in the first row plots represent theory
fits for the qubit frequency based on the diagonalization of the Hamiltonian. The solid blue curves drawn in the second row
plots, represent fits based on Eq. (74). The solid red curves shown in the third row plots correspond to the calculated Ty
based on the T} and T, fits (see main text). The dashed red, solid blue, and solid black curves shown in the fourth row plots
represent the calculated Ty p, Ty r, and T, fits, respectively (see main text and table V for details). The observed maximum
in T, of WTQs seen in fourth row plots around —0.25 mA can be attributed to the increase of T, r near the net zero flux bias
around —0.5 mA (that cancels the nonzero stray magnetic field in the setup), and the decrease of Ty p due to the increase in

the applied current magnitude responsible for heating.

cryogenic circulator at the bottom of the fridge to connect
to the input line, the output line, and to a microwave
switch that allows us to measure the different readout
and qubit devices on the quantum chip.

The magnetic flux is generated using a dc-current
Ip applied to a small global superconducting coil with
L. = 5.5 mH attached to the device copper package. The
mutual inductance M between the coil and the SQUID
loops across the chip vary in the range 0.8 — 1.1 pH.

The leads of the small superconducting coil are sol-
dered to a pair of normal metal pins located on the coil
body. Those pins are connected to another set of normal
metal pins embedded in the eccosorb cover via supercon-
ducting twisted pairs. Another set of superconducting
twisted pairs connect the pins in the eccosorb to a first
D-connector at the mixing chamber. The dc-wires that
connect this first D-connector to a second D-connector
at the 4K stage are superconducting and resistive in the
experiment of chip A and B, respectively. The remainder

of the wires to the top of the fridge are resistive.

In what follows, we present the main results measured
for chip A and B, whose circuit parameters are listed in
Tables I, II for chip A and Tables III, IV for chip B. The
WTQs in chip A yield a smaller § range 43 —99 MHz (see
Table I) versus 115 — 288 MHz (see Table III) for chip
B, since they are designed with a slightly higher JJ area
ratio of the SQUIDs, i.e., ps = Ay, /Aj,, where A, and
A, represent the design area of the respective junctions.
In chip A, we set ps = 4.2 for WTQ1, WTQ3, WTQG6,
WTQ7, versus ps = 2.9 for the corresponding qubits in
chip B, and pgs = 5.1 for WTQ2 and WTQ5 in chip A
versus pg = 3.0 in chip B. The two chips also differ in the
JJ oxidation conditions applied in fabrication, yielding
higher maximum WTQ frequencies for chip B, i.e., 5.5 —
5.97 GHz, than chip A, i.e., 4.44 — 4.89 GHz. Lastly,
chips A and B are measured in two different cooldowns.

In Fig.8(a)-(d), we show spectroscopy measurements
of WTQ2 (P-shape), WTQ3 (P-shape), WTQ5 (U-
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FIG. 10: Coherence measurements for chip B taken for WTQ2 (a), WTQ3 (b), and WTQ5 (c).

Ig (MA)

Top to bottom rows show

the qubit frequency fq (blue circles), 71 (black stars), Tog, Tor (red circles and magenta squares, respectively), and T, (blue
circles) as a function of the applied coil bias current Ig. The solid black curves in the first row plots represent theory fits for
the qubit frequency based on the diagonalization of the Hamiltonian. The solid blue curves drawn in the second row plots,
represent fits based on Eq. (74). The solid red curves shown in the third row plots correspond to the calculated Tor based on
the T1 and T, fits (see main text). The dashed red, solid blue, and solid black curves shown in the fourth row plots represent
the calculated T4 p, Ty r, and T, fits, respectively (see main text and table VI for details).

shape), and WTQ6 (U-shape) of chip A, respectively,
plotted versus the normalized external flux threading the
SQUID loop. The dashed black curves plotted over the
data represent theoretical fits for the qubit frequency fo1
and fp2/2. In Table II, we list the capacitance and crit-
ical current parameters of the various qubits used in the
spectroscopy fits (including those of WTQ1 and WTQ7
whose data are not shown). The fits also allow us to
extract the JJ asymmetry parameter of the de-SQUIDs
py for the various qubits, which we list in Tables I, II
for chip A. As expected from the device physics, higher
values of p; correlate well with smaller observed ¢ of the
WTQs.

As seen in the figure, the maximum and minimum
qubit frequencies are obtained at ®, = 0 and ¢, =

+®y/2, respectively. The smallest § of 50 MHz and 43
MHz are measured for WTQ2 and WTQ5, respectively,
which are designed to have a slightly larger JJ asymme-
try than WTQ3 and WTQ6, whose ¢ is 89 MHz and 86
MHz, respectively. Notably, the p; extracted from the
fits (see Table II), i.e., 3.5 and 2.8, match fairly well the
dc resistance ratios measured for test JJs (fabricated on

the same wafer) that have the same area ratios as the JJs
of the SQUIDs.

Furthermore, using the spectroscopy data, we calcu-
late the maximum and minimum magnitude of the WTQ
anharmonicity given by |a| = |fi2 — fo1| at the upper
and bottom sweet spots corresponding to ®, = 0 and
b, = £Py/2, respectively (see Table I). For example,
the anharmonicity of qubits with § of 43 —99 MHz varies
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noise amplitude A;/Q ~2udg at 1 Hz.

by 17 — 31 MHz.

Similarly, Table III summarizes the main figures of
merit measured for qubits in chip B, while Table IV lists
the capacitance and critical current parameters of the
various qubits in chip B extracted from their correspond-
ing spectroscopy fits (not shown).

In Figs.9, 10, we plot the measured coherence times
for qubits in chip A and chip B respectively. In Fig. 9, the
columns, from left to right, represent the results of the
single-JJ transmon Q4 (a), WTQ2 (b), WTQ3 (c), and
WTQ5 (d). The rows, from top to bottom, display the
qubit frequency f, relaxation time 77, decoherence times
Tor (Echo) and Tor (Ramsey), and extracted dephasing
time given by T, ' = Ty —(2T1) 71, plotted as a function
of Ig, i.e., the direct current applied to the global coil flux
biasing the qubits.

The solid black curves in the first row plots rep-
resent theory fits based on the diagonalization of the
WTQ Hamiltonian. The solid blue curves in the sec-
ond row plots represent theory fits for 77 calculated using
Eq. (74). The upper bound of these fits is set to match the
experimental data (typically 77 that corresponds to the
maximum 7Tog, listed in Table T (for chip A and Fig.9)
and Table III (for chip B and Fig.10)). The average
T: of the WTQs is similar to that of the fixed-frequency
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transmon Q4. This is consistent with the assumption
that surface dielectric loss dominates relaxation in both
the WTQ and the single-JJ transmon. Variations with
flux as seen for instance in chip A, WTQ5 (Fig.9)) also
suggest frequency-dependent couplings to TLSes. How-
ever we did not explore this behavior systematically as
was done in Ref. [22].

One important observation regarding the measured
Tog (red circles) and Thr (magenta squares) plotted in
the third row and T}, (blue circles) drawn in the fourth
row of Fig. 9, is that they exhibit a pronounced decrease
with |Ip|, which strongly indicates that the decoherence
times in our system are primarily limited by heating ef-
fects caused by large |Ig|. This observation is further
supported by the fact that we observe a rise in the tem-
perature of the mixing chamber stage by several mil-
liKelvin during the lengthy data taking process of f,,
Ty, Tor, Tog as Ip is swept (about 15 minutes for each
Ip). Another supporting evidence of the heating effect
we observe in our system, is the monotonic decrease in
Tor, Tog, and T, of the single JJ-transmon (Q4) (see the
first column plots), which to a large extent is insensitive
to flux noise.

To model the dependence of the dephasing time on
heating caused by |Ip|, we consider one of the domi-
nant dephasing mechanisms in qubits that are disper-
sively coupled to readout resonators, which arise from
fluctuation in the qubit frequency due to thermal photon
population in the readout resonator [36]. In the limit
n < 1, the dephasing rate associated with this mecha-
nism (denoted I'y p = Tg;é) is given by [37]

I'yp =Tcn, (104)
where T, = kx?/(k? + x?), k is the total photon decay
rate of the fundamental mode of the readout resonator
with angular frequency w, = 27 f, (here k is dominated
by the coupling rate to the external feedline), x is the
qubit-state-dependent frequency shift of the readout res-
onator, and 7 is the average thermal photon number
in the resonator, where n = 1/ (e(h“T/kBTe) — 1) is the
Bose-Einstein population of the 50 Ohm external feedline
(heat bath) at effective temperature T, which we express
as T. = T, + 6T, where T, is the effective temperature
with no bias current (Iz = 0) and §T = OI% represents
the rise in the effective temperature of the device due to
ohmic dissipation.

Note that 0T can be expressed as 6T = CyQq, where
Cl is the heat capacity of the device and Q4 = RI%75/2
is the dissipated heat energy in the flux biasing circuit,
the experimentally relevant temperature-to-current con-
version coefficient © can be expressed as © = RCy7p/2,
where 75 is an effective measurement duration. In our
qubit experiments, we find that © varies in the range
5 —10 mK/(mA)? for chip A (see Table V) and 3 — 7
mK/(mA)? for chip B (see Table VI).

The dashed red curves in the fourth row plots of Fig.9
represent the calculated T, p for Q4 (a), WTQ2 (b),



WTQ3 (c), and WTQ5 (d). Similarly, the solid blue
curves represent the calculated dephasing time T}, r that
is set by the flux noise of the biasing circuit given by
T, b= qul +Td;1130’ where T is evaluated using Eq. (75)
with T = T,, + 6T, where T}, is the effective tempera-
ture of the superconducting magnetic coil with no bias
current, and Ty p, is an experimental bound on dephas-
ing time due to the dispersive coupling mechanism. It
is worth noting that heating has a lesser effect on Ty, p
(solid blue curves) than T;, p (dashed red curves). In the
former case, heating causes the periodic response of Tg
to decrease with |Ig|. Likewise, the solid black curves,
drawn in the fourth row plots, represent the total dephas-
ing time calculated using the relation 7, L—p-t +T, ]13,
which accounts for the contribution of both dephasing
mechanisms discussed above and exhibits a fair agree-
ment with the data.

Finally, we plot a bound on T5g, drawn as solid red
curves in the third row plots of Fig. 9, using the calculated
T, and the relation Ty = (217)~' + T .

In a similar manner, in Fig. 10 we plot using the same
symbols and conventions of Fig.9 tunability curves and
coherence time measurements taken for qubits WTQ2
(a), WTQ3 (b), and WTQ5 (c) of chip B as a function
of I'p and the corresponding theoretical fits.

VII. DISCUSSION

As seen in Figs.9, 10, the WTQs exhibit coherence
times, i.e., T7 and T, that are comparable to those of
single-JJ transmons fabricated on the same chip. These
times are consistent with the loss and dephasing mech-
anisms typically seen in single-junction transmons, i.e.,
surface dielectric loss [38] and dispersive coupling in the
case of T, near the sweet spots (see the solid blue curves
in the fourth row of Figs. 9, 10).

We attribute the larger than expected drop in the
measured T, of the WT'Qs and transmons, observed for
large |Ig]| (see blue circles), to the unintended heating
side-effect produced by our flux biasing circuit as |Ipg]| is
varied. This undesired heating effect is extrinsic to the
qubits and can in principle be mitigated by careful engi-
neering. For instance, windings in a superconducting coil
can be made to extend into extra-long leads so that all
resistive joints are made at higher temperature stages of
the cryostat, with careful thermal anchoring. Or, on-chip
superconducting flux lines can be designed to individu-
ally bias each qubit via a high mutual inductance so that
only a very small current is needed. Such biasing would
require careful design of feedline wiring to minimize non-
superconducting links to the chip, and incorporate proper
filtering to avoid dephasing from instrumentation noise.

It is important to emphasize that the resistance of
the flux biasing circuit affects the two dephasing mecha-
nisms associated with our devices differently as reflected
in the theoretical results of Fig. 6(a) and the experimen-
tal data in Figs.9, 10. As seen in Fig.6(a) a higher re-
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sistance dampens the swings of the dephasing times at
and away from the flux sweet spots, whereas higher re-
sistance would increase the heating effect as seen in the
experiment for large |Ig|. However, by applying some
of the techniques outlined above, it should be possible
to resolve this trade-off by reducing the heating effect in
future systems.

While we do not observe flux-noise-limited dephasing
in our experiment, we can estimate its effects. So-called
‘universal’ flux noise with an approximately 1/f power
spectrum has been widely observed in superconducting

systems. Its amplitude Aclp/ >at 1 Hz generally exceeds 1
u®o and can be sensitive to SQUID loop geometry [39-
41]. Following [19], we can write an approximate Ramsey
dephasing rate I'y g = |df,/d®,| - 27/ As| In(27 firt)],
where fir is a cutoff frequency of 1 Hz, and ¢ being on
the order of 1/T'y r we take to be 10 us. We can find the
flux sensitivity |df,/d®,| as a function of flux by differen-
tiating Eq. (64) with respect to flux. For example, for the
qubits on chip A, we can use circuit parameters in Ta-
ble IT and differentiate numerically in terms of fractional
flux quantum, with units of GHz/®q, as shown in figure

11 (a). If we conservatively assume A(II,/ > ~ 2u®y, and
taking the echoed dephasing rate I'y, g according to [42]
to be I'y. g ~ %FQR, and neglecting the contribution of
qubit relaxation, we can estimate a lower bound for flux-
noise-limited dephasing time T, ~ 1/T'y g. These de-
phasing times, shown in figure 11 (b) compare favorably
to Ty = 200 ps which is projected to be the minimum
necessary to achieve fidelity > 99.9% in cross-resonance
gates [20]. The minimum dephasing times are compara-
ble to the best average transmon dephasing times demon-
strated in multi-qubit devices [43]. Using the example pa-
rameters of Fig.5 we find a minimum flux-noise-limited
dephasing time comparable to the dephasing times pre-
sented in Figs. 5 and 6.

It is worth noting that we do not observe an obvious
advantage for either the P or U WTQ designs with re-
spect to the measured relaxation time T3 of the various
qubits in both chips (or at least not in the range 50 — 100
us measured in the experiment).

It is also worth noting that, like single-JJ transmons,
it is possible to adjust the maximum frequency of WTQs
using focused laser beams following fabrication and JJ re-
sistance measurement at room temperature [14]. WTQs
are suitable for this technique because (1) the maximum
frequency of WTQs is strongly dependent on the critical
current of the non-SQUID JJ, and (2) the non-SQUID JJ
of WTQs is physically well separated from the SQUID in
both designs, thus it may be annealed without consid-
erably affecting the SQUID JJs. Such capability further
enhances the ability of WTQs to avoid frequency colli-
sions in large quantum systems as laser annealing can be
selectively applied to WTQs across the chip (whose re-
sistances are far off from their designed values), followed
by, as necessary, an in situ fine-tuning using applied flux
when the device is cold. Hence, selective laser-anneal
may be combined with in-situ flux tuning of WTQs to



evade frequency collisions in large lattices of qubits, while
maintaining high coherence. To quantify the effect on
frequency-crowding, we can adopt the simplified model
[14] that a ‘collision free’ device of N qubits requires ev-
ery qubit to lie within a ‘window’ +Af of its frequency
set-point. For normally distributed scatter at frequency
precision o, the likelihood of this occurring is found as
the cumulative distribution function of Af/oy, raised
to the power N. For the conditions described in [14],
a heavy-hexagon-type lattice of N = 1000 qubits has
Af = 26 MHz. WTQ tunability § however in prac-
tice enlarges this ‘window’ by ¢/2. Taking the precision
of = 18 MHz shown for multi-qubit lattices in [15], we
estimate that a 1000-qubit lattice made of WTQs of tun-
ability § = 50 MHz can be made collision-free 10% of the
time, while using WTQs of tunability § = 99 MHz gives
a collision-free yield of 99%.

Our study of the WTQ suggests several areas for
further investigation: (1) Measuring the dependence of
higher modes of the WTQ on applied flux, in particular
the f1p mode that is theoretically calculated for the WTQ
example of Fig.5(c). (2) Demonstrating cross-resonance
gates in multi-qubit chips of WTQs and showing that
frequency collisions can be avoided by applying indepen-
dent fluxes to neighboring qubits. (3) Finding out the
limits on the tunability ranges that can be experimen-
tally achieved with these qubits. (4) Interrogating TLS
spectra in the frequency and time domains by flux-tuning
a WTQ.

VIII. CONCLUSION

We introduce weakly tunable superconducting qubits
whose frequency can be tuned with external magnetic
flux. The qubits comprise capacitively shunted JJ and
asymmetric dc-SQUID, sharing one electrode and capac-
itively coupled via the other two.

We develop a theoretical model that captures the de-
vice physics and its coupling to the flux biasing circuit.
By solving the full Hamilitonian of the system, we cal-
culate the various qubit properties as a function of the
circuit parameters and applied flux. We also calculate the
qubit relaxation and dephasing times associated with the
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flux-biasing circuit. Furthermore, we derive analytical
expressions that yield approximate values for the various
device parameters and coherence times.

Moreover, we fabricate and test two superconducting
chips containing several variations of these qubits. We
show that they can achieve frequency tunablity ranges
as low as 43 — 287 MHz with only a small asymmetry in
the size of their SQUID JJs (p; = 2 — 3.5), which are
considerably lower than what is possible using highly-
asymmetric de-SQUID transmons (about 350 MHz of
tunability with an asymmetry factor of 15). Using such
weakly flux-tunable qubits should enable us to resolve
most common frequency-collisions in multi-qubit archi-
tectures while minimizing sensitivity to flux noise. For
example, a 1000-qubit device comprising WTQs of tun-
ability 6 = 50 MHz and trimmed using laser-anneal could
achieve collision-free yield of 10% and dephasing times
> 500 ps, while WTQs of tunability § = 99 MHz could
achieve collision-free yield of 99% and dephasing times
> 200 ps. Furthermore, in any large qubit lattice it is
likely that several qubits will suffer degraded coherence
due to TLS coupling. WTQ tunability can restore the
qubits’ T1 and permit periodic adjustments if the TLSes
drift over time [22].

These qubits also retain the key properties that have
made transmons useful in multi-qubit architectures, such
as having 0 — 1 transition frequencies in the range 4 —5.5
GHz, anharmonicities around 250 — 300 MHz, compara-
ble relaxation and decoherence times to single-JJ trans-
mons, small footprints, and a standard fabrication pro-
cess. Moreover, because the WT(Q has a transmon-type
electromagnetic mode, we expect it to function in cir-
cuit architectures that support transmons, for instance
cross-resonance gates or other two-qubit gates that rely
on transmission-line resonator coupling. In this way the
WTQ can be a tool to solve frequency-crowding issues in
scaled-up quantum computing circuits.
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Qubit p; f3i™ (GHz) f, (GHz) |af™ (MHz) |of™™ (MHz) § (MHz) T1 (us) T3 (s)

WTQ1 2.6 4.8905 6.8869 254 224 99 75 85
WTQ2 3.5 4.57 6.9642 254 233 50 82 136
WTQ3 2.8 4.681 6.8372 246 215 89 64 65

Q4 NA  5.0785 6.9567 360 360 NA 65 36
WTQ5 3.5 4.442 6.9217 265 248 43 71 120
WTQ6 2.8 4.653 6.790 260 239 86 - -
WTQT7 3.0 4.6065 6.867 252 226 76 - -

TABLE I: Measured parameters of Chip A. Q4 is the single-JJ transmon on the chip. The SQUID JJ ratio parameter p; is
extracted from the spectroscopy fits. f3i** is the maximum measured qubit frequency. o™ (a™™) is the maximum (minimum)
measured anharmonicity obtained at f&5** (f&i"). § is the measured frequency tunability range. Tin™ is the maximum measured
coherence and T3 is the corresponding lifetime taken at the same flux bias. The coherence times for WT'Q6 and WTQT7 were
not measured.

Qubit Design ps Ci (fF) C5 (fF) C. (fF) L1 (nA) Ie2 (nA) I3 (nA) py (fit)
WTQ1 U 4.2  60.5 17.8 20.0 28.3 25.0 65.3 2.6
WTQ2 P 5.1 61 18.4 20.5 25.2 20.0 69.8 3.5
WTQ3 P 4.2 61 17.8 20.6 26.4 21.3 60 2.8

Q4 NA NA 629 NA NA 24.0 NA NA NA
WTQ5 U 5.1 60.0 18.4 20.0 23.4 20.2 70.7 3.5
WTQ6 U 4.2  60.7 18.3 20.1 25.9 21.3 60.0 2.8
WTQ7 P 4.2  60.0 18.1 20.7 25.4 20.0 60.2 3.0

TABLE II: Circuit parameters of chip A qubits extracted from the spectroscopy theory fits.

Qubit p; 5™ (GHz) fr (GHz) |o|™™ (MHz) |a|™™ (MHz) 6 (MHz) Ti (us) Top™ (us)

WTQ2 2.36  5.6805 6.9683 252 224 115 42 40
WTQ3 2.06 5.557 6.8410 243 189 207 57 33

Q4 NA 6.375 6.967 349 349 NA 13 25
WTQ5 2.06 5.497 6.9262 250 161 159 47 73
WTQ6 1.9 5.743 6.7906 248 181 287 40 58
WTQT7 1.95 5.972 6.869 226 162 262 29 42

TABLE III: Measured parameters of Chip B. Q4 is a single-JJ transmon. WTQ1 did not yield (one of its SQUID junctions
is open). The SQUID JJ ratio parameter p; is extracted from the spectroscopy fits. f5i** is the maximum measured qubit

frequency. o™* (a™") is the maximum (minimum) measured anharmonicity obtained at fgi®™* (fgi ). 0 is the measured

max

frequency tunability range. 7o is the maximum measured coherence and 71 is the corresponding lifetime taken at the same
flux bias. The relatively low T of Q4 is limited by the Purcell effect due to the proximity of fo1 to the readout frequency.

Qubit Design ps Ci (fF) C5 (fF) C. (fF) L1 (nA) I2 (nA) Iz (nA) py (fit)
WTQ2 P 3 61.4 18.3 20.0 37.9 40.0 94.4 2.36
WTQ3 P 29 61.5 18.5 20.7 36.9 36.0 74 2.06

Q4 NA NA 629 NA NA 36.7 NA NA NA
WTQ5 U 3 614 18.0 20.0 35.7 40.0 82.4 2.06
WTQ6 U 29 60.3 18.3 20.0 38.5 38.0 72.0 1.9
WTQ7 P 2.9 60.1 18.0 20.7 42.0 41.0 80.0 1.95

TABLE IV: Circuit parameters of chip B qubits extracted from the spectroscopy theory fits. WTQ1 on chip B is not measured
because one of its SQUID junctions did not yield (open).



Qubit /27 (MHz) x/2r (MHz) T. (mK) @ mK/(mA)? T, (K) R (mQ)

WTQ2 0.45 0.47 47 10 0.2 1
WTQ3 0.65 0.39 67 7 0.2 1

Q4 0.82 0.51 78 5 0.2 1
WTQ5 0.65 0.26 55 5 0.2 1

TABLE V: Parameters of chip A qubits used in the coherence measurement theory fits shown in Fig. 9

Qubit x/2rx (MHz) x/2r (MHz) T. (mK) © mK/(mA)? T,, (K) R (mQ)

WTQ2 0.6 0.4 74 3 0.1 2
WTQ3 0.5 0.63 70 5 0.1 2
WTQ5 0.65 0.39 58 7 0.05 2

TABLE VI: Parameters of chip B qubits used in the coherence measurement theory fits shown in Fig. 10



