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Reef-building corals are inherently sessile organisms. However, motion is an important behavioral 

trait of coral polyps, which plays an essential role in feeding, competition, defense, reproduction, 

and thus survival and fitness. Notwithstanding the importance of inherent temporal and spatial 

multi-scale features of polyps, its quantitative properties and modelling still remain challenging 

and unexplored. Here, we observe Pocillopora acuta in vivo under different light and temperature 

conditions using a fluidic platform that allows direct microscopic study of small live coral 

fragments, where the stochastic dynamics of in-plane waving motion of polyps is uncovered. The 

relation among polyps on nubbins is described by motion correlation analysis. Besides, the 

fractional Brownian motions of polyps under certain light conditions and temperatures are revealed 

by Hurst index via power spectral analysis. Finally, the motion of polyps is modelled by Langevin 

dynamics, numerically obtained by data-driven parameterization. This combination of 

experimental observations, numerical analysis and theoretical modelling opens an avenue to boost 

our understanding of the biological and physical behaviors of corals in relation to changing 

environmental conditions. 
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I. INTRODUCTION 

Animal movement is one of the key features in understanding animal behaviors. The rich 

dynamics of movements in biosystems have been attracting the interest of many researchers in the 

field of biophysics for its inherent temporal and spatial multi-scale features. However, quantifying 

and characterizing the different types of motion in biological systems remains challenging due to 

randomness and intrinsically complex nature [1]. Recently, with the development of tracking 

technique and mathematical modelling strategies, behaviors, foraging strategies and distributions 

of animals are well studied. A variety of methodologies to model animal motions has been 

proposed, including but not limited to uncorrelated/correlated random walks [1–4], Levy flight [5–

9], stochastic differential equation such as the noted Ornstein-Uhlenbeck process [1,10–14] and 

hidden Markov models [15,16]. 

Many biophysical processes can be modelled as Brownian motion. Nevertheless, other 

processes reveal the existence of anomalous Brownian motion, which is also called fractional 

Brownian motion [17]. Such Brownian and derivative motions are widely observed not only in 

biological systems but also in physical systems, such as dynamics of ultracold atoms [18], quantum 

dots [19–21], nano-electrodes [22], heartbeat intervals [23], and in our daily lives including 

fluctuations of climate [24] and economic markets [25]. In biological systems, particularly in 

subcellular and cellular structures, the motion of proteins or submicron tracers in living cells [26–

29], telomere diffusion in the cell nucleus [30] and diffusion in lipid membranes [31–34] have 

been characterized by fractional Brownian motions. However, the efficacy of such fractional 

Brownian motion to model the behavior of clonal and colonial organisms such as reef-building 

corals has not been reported and remains yet elusive. 



 

 

Coral reefs, as keystone organisms, support rich and diverse ecosystems, and hold immense 

ecological and economic value. Coral organisms live in symbiosis with photosynthetic algae and 

complex assemblages of bacterial, archaeal and fungal communities [35]. The impacts of 

anthropogenic activities influence the behavior, physiology and ecology of corals through the 

global rise in sea-surface temperatures and ocean acidification [36]. Coral colonies are fixed to the 

substrate but polyps display dynamic properties, including temporal motion and their substructures 

which may play an important role in overall coral health, especially in relation to changing 

environmental conditions [37]. For example, some soft corals, such as the family of Xeniidae, 

exhibit a unique, rhythmic pulsation, which functions as enhancement of photosynthesis by 

modulating the water flow [38,39], while in many species of scleractinian corals, the motions of 

polyps and tissue are more subtle or even imperceptible [37]. The erratic behaviors may occur on 

coral polyps and colonies due to abnormal environmental variables. Thus, understanding coral 

motions will help us to better assess coral health in a proactive manner and understand coral 

physiology in a changing environment in terms of light conditions, temperature, pH and other 

environmental variables [40–46]. To date, however, the motions of coral polyps remain largely 

unexplored, and their characterization using appropriate models is in its infancy. To evaluate the 

effect of environmental variables on coral motion, the fluidic platform is necessary for study of 

coral motion in vivo at the microscale [47,48].  

To this end, we design a fluidic platform which allows us to observe the coral nubbin in vivo 

in real time under the microscope so that the subtle in-plane waving motion of polyps can be 

captured for analysis. We conduct multiple observations of coral nubbins under different light 

conditions and temperatures to demonstrate how polyps adjust motions in response to these 



 

conditions. We find that both light (wavelength) and temperature impact polyp motions and 

modulate behaviors based on differences in correlation, phase synchronization, and the Hurst index 

of stochastic motion processes. Moreover, we utilize the generalized Langevin equation to model 

the polyps’ motion under different light conditions and temperatures. This unique combination of 

studying coral behaviors and describing it with mathematical models can boost our understanding 

of coral physiology, and promote the simulation and prediction of coral behavior in response to a 

given environmental condition in the future. 

 

II. EXPERIMENTAL SYSTEM 

FIG. 1(a) shows the schematic of our octagonal fluidic platform with a coral nubbin in the 

chamber. Our fluidic platform manufactured through 3D printing is shown in the inset with the 

tubing connectors attached. The full design is explained in APPENDIX A. It is centered around a 

main chamber surrounded with eight valves and in/outflow channels which can be opened or 

closed individually. The valves can control the flow of fluid. Therein, in FIG. 1(a), since the valves 

shaded in yellow are open, the flow direction of fluid is along a straight path, shown in blue. The 

computational fluid dynamics simulation of this fluidic platform is shown in APPENDIX A. The 

velocity field shows the low impact to the coral nubbin induced by the water flow to ensure the 

spontaneous motion of polyps can be observed. The experimental setup and procedure are shown 

in APPENDIX A. 

FIG. 1(b) shows the coral nubbin under the microscope where the coral nubbin with several 

polyps can be observed. This picture is taken of the experimental setup under normal light and 

25°C. The time-lapse video with 300 times playback illustrating the polyps’ motions is shown in 

Video 1. The polyps are moving vibrantly including contraction, extension and waving. Since we 



 

observe the motion right above the coral nubbin, only the orthogonal projection of three-

dimensional polyps’ motion is recorded. Each polyp is simplified for analysis as a line segment 

connecting the tentacle crown to the foot of the polyp so that the azimuthal angle can be calculated 

with respect to the horizontal direction. The tentacle crown and foot of the polyp are tracked using 

the correlation-based algorithm [49]. The azimuthal angle 𝜃 shown in the inset of FIG. 1(b) is 

found to be appropriate in describing the original motion. Therefore, the azimuthal angle 

representing the in-plane waving motion of polyp is used for analysis and discussion below. Note 

that the other two components, polar angle and radius distance, which represent out-of-plane 

waving motion and contraction/extension motion respectively, are in lack of depth information to 

obtain. 

 

 

Video 1. Time lapse video of coral nubbin under normal light and 25°C. 

 



 

FIG. 1(c) exhibits the trajectories of the tentacle crowns of the polyps in different colors 

corresponding to the labels in FIG. 1(b). Each of them covers a certain area within the random 

pattern. Since we only study the in-plane waving motions of polyps, we extract the information of 

azimuthal angle and show it in FIG. 1(d). These motion signals are all oscillating over time with 

several spikes at some time periods. Besides, these signals do not exhibit certain trends indicating 

the polyps are randomly moving around their central points. Therefore, as expected, the probability 

density functions (PDFs) of these motion signals after centered to zero exhibit symmetric shapes 

as shown in FIG. 1(e). The PDFs indicate that most motions are around the central points. 

 

 

FIG. 1. Experimental observation of coral in the fluidic platform. (a) Schematic of our octagonal 

fluidic platform with a coral nubbin in the chamber. The inset shows our octagonal fluidic platform 



 

for experiment made by 3D printing with VeroClear resin. The valves control the flow of fluid. (b) 

The coral nubbin observed under the microscope under normal light conditions and 25°C. The 

polyps being analyzed in this case are labelled by numbers and color codes used in subsequent 

figures. (c) The trajectory of polyps. (d) The azimuthal angles 𝜃 of different polyps as a function 

of duration. (e) The probability density function of the azimuthal angles 𝜃 of different polyps after 

centered to zero. The colors in (c), (d) and (e) correspond to the colors of labels in (b).  

  

III. NUMERICAL ANALYSIS 

A. Motion correlation of polyps 

      Since there are several polyps on one coral nubbin, it is interesting and natural to study the 

coordination of polyps’ motions if the whole coral nubbin is considered as a colony of 

interconnected polyps. The motion correlation between polyp m and polyp n can be calculated as 

below: 

 
𝑟𝑚𝑛 =

∑(𝜃𝑖
𝑚 − 𝜃𝑚̅̅ ̅̅ )(𝜃𝑖

𝑛 − 𝜃𝑛̅̅̅̅ )

√∑(𝜃𝑖
𝑚 − 𝜃𝑚̅̅ ̅̅ )2 ∑(𝜃𝑖

𝑛 − 𝜃𝑛̅̅̅̅ )2

 
(1) 

where i and the upper bar denote the index number and the average of the temporal data. As 

displayed in FIG. 2(a), the positive correlation coefficient indicates the correlated relation between 

two polyps while the negative one suggests the anti-correlated relation. The correlated or anti-

correlated relation indicates the synchrony of two polyps in terms of moving direction. Besides, 

the correlation coefficient changes as a function of light conditions. Compared with the polyps’ 

motions under normal light which is the control group, the absolute values of correlation 

coefficient increases with increasing wavelength. This implies that the in-plane waving motion 

trends of polyps on one coral nubbin (i.e., in very close proximity) become more and more 



 

pronounced (whether correlated or anti-correlated) when the light shifts from blue light to red light. 

When the polyps are under normal light, they generally show a stronger trend (correlation or anti-

correlation) compared to single-wavelength conditions. Specifically, the case under blue light has 

a significant difference from the other cases in correlated motion (p = 0.0043). 

      We also study the effect of temperature on the correlation among polyps on the same coral 

nubbin shown in FIG. 2(b). The experimental groups (15°C and 30°C) have slight changes in 

comparison with the control group (25°C), where the absolute values of correlation coefficient 

become smaller with increasing temperature. But for both correlation and anticorrelation, no 

significant difference was found according to p-value. It indicates stronger trends, more and more 

correlated or anti-correlated, of in-plane waving motions of polyps at lower temperature. 

      Apart from the correlation, phase synchronization is another important feature to describe the 

synchrony between two motion signals. The phase denotes the angle corresponding to the 

momentary deflection of an oscillation. Phase synchronization, as a nonlinear measure, refers to 

the correlation of phase values between two in-plane waving motions of polyp m and polyp n, 

which can be quantified to be phase locking value (PLV) calculated as below: 

 
𝑃𝐿𝑉𝑚𝑛 = |

1

𝑁
∑ 𝑒𝑖[𝜑𝑚(𝑡𝑗)−𝜑𝑛(𝑡𝑗)]

𝑁

𝑗=1

| 
(2) 

where 𝜑𝑚 and  𝜑𝑛 are the phases of 𝜃𝑚 and 𝜃𝑛, which are obtained by Hilbert transform. FIG. 2(c) 

exhibits the PLV as a function of light condition. We notice that under blue light, the PLV is 

smaller than others, suggesting that the phases of in-plane waving motion of polyps are less 

synchronized than others, similar to the correlation shown in FIG. 2(a). This obvious trend is also 

verified by the p-value between blue light and other light conditions (p = 0.0001, 0.0029 and 

0.0358 for normal, green and red light). Temperature effects on phase synchronization is displayed 



 

in FIG. 2(d). As the temperature increases, the PLV decreases similar to the correlation shown in 

FIG. 2(b), indicating that in low temperature the polyps’ motions have higher phase 

synchronization. But the temperature effect is not pronounced.  

      In conclusion, the motions of polyps belonging to the same coral nubbin do not happen in 

isolation. Instead, they are coordinated in some way. This shows the connection between polyps 

provided by the connective tissue (coenosarc) extends to inter-polyp motion analyzed by motion 

correlation and phase synchronization. As a result, the in-plane waving motions of polyps on the 

same coral nubbin are rhythmically activated and inhibited, which can be adjusted by light 

conditions and temperatures. 

 

 

FIG. 2. Analysis of correlation and phase synchronization. (a) The correlation coefficients between 

polyps on the same coral nubbin under different light conditions (wavelength). Correlations and 

anti-correlations are shown in orange and green, respectively. (b) The correlation coefficients 

between polyps on the same coral nubbin under different temperatures. Correlations and anti-

correlations are shown in orange and green, respectively. (c) Phase locking value characterizing 



 

phase synchronization between polyps on the same coral nubbin under different light conditions. 

(d) Phase locking value characterizing phase synchronization between polyps on the same coral 

nubbin under different temperatures. The symbols of cross and triangle in (a), (b), (c), and (d) 

represent the outliers and mean. 

 

B. Fractional Brownian motion and its power spectral densities 

      According to the observation of the polyp trajectories (FIG. 1(c) and FIG. 1(e)), the in-plane 

waving motions of polyps are the Gaussian stochastic process whose covariance function is 

defined as: 

 
⟨𝜃𝑡1

𝜃𝑡2
⟩ = 𝐷(𝑡1

2𝐻 + 𝑡2
2𝐻 − |𝑡1 − 𝑡2|2𝐻) (3) 

where D is diffusion coefficient, 𝑡1 and 𝑡2 are two points in time, and 𝐻 ∈ (0,1) is the Hurst index. 

When 𝐻 ≠ 0.5, the process is the fractional Brownian motion and when 𝐻 = 0.5 the process is 

standard Brownian motion. This metric provides possibilities to characterize the motion of polyps 

from the perspective of Brownian motion. First of all, we calculate the power spectral density 

(PSD) of the single trajectory using the equation: 

 𝑃𝑆𝐷 =  
1

𝑇
|∫ 𝜃𝑡𝑒𝑖𝑓𝑡𝑑𝑡

𝑇

0

|

2

 (4) 

where T is the observation time. In total we obtain multiple (≥ 15) trajectories for the experiments 

under each light and temperature condition. 

      As shown in FIG. 3(a), the PSDs of individual trajectories under different light conditions 

exhibit straight trends in the logarithm scale, suggesting the power-law relation between frequency 

and PSD. Besides, the slopes of PSDs are within the certain ranges that can be used to deduce the 

Hurst index according to the power-law relation between frequency and PSD: 𝑃𝑆𝐷~𝑓−(2𝐻+1). 

This type of motion is generally called 1/f-type motion. Because the calculated slope in the 



 

logarithm-scaled graph is smaller than 1, this 1/f-type motion is specifically the Brownian-type 

motion. To determine the type of Brownian motion, Hurst index needs to be calculated. However, 

since PSD is an ensemble-averaged property, our available experimental datasets are small for 

such ensemble averages so that the calculated Hurst index may not be accurate. In addition, simply 

fitting the straight line will give us a deceptive result because in standard Brownian motion and 

fractional Brownian motion when 𝐻 > 0.5, they both own the PSDs that scales as 𝑓−2. Moreover, 

the variations among PSDs are so subtle that different fitting methods may lead to different results. 

 

      Therefore, the method calculating Hurst index by the zero-frequency PSD is applied [30]. The 

PSD at zero frequency can be expressed as: 

 𝑃𝑆𝐷(𝑓 = 0) =  
1

𝑇
|∫ 𝜃𝑡𝑑𝑡

𝑇

0

|

2

 (5) 

which is simply the squared area under the motion signal 𝜃𝑡  divided by T. It is proven that 

individual trajectory zero-frequency PSD is the gamma distribution with scale 2𝜇  and shape 

parameter 1/2, where 𝜇  is the ensemble-averaged zero-frequency PSD. 𝜇  has the power-law 

relation with observation time universally (for both subdiffusive and superdiffusive cases) 

expressed by: 

 𝜇(𝑓 = 0) =
𝐷𝑇2𝐻+1

𝐻 + 1
 (6) 

Therefore, we can easily leverage this relation to calculate the reliable Hurst index to avoid the 

drawbacks of directly using PSD mentioned above. As shown in FIG. 3(b), from left to right, the 

zero-frequency PSDs of 𝜃 under normal light, blue light, green light and red light are increasing 

as a function of observation time. We notice that in the logarithm scale they have linear trends 



 

(dots) and then are fitted by straight lines (solid lines), which agrees with the dots and coincides 

with the theory above. 

 

 

FIG. 3. Power spectrum analysis of experimental datasets under different light conditions. (a) 

Power spectral density (PSD) of representative in-plane waving motions represented by azimuthal 

angle 𝜃  under different light conditions. The dashed gray lines show the 1 𝑓1.08⁄  and 1 𝑓1.42⁄  

trends for normal light,  1 𝑓1.19⁄  and 1 𝑓1.28⁄  trends for blue light, 1 𝑓1.41⁄  and 1 𝑓2⁄  trends for 

green light, and 1 𝑓1.77⁄  and 1 𝑓2⁄  trends for red light. (b) The PSDs evaluated at zero frequency 

shown in dots for normal light, blue light, green light and red light from left to right. The solid 

lines show the fitted results. Both x and y axes are in logarithm scale. (c) The Hurst indices for 

cases under normal light, blue light, green light and red light. Subdiffusion and superdiffusion 

areas are shaded in green and orange. 

 



 

      Furthermore, the Hurst index for each case can be extracted shown in FIG. 3(c). From this 

graph, we notice that in most cases the Hurst index is less than 0.5 (area shaded in green), 

indicating the in-plane waving motions of polyps are subdiffusive in fractional Brownian motion. 

To entail a subdiffusive motion, the increments are negatively correlated, such that it is most likely 

that after an increasing step a decreasing one will follow. It is obvious in FIG. 3(c) that the in-

plane waving motions of polyps under the blue light have the smallest Hurst index. With the 

increasing wavelength from blue light to red light, the Hurst index is increasing close to 0.5, which 

implies that a decreasing step will be less likely to follow an increasing step. Given the power-law 

relation between frequency and PSD, the trends 𝑃𝑆𝐷~𝑓−(2𝐻+1) based on the calculated Hurst 

index from zero frequency PSD are illustrated in FIG. 3(a). The gray dashed lines in FIG. 3(a) 

show the 𝑓−1.08 and 𝑓−1.42 trends for normal light,  𝑓−1.19 and 𝑓−1.28 trends for blue light, 𝑓−1.41 

and 𝑓−2  trends for green light, and 𝑓−1.77 and 𝑓−2  trends for red light. It turns out that the 

estimated PSD and the PSD of individual trajectories of polyp show good agreement. 

      Similarly, the PSDs under different temperatures are shown in FIG. 4(a). In the logarithm-scale 

graphs, PSDs have the linear trends which agree with the power-law relation between frequency 

and PSD. As shown in FIG. 4(b), from left to right, the zero-frequency PSDs as a function of time 

for 15°C, 25°C and 30°C have the linear trends (dots) with fitted straight lines (solid lines). 

Therefore, we can extract the Hurst index from the slopes of the straight lines. FIG. 4(c) shows the 

Hurst index for 15°C, 25°C and 30°C, where the control group (25°C) is in the subdiffusion region. 

We notice that under 15°C and 30°C Hurst index is extremely variable, which spans from 

subdiffusion region to superdiffusion region, suggesting uncertain diffusive mode in in-plane 

waving motion of polyps outside the optimum thermal range. Likewise, the dashed gray lines in 

FIG. 4(a) show the 𝑓−1.20 and 𝑓−2 trends for 15°C,  𝑓−1.08 and 𝑓−1.42 trends for 25°C, and 𝑓−1.25 



 

and 𝑓−2 trends for 30°C, to indicate the agreement between the estimated PSD and the PSD of 

individual trajectory of polyps. 

 

 

FIG. 4. Power spectrum analysis of experimental datasets under different temperatures. (a) Power 

spectral density (PSD) of representative in-plane waving motions represented by azimuthal angle 

𝜃 under different temperatures. The dashed gray lines show the 1 𝑓1.20⁄  and 1 𝑓2⁄  trends for 15°C,  

1 𝑓1.08⁄  and 1 𝑓1.42⁄  trends for 25°C, and 1 𝑓1.25⁄  and 1 𝑓2⁄  trends for 30°C. (b) The PSDs 

evaluated at zero frequency shown in dots for 15°C, 25°C and 30°C from left to right. The solid 

lines show the fitted results. Both x and y axes are in logarithm scale. (c) The Hurst indices for 



 

cases under 15°C, 25°C and 30°C. Subdiffusion and superdiffusion areas are shaded in green and 

orange. 

 

      It should be noted that under normal conditions (normal light and 25°C), the Hurst index is 

around 0.2, which can be set to be baseline. Hurst index will deviate away from this baseline in 

other conditions especially under the green and red light, higher and lower temperatures. In some 

conditions, the diffusive type is extremely variable, switching from subdiffusion to superdiffusion. 

The accuracy of the calculation for the Hurst index can be improved by increasing the number of 

replicates and extending observation time. We note in passing that the findings presented here are 

only relevant for Pocillopora acuta under the given experimental conditions, while the extension 

to other reef-building corals in various conditions can be explored in the future. 

 

IV. THEORETICAL MODELLING VIA LANGEVIN DYNAMICS 

      According to the discussion above, the in-plane waving motions of polyps are fractional 

Brownian motion that is affected by light conditions and temperatures. This stochastic Brownian 

process can be modelled using generalized Langevin equation without conservative force term 

which can be expressed by: 

 
�̈� = − ∫ Κ(𝑡 − 𝜏)�̇�(𝜏)𝑑𝜏

𝑡

0

+ 𝑅(𝑡) 
(7) 

where Κ is the memory kernel function, and 𝑅(𝑡) is the random noise term with zero mean, 

satisfying the second fluctuation-dissipation theorem [50]: 〈𝑅(𝑡)𝑅(𝑡′)〉 = 𝑘𝐵𝑇Κ(𝑡 − 𝑡′), where 

𝑘𝐵 denotes Boltzmann constant. Hence, the main focus is to model the memory kernel function 

and the random noise term. Here we use the data-driven method to discover the parameterization 

of generalized Langevin equation [51,52]. The generalized Langevin equation becomes 𝐺(𝑡) =



 

− ∫ Κ(𝑡 − 𝜏)𝐻(𝜏)𝑑𝜏
𝑡

0
 after �̇�(0)𝑇 is right- multiplied to the generalized Langevin equation. Note 

that the correlation matrices 𝐺(𝑡) = 〈�̈��̇�(0)𝑇〉 , 𝐻(𝑡) = 〈�̇��̇�(0)𝑇〉  and 〈𝑅(𝑡)�̇�(0)𝑇〉 = 0  [53]. 

However, this equation may lead to an unreliable solution due to the integral equation of the first 

kind [51]. We then obtain �̂�(𝜁) = −Κ̂(𝜁)�̂�(𝜁) by conducting the Laplace transform, where the 

hat means the Laplace transform of corresponding functions. The memory kernel function in the 

Markovian limit Κ̂(∞), also known as friction tensor, is estimated to compare in each experimental 

setup. As shown in FIG. 5(a), the Κ̂(∞) calculated by: 

 Κ̂(∞) = −�̂�(∞)�̂�(∞) = − (∫ 𝐺(𝑡)𝑑𝑡
∞

0

) (∫ 𝐻(𝑡)𝑑𝑡
∞

0

)

−1

 (8) 

is summarized for different light conditions. From FIG. 5(a), generally, compared with the case 

under normal light, other cases under blue light and green light have larger memory kernel function 

on average. In experimental groups, the memory kernel functions of most cases are smaller under 

the red light than those under the other light conditions. Physically, �̂�(∞) is a dissipation term and 

should be inversely proportional to motion correlation (FIG. 2) and Hurst index (FIG. 3). The 

memory kernel function can also be estimated by the rational function in different orders. The 

details on calculation of memory kernel function are shown in APPENDIX B. 

      Once we determine the memory kernel function, the next step is to estimate the random noise 

term. The non-Markovian nature of fractional Brownian motion makes the computation and 

simulation difficult. Therefore, we define the auxiliary variable 𝑑(𝑡) = − ∫ Κ(𝑡 − 𝜏)�̇�(𝜏)𝑑𝜏
𝑡

0
+

𝑅(𝑡) . For simplicity, the demonstration of motion simulation is based on the first-order 

approximation, where the auxiliary variable can be simplified as 𝑑(𝑡) = − ∫ 𝐴1𝑒𝐵1(𝑡−𝜏)�̇�(𝜏)𝑑𝜏
𝑡

0
+

𝑅(𝑡), which can be further expressed in terms of coefficients in first-order approximation 𝐴1, 𝐵1 

and white noise 𝑊: 



 

 
{

�̈� = 𝑑
�̇� = 𝐵1𝑑 − 𝐴1�̇� + 𝑊

 
(9) 

The probability density function of 𝑊 is characterized by a peak in small values and rapid decays 

to large values (APPENDIX C). Since direct fitting of distributions on the histogram and a visual 

comparison with the assumed distribution are shown to be unreliable [54], we use the maximum 

likelihood method to determine the optimal parameter for several distribution candidates (a) 

𝜌𝜆(𝑊) = 𝑐𝑒−𝜆|𝑊|  (b)  𝜌𝜇(𝑊) = 𝑐|𝑊|−𝜇  (c) 𝜌𝜎(𝑊) =
1

√2𝜋𝜎2
𝑒

−
𝑊2

2𝜎2 , which are the exponential 

distribution, power law distribution, and normal distribution, respectively. After determining the 

optimal parameter by the maximum likelihood method, the Akaike information criterion and 

Bayesian information criterion are used to determine the most appropriate function to model the 

white noise term [55]. It turns out that the exponential distribution is the preferred model for the 

white noise term (see APPENDIX C). FIG. 5(b) exhibits the parameter 𝜆 for the exponential 

distribution under different light conditions. Compared with normal light, the parameters are larger 

under green light, which results in clear differences in the exponential distribution using the 

average parameter 𝜆 under different light conditions (FIG. 5(c)). Likewise, the model of white 

noise of in-plane waving motion of polyps under different temperatures is shown in APPENDIX 

D and clearly demonstrates the distinction in different temperatures. 

      The next step is to simulate the in-plane waving motion of polyps under different light 

conditions and temperatures based on the generalized Langevin dynamics. Here, FIG. 5(d) shows 

the simulated results under normal light and 25°C spanning around 5.5 hours, which are clearly 

stochastic. The Hurst indices are shown below the curves with typical subdiffusion nature, where 

the Hurst index is less than 0.5. To check the statistical similarity between our simulated results 

and experimental results, the PDFs of corresponding in-plane waving motions are exhibited on the 



 

right panel of FIG. 5(d). The PDFs with characteristic bell-shaped curves can be observed, which 

are consistent with the PDF trends shown in FIG. 1(e). 

 

 

FIG. 5. The model of in-plane waving motion of coral polyps under different light conditions. (a) 

The value of memory kernel function in Markovian limit  �̂�(∞) of polyps under normal, blue, 

green and red light. (b) The parameter 𝜆 for the exponential distribution to model the white noise 

term under normal, blue, green and red light. (c) The fitted probability density function (PDF) of 

the white noise terms in different light conditions by using the average parameter 𝜆. (d) The 

simulated in-plane waving motions of five polyps under normal light and 25°C based on the 

generalized Langevin equation. The Hurst indices are shown below the simulated results. The 



 

corresponding PDFs of simulated results are exhibited on the right panel. The symbols of cross 

and triangle in (a) and (b) represent the outliers and mean. 

 

V. CONCLUSION AND DISCUSSION 

      Here, we have tested the hypothesis that the motions of corals are affected by abiotic factors 

such as light and temperature in the context of environmental change. To test this hypothesis, we 

designed a fluidic platform to observe the motions of coral at the scale of single polyps 

experimentally. This allowed us to explore the in-plane waving motion through correlation and 

synchronization analysis, resulting in the correlated and phase-synchronized motion of polyps on 

the same coral nubbin which is affected by light and temperature. In addition, the in-plane waving 

motions of polyps are found to be the fractional Brownian motion with Hurst index generally 

smaller than 0.5 by the power spectral density analysis. Outside of optimal growth conditions 

(normal light and 25°C), the Hurst index becomes highly variable (spanning between diffusive, 

subdiffusion and superdiffusion mode) with the baseline index being ~0.2. Finally, the model of 

in-plane waving motion of polyps is established for different light conditions and temperatures 

using the Langevin dynamics, which statistically agrees well with experimental results. The 

memory kernel function and noise term are calculated by data-driven method, in which the light 

conditions and temperatures also play important roles. 

Increasing temperature and decreasing wavelength can both be respectively associated with 

global warming and sea-level rise, since it is well known that longer wavelengths (red light) have 

only shallow penetration in the ocean compared to shorter wavelengths (blue light). With global 

sea-level rise, corals face a shift in light composition to more blue light which will probably 

weaken or even reverse the current in-plane waving motion trends of polyps and potentially entire 



 

colonies in the future. Based on the present results, future research directions could include the 

following. The impact from other environmental variables could be explored based on our fluidic 

platform and methods. Besides, the specific biological functions of polyp motion remain unclear. 

Movement of polyps may facilitate water flow and photosynthesis similarly to tentacle motion. 

Another possibility is that this Brownian-type motion may benefit the foraging strategy. Apart 

from coral polyps, coral tentacle motion could also be theoretically modelled by our methods. 

Furthermore, machine learning techniques, which are suitable for big data analysis and modelling, 

may be developed to study coral behaviors. It is also possible to apply our method in the field, 

requiring shorter observation time and higher frequency of taking images to ensure collection of 

high quality of images. Citizen science and shared data repository approaches can be potentially 

leveraged. 

Our research with scaled experimental observations, numerical analysis and theoretical 

modelling, paves the way to studying the motion of polyps, clonal and colonial organisms and 

boost our understanding of the impacts of abiotic factors on the behavior of coral polyps and coral 

colonies as a whole. The modelling of spatiotemporal dynamics of coral polyps may have 

promising applications in constructing more realistic scenes in virtual reality and the prediction of 

coral behavior in response to environmental change. 
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APPENDIX A: EXPERIMENTAL METHODS 

1. Design and fabrication of the octagonal fluidic platform 

      The octagonal fluidic platform was designed using computer assisted drawing software 

Solidworks. The design was 3D printed using a Polyjet 3D printer (Objet Eden 260VS) with 

VeroClear resin (clear and transparent resin, to allow for light penetration). This fluidic platform 

is specifically designed for the in vivo study of small coral fragments (i.e., nubbins, ≤ 5 mm) as 

opposed to the typical large fragments used (5-10 cm). At printing, the main chamber is open on 

both faces (top and bottom) which enables its attachment (glue) onto glass slides of various 

thicknesses for top and/or bottom imaging. 

2. Experimental setup and procedure 

      Coral nubbins (≤ 5 mm) were cut from larger fragments of Pocillopora acuta, glued onto glass 

coverslips and placed back into tanks to recover for two months [48]. For the experiments, the 

nubbins were placed in the octagonal fluidic platform (one at a time) under a dissecting microscope 

(magnification varied according to size of nubbin) mounted with a Nikon camera and viewing 

tablet. Photos were taken every 10 seconds from day 1 until the end of the experiment and 

assembled as time series for analysis. The octagonal fluidic platform was connected to a peristaltic 

pump that transports the seawater (salinity: specific gravity = 1.025) from the holding vessel to the 

chamber (holding vessel under constant stirring at 300 rpm and heating). A low flow rate (~5 𝜇L/s) 

was maintained to avoid impacting polyp motion while still regularly renewing the artificial 



 

seawater inside the chamber. The computational fluid dynamics simulation with different flow 

rates are exhibited in FIG. 6, where lower impact is observed at flow rate of 5 𝜇L/s. 

      The AI Prime™ 16HD Reef light system was used as the light source with constant power but 

adjustable wavelengths on a 10/14h daylight cycle. To make sure the corals acclimated to the 

fluidic environment, we moved the nubbins from the aquarium to the chamber on day 1 under 

normal light and temperature. On day 2, light and temperature were adjusted to experimental 

conditions and maintained for 24 hours. On day 3, the conditions were returned to normal, and the 

nubbin was placed back into the aquarium at the end of the day. The experimental settings include 

normal, blue, green and red light while keeping normal temperature 25°C, 15°C, 25°C and 30°C 

while keeping normal light. Blue, green and red light are monochromatic but normal light is mixed 

with 7%UV, 7%Violet, 7%Royal blue, 7%Blue, 7%Green, 19%Deep red, 7%Moonlight and 

33%Cool white according to the light setting on AI Prime™ 16HD Reef light system. Note that 

each experimental setting was replicated three times. 



 

 

FIG. 6. Computational fluid dynamics simulation with different flow rates of our fluidic platform. 

The velocity distribution of the fluid is shown in the tubes and chamber. Three slices are shown in 

the chamber, one of which shows the velocity distribution near the coral nubbin. The results of 

using flow rates of 5 𝜇L/s, 25 𝜇L/s and 50 𝜇L/s are shown in (a), (b) and (c), respectively. 

 



 

APPENDIX B: DATA-DRIVEN PARAMETERIZATION OF LANGEVIN EQUATION 

      One of the main focuses of generalized Langevin equation is to estimate the memory kernel 

function. We use the data-driven method to estimate the memory kernel function. As mentioned 

in the main text, after we obtain 𝐺(𝑡) = − ∫ Κ(𝑡 − 𝜏)𝐻(𝜏)𝑑𝜏
𝑡

0
, we conduct Laplace transform to 

obtain �̂�(𝜁) = −Κ̂(𝜁)�̂�(𝜁). Note that we work with the variable 𝜁 instead of the usual choice 𝑠 

( 𝑠 =
1

𝜁
) so that we obtain ℒ(𝐺(𝑡)) = �̂�(𝜁) = ∫ 𝐺(𝑡)𝑒−𝑡/𝜁𝑑𝑡

∞

0
, ℒ(𝐻(𝑡)) = �̂�(𝜁) =

∫ 𝐻(𝑡)𝑒−𝑡/𝜁𝑑𝑡
∞

0
 and ℒ(Κ(𝑡)) = Κ̂(𝜁) = ∫ Κ(𝑡)𝑒−𝑡/𝜁𝑑𝑡

∞

0
. By integrating by parts repeatedly, we 

can obtain the relation between the variable before and after the Laplace transform: 

 

�̂�(𝑖)(0) = 𝑖! 𝐺(𝑖−1)(0) 

�̂�(𝑖)(0) = 𝑖! 𝐻(𝑖−1)(0) 

Κ̂(𝑖)(0) = 𝑖! Κ(𝑖−1)(0) 

(10) 

Besides, when taking 𝜁 → ∞, we can obtain the Markovian limit of these parameters: lim
𝜁→∞

�̂�(𝜁) =

∫ 𝐺(𝑡)𝑑𝑡
∞

0
, lim

𝜁→∞
�̂�(𝜁) = ∫ 𝐻(𝑡)𝑑𝑡

∞

0
 and lim

𝜁→∞
Κ̂(𝜁) = ∫ Κ(𝑡)𝑑𝑡

∞

0
. Therefore, the memory kernel 

function in the Markovian limit Κ̂(∞) can be calculated by: 

 Κ̂(∞) = −�̂�(∞)�̂�(∞) = − (∫ 𝐺(𝑡)𝑑𝑡
∞

0

) (∫ 𝐻(𝑡)𝑑𝑡
∞

0

)

−1

 (11) 

In order to calculate the Κ̂(𝜁) in any 𝜁, we use a rational function approximation for Κ̂(𝜁) in the 

form of: 

 Κ̂(𝜁) = (𝐼 − ∑ 𝐵𝑚𝜁𝑚

𝑀

𝑚=1

)

−1

( ∑ 𝐴𝑚𝜁𝑚

𝑀

𝑚=1

) (12) 

where the terms of expression are matrices 𝐴𝑚, 𝐵𝑚 ∈ ℝ𝑁×𝑁. The highest-order coefficients can 

be found by taking the limit: lim
𝜁→∞

Κ̂(𝜁) = −𝐵𝑀
−1𝐴𝑀.  



 

      Κ̂(𝜁) can also be expanded by the Taylor expansion at 𝜁 = 0: 

 
Κ̂(𝜁) = ∑

Κ̂(𝑛)(0)

𝑛!
𝜁𝑛

∞

𝑛=1

 
(13) 

The rational function approximation for Κ̂(𝜁) can be matched with the form of Taylor expansion, 

which results in the formula: 

 

Κ̂(𝑛)(0)

𝑛!
= 𝐴𝑛 + ∑ 𝐵𝑙

Κ̂(𝑚)(0)

𝑚!
𝑙+𝑚=𝑛

 
(14) 

Combining with the conversion between variables before and after the Laplace transform, we can 

deduce the coefficients in the rational function approximation. For example, as for the first-order 

approximation, 𝐴1 = −𝐺(1)(0)[𝐻(1)(0)]
−1

, 𝐵1 = −𝐴1[Κ̂(∞)]
−1

. Likewise, we can obtain the 

coefficients of higher-order rational function approximation. Then the inverse Laplace transform 

can be used to obtain the memory kernel function in time domain. 

      We take the polyp #3 labelled in FIG. 1(c) as an example. As shown in FIG. 8, the first-order, 

second-order, third-order and fourth-order rational function approximations of memory kernel 

function are presented in different colors. We notice that rational function approximations of 

memory kernel function are becoming closer and closer with the increasing approximation order, 

suggesting that the rational function is enough to describe the real memory kernel function. 



 

 

FIG. 7. The Laplace transform of memory kernel of modelling the in-plane motion of coral polyps. 

The first-order, second-order, third-order and fourth order estimations of Laplace transform of 

memory kernel are shown in different colors. The third-order and the fourth order estimations are 

overlapped. These curves converge to a certain value with the increase of 𝜁. 

 

APPENDIX C: MODEL OF STOCHASTIC TERM IN LANGEVIN DYNAMICS BY 

MAXIMUM LIKELIHOOD METHOD 

      Since the form of generalized Langevin equation poses a challenge to further investigation and 

𝑅(𝑡) represents the colored noise term in the generalized Langevin equation, we need to represent 

the generalized Langevin equation with extended dynamics driven by the white noise term. For 

simplicity and demonstration, the first order approximation of memory kernel function is used. 

Therefore, after the inverse Laplace transform and substitution, we can define the auxiliary 



 

variable 𝑑(𝑡) = − ∫ 𝐴1𝑒𝐵1(𝑡−𝜏)�̇�(𝜏)𝑑𝜏
𝑡

0
+ 𝑅(𝑡) . Under the Leibniz rule, the 𝑑(𝑡)  can be 

differentiated as �̇�(𝑡) = −𝐴1�̇�(𝑡) − 𝐵1 ∫ 𝐴1𝑒𝐵1(𝑡−𝜏)�̇�(𝜏)𝑑𝜏
𝑡

0
+ �̇�(𝑡) . Since 𝑅(𝑡)  satisfies the 

second fluctuation-dissipation theorem, 𝑅(𝑡) can be expressed as the initial condition 𝑑(0) and 

the white noise 𝑊(𝑡): 𝑅(𝑡) = ∫ 𝑒𝐵1(𝑡−𝜏)𝑊(𝜏)𝑑𝜏
𝑡

0
+ 𝑒𝐵1𝑡𝑑(0). Next, after the substitution, �̇�(𝑡) 

can be rewritten as �̇� = 𝐵1𝑑 − 𝐴1�̇� + 𝑊. Therefore, the in-plane waving motion of coral polyp 

under first-order approximation is governed by the equation (9). In this way, the in-plane waving 

motion can be easily simulated by solving this equation set. 

      As an example, the probability density function of white noise term of coral polyp #3 labelled 

in FIG. 1(b) is shown in FIG. 8. It is difficult to determine the distribution function because this 

probability density function is similar to some assumed distribution by the visual comparison. 

Therefore, the maximum likelihood method is adopted to determine the optimal parameter, for 

several distribution candidates (a) 𝜌𝜆(𝑊) = 𝑐𝑒−𝜆|𝑊|  (b)  𝜌𝜇(𝑊) = 𝑐|𝑊|−𝜇  (c) 𝜌𝜎(𝑊) =

1

√2𝜋𝜎2
𝑒

−
𝑊2

2𝜎2 , which are the exponential distribution, power law distribution, and normal 

distribution, respectively. Given a set of white noise term 𝑊 = {𝑤1, 𝑤2, ⋯ , 𝑤𝑛} and a probability 

density function 𝜌𝜆(𝑊), where 𝜆 is a vector of k parameters, the log-likelihood of the probability 

density function can be expressed by: 

 
ln 𝐿(𝜆|𝑅) = ln ∏ 𝜌𝜆(𝑟𝑗)

𝑛

𝑗=1

= ∑ ln 𝜌𝜆(𝑟𝑗)

𝑛

𝑗=1

 
(15) 

For each candidate, we find the 𝜆 to maximize the log-likelihood and obtain the optimal parameters. 

Herein, the Nelder-Mead simplex search algorithm is used to find the extrema. Three candidates 

with optimal parameters are exhibited in FIG. 8. We notice that obviously normal distribution does 

not fit our probability density function, but the other three distributions are difficult to differ. To 



 

find the preference between the different model distributions whose likelihoods 𝐿 are maximized, 

the Akaike information criterion and Bayesian information criterion defined as 𝐴𝐼𝐶 = −2 ln 𝐿 +

2𝑘, 𝐵𝐼𝐶 = −2 ln 𝐿 + ln(𝑛) 𝑘, respectively, are used to determine. The most appropriate model 

can minimize the information criterion. The results show that the Akaike and Bayesian information 

criteria make no difference for the model selection (i.e., The Bayesian information criterion agrees 

with the Akaike information criterion on 100% of all datasets). Table 1 shows the white noise 

model for each polyp in different light conditions. These results show that most of the polyps prefer 

the exponential distribution to model the white noise term in generalized Langevin equation under 

different light conditions. 

 

 

FIG. 8. The probability density function of white noise term. The probability density function of 

white noise term 𝑊  is shaded ins gray. The red, blue and green dashed lines show the fitted 

exponential function, power-law function and Gaussian function, respectively. 

 



 

Table 1. White noise model selection for different light conditions. The preferred model for each 

polyp in each replicated experiment is displayed based on Akaike information criterion and 

Bayesian information criterion. 

 Normal light Blue light Green light Red light 

Replicate 1 5/5 Exponential 4/4 Exponential 6/6 Exponential 4/4 Exponential 

Replicate 2 5/5 Exponential 

5/6 Exponential 

1/6 Power law 

5/5 Exponential 4/4 Exponential 

Replicate 3 5/5 Exponential 5/5 Exponential 6/6 Exponential 7/7 Exponential 

 

APPENDIX D: THE MODEL OF IN-PLANE WAVING MOTION OF CORAL POLYPS 

UNDER DIFFERENT TEMPERATURES 

      We also study the model of in-plane waving motion of coral polyps under different 

temperatures. Likewise, we obtain the memory kernel function by the data-driven parameterization 

and the noise term by the maximum likelihood method. From FIG. 9(a), generally, compared with 

the case under normal temperature, other cases under 15°C and 30°C have smaller memory kernel 

function on average. FIG. 9(b) exhibits the parameter 𝜆 for the exponential distribution under 

different light conditions. Compared with normal light, 𝜆 is larger under 15°C and 30°C, which 

results in clear differences in the exponential distribution using the average parameter 𝜆 under 

25°C (FIG. 9(c)). Table 2 shows the white noise model for each polyp in different temperature 

conditions. These results show that most of the polyps prefer the exponential distribution to model 

the white noise term in generalized Langevin equation under different temperature conditions. 

 



 

 

FIG. 9. The model of in-plane waving motion of coral polyps under different temperatures. (a)  

The value of memory kernel function in Markovian limit  Κ̂(∞) of coral polyps under 15°C, 25°C 

and 30°C. (b) The parameter 𝜆 for the exponential distribution to model the white noise term under 

15°C, 25°C and 30°C. (c) The fitted probability density function (PDF) of the white noise terms 

in different temperature by using the average parameter 𝜆. The symbols of cross and triangle in (a) 

and (b) represent the outliers and mean. 

 

 

Table 2. White noise model selection for different temperatures. The preferred model for each 

polyp in each replicated experiment is displayed based on Akaike information criterion and 

Bayesian information criterion. 



 

 15°C 25°C 30°C 

Replicate 1 6/6 Exponential 5/5 Exponential 5/5 Exponential 

Replicate 2 5/5 Exponential 5/5 Exponential 

4/5 Exponential 

1/5 Power law 

Replicate 3 4/4 Exponential 5/5 Exponential 5/5 Exponential 
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